PENNSYLVANIA TURNPIKE TOTAL RECONSTRUCTION PROJECT MILEPOST 320 TO 326

CHESTER AND MONTGOMERY COUNTIES, PENNSYLVANIA

NOISE IMPACT ANALYSIS REPORT

PTC REF. NO. 05-045-RD4C

HMMH REPORT NO. 301940

AUGUST 28, 2007

Submitted to:

PENNSYLVANIA TURNPIKE COMMISSION POST OFFICE BOX 67676 HARRISBURG, PENNSYLVANIA 17106-7676

PENNSYLVANIA TURNPIKE TOTAL RECONSTRUCTION PROJECT MILEPOST 320 TO 326

CHESTER AND MONTGOMERY COUNTIES, PENNSYLVANIA

NOISE IMPACT ANALYSIS REPORT

PTC REF. NO. 05-045-RD4C

HMMH REPORT NO. 301940

AUGUST 28, 2007

D.E. Barrett J.A. Cardello A.D. Donaldson G.S. Anderson

Submitted to: Pennsylvania Turnpike Commission Post Office Box 67676 Harrisburg, Pennsylvania 17106-7676

Submitted by: HARRIS MILLER MILLER & HANSON INC. 77 South Bedford Street Burlington, MA 01803

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY	1
2. INTRODUCTION	3
3. METHODOLOGY	5
 3.1 Traffic Noise Study Guidelines and Criteria	5 6 6
 4. EXISTING HIGHWAY TRAFFIC NOISE ENVIRONMENT (MONITORED DATA 4.1 Identification of Noise Study Areas (NSAs) 4.1.1 NSAs North of Turnpike 4.1.2 NSAs South of Turnpike 4.2 Monitored Highway Traffic Noise Results 4.2.1 Long-term Measurements 4.2.2 Short-term Measurements 	.)
5. FUTURE HIGHWAY TRAFFIC NOISE ENVIRONMENT (EXISTING AND FUTU MODELED)	JRE 21
 5.1 Validation of Noise Modeling 5.2 Loudest-Hour Computations	21 21 41 41
6. HIGHWAY TRAFFIC NOISE CONSIDERATION AND MITIGATION ALTERNA	TIVES 46
 6.1 Mitigation Alternatives	
7. CONSTRUCTION NOISE CONSIDERATION AND MITIGATION ALTERNATIV	VES65
8. PUBLIC INVOLVEMENT PROCESS	66

APPENDICES

APPENDIX A. WARRANTED, FEASIBLE AND REASONABLE WORKSHEETS
APPENDIX B. DESCRIPTION OF NOISE METRICSB1
APPENDIX C. MODELED TRAFFIC DATAC1
APPENDIX D. FIELD MEASUREMENT DATA SHEETSD1
APPENDIX E. PRELIMINARY NOISE BARRIER PERFORMANCE DATA

LIST OF TABLES

Table 1.	Summary of Noise Abatement Analysis	2
Table 2.	FHWA Noise Abatement Criteria.	6
Table 3.	Summary of Short-term Noise Measurement Results	20
Table 4.	Measured vs. Computed Sound Levels	22
Table 5.	Computed 2007 and 2035 Loudest-Hour Sound Levels	23
Table 6.	Summary of Evaluated Noise Barriers	49
Table 7.	Computed Loudest-Hour Sound Levels and Insertion Loss Values	56

LIST OF FIGURES

Figure 1. Project Location Map	4
Figure 2. Noise Study Areas (NSAs) and Noise Measurement Sites	9
Figure 3. LT1, 2015 Yellow Springs Road, January 30-31, 2007	16
Figure 4. LT1, 2015 Yellow Springs Road, January 31-February 1, 2007	16
Figure 5. LT2, 940 Yellow Springs Road, January 30-31, 2007	17
Figure 6. LT2, 940 Yellow Springs Road, January 31-February 1, 2007	17
Figure 7. LT3, 251 Lafayette Lane, January 30-31, 2007	18
Figure 8. LT3, 251 Lafayette Lane, January 31-February 1, 2007	18
Figure 9. LT4, 578 Richards Road, January 30-31, 2007	19
Figure 10. LT4, 578 Richards Road, January 31-February 1, 2007	19
Figure 11. Noise Receptor Sites and Potential Noise Barrier Locations	34

1. EXECUTIVE SUMMARY

This report describes the methodology and presents the findings of the traffic noise study conducted for the full-depth reconstruction project from Milepost 320 to 326 of the Pennsylvania Turnpike in Chester and Montgomery Counties, Pennsylvania. The full-depth reconstruction project will convert the existing four-lane roadway with a 10-foot median to a six-lane typical section with a 26-foot median. The purpose of the traffic noise study is (1) to determine if project-related noise impacts will occur and (2) to determine whether noise abatement for affected areas in the form of noise barriers or other mitigation measures would be warranted, feasible, and reasonable, based upon Federal Highway Administration (FHWA) and Pennsylvania Department of Transportation (PennDOT) criteria as utilized by the Pennsylvania Turnpike Commission (PTC).

For this evaluation, the project area was divided into 14 Noise Study Areas (NSAs). In the design year (2035), loudest-hour noise levels at impacted receptor units were computed to range from 66 to 77 dBA, L_{eq} (Appendix B provides a summary of the noise descriptors used in this report and Table 5 provides computed loudest-hour noise levels). Based upon the FHWA and PennDOT criteria described in Section 3.1 of this report, noise impacts were computed to occur within all NSAs. A total of 618 receptor units, including most first-row residences and some residences beyond the first row, are projected to be exposed to loudest-hour noise impacts during the design year.

Noise levels could be reduced through the construction of noise barriers and/or berms. Table 1 provides a summary of noise barriers that were considered within each of the 14 NSAs. Recommended noise barriers would need to meet the FHWA and PennDOT criteria described in Section 3.1.

Based on studies conducted to date, noise barriers in 11 of the NSAs (NSA-N1, NSA-N5, NSA-N6, NSA-S1, NSA-S2, NSA-S3, NSA-S4, NSA-S5, NSA-S6, NSA-S7, and NSA-S8) were found to be warranted, feasible, and reasonable and therefore are recommended for further consideration. The recommended noise barriers would range in height from approximately 12 to 16 feet and would have a total length of approximately 37,300 feet. The barriers would benefit approximately 1,006 receptor units and would have a total cost of approximately \$13,148,000, based on a unit cost of \$25 per square foot¹. If it subsequently develops during the project's final design phase that conditions have changed, these barriers may no longer be recommended. A final decision on each recommendation will be made upon completion of the project design and the public involvement processes.

Due to the presence of noise-sensitive land use on both sides of the Turnpike throughout the majority of the project area, it is recommended that all noise barriers be constructed with sound-absorptive materials on the side facing the Turnpike. In locations with noise barriers directly across the Turnpike from one another, sound-absorptive materials will reduce the degradation of each barrier's effectiveness that may be caused by multiple reflections of sound between the barriers. In locations where a noise barrier will be constructed on only one side of the Turnpike, sound-absorptive materials will reduce potential increases in noise levels at residences on the opposite side of the Turnpike caused by reflected traffic noise.

¹ PennDOT Publication No. 24 provides for the use of a cost index factor of \$25.00 per square foot for calculation of noise barrier reasonableness (PennDOT Pub. 24, Section 3.3.3.1, May 2007). Actual construction costs are expected to be higher. See Section 3.1.3 of this report for further information on reasonableness criteria.

Noise Study Area	Warrants Noise Abatement Consideration?	Noise Barrier Feasible?	Approx. Barrier Length ¹ (feet)	Average Barrier Height (feet)	Barrier Cost ¹ (x 1,000)	Number of Benefited Receptor Units ²	Cost per Benefited Receptor Unit ¹ (x 1,000)	Noise Barrier Reasonable?
NSA-N1	Yes	Yes	815	16	\$325	7	\$46.5	Yes
NSA-N2	Yes	Yes	3,375	18	\$1,518	4	\$379.5	No
NSA-N3	Yes	Yes	5,260	18	\$2,367	14	\$169.1	No
NSA-N4	Yes	Yes	3,670	16	\$1,467	16	\$91.7	No
NSA-N5	Yes	Yes	1,430	12	\$430	Valley Forge National Park	NA	Yes
NSA-N6	Yes	Yes	4,760	14	\$1,667	73	\$22.8	Yes
NSA-S1	Yes	Yes	7,740	14	\$2,710	55	\$49.3	Yes
NSA-S2	Yes	Yes	2,200	14	\$770	7 + Vanguard and Crossroads Schools	NA	Yes
NSA-S3	Yes	Yes	2,435	16	\$973	45	\$21.6	Yes
NSA-S4	Yes	Yes	1,930	14	\$676	126	\$5.4	Yes
NSA-S5	Yes	Yes	2,530	14	\$886	278	\$3.2	Yes
NSA-S6	Yes	Yes	4,590	14	\$1,607	194	\$8.3	Yes
NSA-S7	Yes	Yes	6,765	14	\$2,368	49	\$48.3	Yes
NSA-S8	Yes	Yes	2,105	14	\$736	172	\$4.3	Yes
TOTALS:			37,300 ³		\$13,148 ³	1,006 ³		

Table 1. Summary of Noise Abatement Analysis

Notes:

1. Approximate barrier lengths and costs are from FHWA Traffic Noise Model (TNM) output. Results shown in table have been rounded.

2. Impacted receptor units with at least 3 dBA of noise reduction and/or non-impacted receptor units with at least 5 dBA of noise reduction. Assumes sound absorptive barriers.

3. Totals include only the 11 noise barriers found to be warranted, feasible, and reasonable.

Source: HMMH, 2007.

2. INTRODUCTION

This report describes the methodology and presents the findings of the traffic noise study conducted for the full-depth reconstruction project from Milepost 320 to 326 of the Pennsylvania Turnpike in Chester and Montgomery Counties, Pennsylvania. The Pennsylvania Turnpike Commission retained Harris Miller Miller & Hanson Inc. (HMMH) to conduct the traffic noise study under PTC Contract 05-045-RD4C. HMMH was assisted by Straughan Environmental Services, Inc. (SES). The full-depth reconstruction project will convert the existing four-lane roadway with a 10-foot median to a six-lane typical section with a 26-foot median. Figure 1 shows the project location.

The purpose of the traffic noise study is (1) to determine if project-related noise impacts will occur and (2) to determine whether noise abatement for affected areas in the form of noise barriers or other mitigation measures would be warranted, feasible, and reasonable, based upon FHWA and PennDOT criteria as utilized by the PTC.

This traffic noise impact analysis report includes the following:

- Section 1 (Executive Summary) of this report provides a summary of the findings and the recommendations of the traffic noise study;
- Section 2 (Introduction) provides an overall introduction to the traffic noise study;
- Section 3 (Methodology) describes the methodology and the traffic noise prediction model used in the study;
- Section 4 (Existing Highway Traffic Noise Environment) identifies and describes each Noise Study Area (NSA) included in the study and also describes the noise measurements conducted as part of the study;
- Section 5 (Future Highway Traffic Noise Environment) describes the noise modeling validation procedure and provides noise modeling results;
- Section 6 (Highway Traffic Noise Consideration and Mitigation Alternatives) describes noise mitigation alternatives;
- Section 7 (Construction Noise Consideration and Mitigation Alternatives) identifies and discusses construction noise impacts and possible mitigation alternatives and recommendations; and
- Section 8 (Public Involvement Process) provides a discussion of public involvement efforts.

In addition, Appendices A through E provide the following information:

- Appendix A provides the warranted, feasible and reasonable worksheets completed for each noise barrier that was considered.
- Appendix B provides a description of the noise metrics used in this report.
- Appendix C provides the traffic data used in the traffic noise prediction model.
- Appendix D contains documentation from the field measurements, including field sketches, log sheets and traffic counts for all measurement sites.
- Appendix E provides a summary of the preliminary noise barrier analysis conducted for each NSA, including computed loudest-hour sound levels and noise reductions for various barrier options considered.

Pennsylvania Turnpike Chester and Montgomery Counties, Pennsylvania

Milepost 320 to 326 Reconstruction Project

Project Location Map

Figure 1

HARRIS MILLER MILLER & HANSON INC.

0 2 4 6 Miles

3. METHODOLOGY

This section of the report describes the methodology used in this study.

3.1 Traffic Noise Study Guidelines and Criteria

This evaluation was conducted in accordance with general guidelines established by FHWA in Title 23 CFR Part 772^2 , and by specific criteria provided by PennDOT Publication No. 24^3 . The study involved a three-phased approach, as described in Publication No. 24:

- 1. Do the sensitive receptors *warrant* Highway Traffic Noise abatement consideration?
- 2. Is it *feasible* to provide Highway Traffic Noise Abatement from an engineering and acoustical perspective?
- 3. Is it *reasonable* from a cost/benefit, maintainability, and land use conformity consideration to provide Highway Traffic Noise Abatement?⁴

3.1.1 Warranted Criteria

Title 23 CFR 772 describes highway noise impacts as "impacts which occur when the predicted traffic noise levels (for the design year) approach or exceed the noise abatement criteria or when the predicted noise levels substantially exceed the existing noise levels."

Table 2 summarizes the FHWA noise abatement criteria (NAC). FHWA requires that primary consideration in abating traffic noise be given to exterior activities. This abatement is usually required where frequent human use occurs and therefore lowered noise levels would be beneficial. The exterior criterion level for such outdoor areas, including residences (Category B), is 67 dBA L_{eq} . The interior criterion (Category E) is used only where no exterior activities occur on the premises, or where such activities are removed from or shielded from the roadway noise. Noise impact is assessed where noise levels "approach or exceed" the NAC during the loudest hour of the day. Many state DOTs, including PennDOT, define "approach" to mean when the loudest-hour L_{eq} equals one decibel less than the NAC. Therefore, noise impact occurs where noise levels equal or exceed 66 dBA L_{eq} for exterior residential land use.

Noise impacts also may occur if predicted future noise levels substantially exceed existing noise levels. PennDOT considers an increase of 10 decibels or more above existing levels to be a substantial increase. Receptors that satisfy either of these two criteria (approach or exceed the NAC or experience a substantial increase), warrant further consideration of highway traffic noise abatement.

² Federal Highway Administration. 23 CFR Part 772: *Procedures for Abatement of Highway Noise and Construction Noise*.

³ Pennsylvania Department of Transportation. *Publication No. 24, Project Level Highway Traffic Noise Handbook*. May 2007.

⁴ Ibid., Section 1.2.1.3.

Land Use	Criterion
Category A: Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose	57 dBA Leq Exterior
Category B: Picnic areas, recreation areas, playgrounds, active sports areas, parks, residences, motels, hotels, churches, schools, libraries, and hospitals	67 dBA Leq Exterior
Category C: Cemeteries, commercial areas, industrial areas, office buildings, and other developed lands, properties or activities not included in Categories A or B above	72 dBA Leq Exterior
Category D: Undeveloped lands, including roadside facilities and dispersed recreation	No limit
Category E: Motels, hotels, public meeting rooms, schools, churches, libraries, hospitals, and auditoriums. (The interior criterion only applies when there are no exterior activities to be affected by traffic noise.)	52 dBA Leq Interior

Table 2. FHWA Noise Abatement Criteria

Source: FHWA, 23 CFR 772.

3.1.2 Feasibility Criteria

When evaluating noise barriers in areas where such consideration has been shown to be warranted, Publication No. 24 requires consideration of the following seven acoustical and engineering parameters. For the proposed noise barrier to be considered "feasible," the first two parameters must be receive a "yes" answer and the remaining five parameters must receive a "no" answer.

- 1. Can a highway traffic noise reduction of at least 5 dBA be achieved at the majority of the impacted receptor units (i.e., 50% or greater)?
- 2. Can the noise barrier be designed and physically constructed at the proposed location?
- 3. Will placement of the noise barrier cause a safety problem?
- 4. Will placement of the noise barrier restrict access to vehicular or pedestrian travel?
- 5. Will placement of the noise barrier make it inaccessible for maintenance?
- 6. Will the noise barrier impact utilities or will the utilities impact the noise barrier?
- 7. Will the noise barrier impact drainage or will the drainage impact the noise barrier?⁵

3.1.3 Reasonableness Criteria

After the results of the noise analysis have determined that a feasible noise barrier is achievable, the barrier must be shown to be of "reasonable" cost. Publication No. 24 establishes the allowable upper limit for cost reasonableness as \$50,000 per benefited receptor unit, based on a noise barrier unit cost of \$25.00 per square foot. The unit cost "includes the cost of the noise barrier panels only and does not include the cost of post, foundations, right-of-way, or grading."⁶

⁵ Ibid., Section 3.3.2.

⁶ Ibid., Section 3.3.3.1.

The cost of the noise barrier should then be divided by the number of benefited receptor units where noise mitigation was determined to be feasible to determine the cost per receptor unit.

An *impacted receptor* is eligible to be included in the reasonableness cost analysis if it receives a minimum 3 dBA noise reduction as a result of the proposed noise barrier.

A *non-impacted receptor* that receives a minimum 5 dBA noise reduction will be considered a *benefited* receptor unit and is eligible to be included in the reasonableness cost analysis.⁷

3.2 Traffic Noise Prediction Model

All traffic noise calculations for this project were performed using the FHWA Traffic Noise Model⁸ (TNM), which originally was released by FHWA in April 1998 for use on Federal-aid highway noise projects. The most current version of FHWA TNM (version 2.5, released for use by FHWA in April 2004) was used on this project.

TNM separately calculates the noise contribution of each roadway segment at a given receiver. For each roadway segment, the noise from each vehicle type is computed from the reference energy-mean emission level, and adjusted for vehicle volume, speed, grade, roadway segment length, and source-to-receiver distance. Further adjustments needed to accurately model the sound propagation from source to receiver include shielding provided by rows of buildings, the effects of different ground types, source and receiver elevations, and the effects of any intervening noise barriers. The program sums the noise contributions of each vehicle type for a given roadway segment at the receiver. TNM then repeats this process for all roadway segments, summing their contributions to generate the predicted noise level at each receiver.

TNM incorporates sound emissions and sound-propagation algorithms, based in theory on accepted international standards and field-checked along U.S. highways. TNM takes into account:

- Vehicle classifications, volumes and speeds.
- Attenuation due to ground reflections off a large selection of ground types.
- Effects of roadway edges and other edges between ground of different types.
- Attenuation over noise walls, including their interaction with reflections from the ground.
- Attenuation over earth berms and similar intervening hills/terrain.
- Attenuation over/through rows of buildings.
- Attenuation through dense foliage.
- Combined emission/speed effects of accelerating, full-throttle traffic on on-ramps and near stop signs, traffic signals, and toll barriers.
- Combined emission/speed effects of decelerating, full-throttle vehicles on upgrades and subsequent effects as these vehicles later regain speed.
- Multiple reflections of sound between parallel noise barriers or retaining walls.

⁷ Ibid., Section 3.3.3.3.

⁸ Anderson, G.S., C.S.Y. Lee, G.G. Fleming, and C.W. Menge, *FHWA Traffic Noise Model, Version 1.0 User's Guide*. Federal Highway Administration Report No. FHWA-PD-96-009, January 1998.

3.3 Loudest-Hour Computations

Following validation and refinement of the noise model, TNM was used to compute loudest-hour noise levels at a total of 420 representative prediction sites, or receivers, distributed throughout 14 NSAs. The study-area geometry, including roadway and receiver coordinates and elevations, was obtained from engineering drawings and aerial photographs provided by the PTC. Traffic data for the loudest-hour computations for both existing and future conditions were provided by the PTC. Appendix C of this report provides additional details, including modeled traffic volumes and speeds.

3.4 Noise Abatement Analysis

Noise abatement analysis was conducted in areas meeting the warranted criteria described in Section 3.1.1 with the objectives of determining whether such abatement could meet the feasibility and reasonableness criteria described in Section 3.1.2 and Section 3.1.3. This analysis determined the preferred alignment, approximate end points, and the approximate average height of each proposed noise barrier. Although this analysis was conducted using the full TNM with the full set of prediction sites for each NSA, the barrier design was conducted at a preliminary level. Specifically, ranges of barrier heights were evaluated in two-foot increments with the noise barrier assumed to be of constant height for its entire length. In general, noise barriers were evaluated for feasibility and reasonableness with constant heights of 10, 12, 14, 16, 18, and 20 feet above ground elevation to efficiently determine the average barrier height required to meet the design goals.

For any recommended noise barriers, further acoustical and engineering design would be necessary prior to construction.

4. EXISTING HIGHWAY TRAFFIC NOISE ENVIRONMENT (MONITORED DATA)

4.1 Identification of Noise Study Areas (NSAs)

PennDOT Publication No. 24 states that NSAs "should be delineated as areas of common highway traffic noise influence throughout the entire project limits of the proposed transportation improvement project. NSA boundaries typically do not traverse over any major and/or significant highway traffic noise influence sources (i.e., existing or proposed roadways). Grouping common areas into NSAs also assists in evaluating mitigation, organizing reports, and facilitating discussions."⁹

Following this guidance, and based on a field review conducted on December 14, 2006, HMMH divided the project area into 14 NSAs. The NSAs include six areas north of the Turnpike (numbered NSA-N1 through NSA-N6 from west to east) and eight areas south of the Turnpike (numbered NSA-S1 through NSA-S8 from west to east). Figure 2 shows the limits of the 14 NSAs and each one is described below.

⁹ PennDOT Publication No. 24. Section 2.2.

Pennsylvania Turnpike Chester and Montgomery Counties, Pennsylvania

Milepost 320 to 326 Reconstruction Project

Noise Study Areas & Measurement Sites

Figure 2

HARRIS MILLER MILLER & HANSON INC.

4.1.1 NSAs North of Turnpike

- NSA-N1 extends from approximately 400 feet west of Howells Road (Sta. 1070) east to Sta. 1102, a distance of approximately 3,200 feet. This NSA includes several single-family homes located off of Howells Road, Green Lane, and Old Sentinel Trail. Although the Turnpike passes over Howells Road, the area to the east of the overpass, including the southern end of Green Lane, rises steeply above the Turnpike.
- NSA-N2 extends from Sta. 1102 east to the point where Yellow Springs Road passes beneath the Turnpike (Sta. 1150), a distance of approximately 4,800 feet. This NSA includes first-row homes along White Deer Trail and homes set farther back from the Turnpike (over 1,000 feet) on Chautauqua Trail and Horseshoe Trail. Both the homes on White Deer Trail and those set farther back overlook the Turnpike from a hillside.
- NSA-N3 runs from the Yellow Springs Road overpass (Sta. 1150) east to the Mill Road bridge over the Turnpike (Sta. 1201), a distance of approximately 5,100 feet. This NSA includes singlefamily homes along Yellow Springs Road, Rochambeau Drive, and Wellspring Lane, including one horse farm/stable. In general, the terrain in this area rises away from the Turnpike.
- NSA-N4 extends east from Mill Road (Sta. 1201) for a distance of approximately 4,100 feet to Valley Forge National Park (Sta. 1242). This area includes single-family homes along Yellow Springs Road and on Rose Cottage Lane, Covered Bridge Road, Welsh Valley Road, and General Alexander Drive. The terrain in this area rises from the Turnpike.
- NSA-N5 includes Valley Forge National Park's frontage along the Turnpike and extends for approximately 9,000 feet from Sta. 1242 to Sta. 1332. Noise-sensitive areas of the Park in close proximity to the Turnpike include Lafayette's Quarters (near Sta. 1260, west of Wilson Road) and the Whittle residence, immediately east of Wilson Road (near Sta. 1266). Although portions of the Turnpike in this area are on fill, the terrain generally rises to the north away from the Turnpike.
- NSA-N6 runs from Sta. 1332, about 800 feet west of Thomas Road, east to US 422 (Sta. 1383), a distance of approximately 5,100 feet. This NSA includes single-family homes along Thomas Road, Richards Road, Stephens Drive, Weedon Road, Glenhardie Road, Worthington Road, and Gulph Road. West of Glenhardie Road, the area includes Trout Creek and is relatively low-lying in relation to the Turnpike. Near the east end of the NSA, the Turnpike rises on an embankment leading to the overpass above US 422.

4.1.2 NSAs South of Turnpike

• NSA-S1 extends from approximately 300 feet west of Howells Road (Sta. 1071), east to the Turnpike bridge over Yellow Springs Road (Sta. 1148+50), a distance of approximately 7,750 feet. Land use west of this NSA to the project limit consists of commercial properties both north and south of Yellow Springs Road. Immediately west of Howells Road, the NSA includes several single-family and multi-family residences interspersed with commercial properties on the north side of Yellow Springs Road. East of Howells Road, the area includes single-family homes along both the north and south sides of Yellow Springs Road and also along Saint Johns Road, Indian Run Road, Salem Way, Salem Court, Standiford Drive, and the west side of North Valley Road. Throughout this area, the terrain generally slopes upward from adjacent residences north towards the Turnpike.

- NSA-S2 runs from the Yellow Springs Road overpass (Sta. 1148+50) east to Sta. 1174, a distance of approximately 2,550 feet. This area includes several single-family homes on the east side of North Valley Road in addition to the Vanguard School and the Crossroads School. The Vanguard School is a non-profit, state-licensed, academic day school that is one of 30 Pennsylvania Approved Private Schools (APS) for Special Education, selected by the Pennsylvania Department of Education (PDE). Approximately 230 pre-kindergarten through Grade 12 students attend classes at the 28-acre campus adjacent to the south side of the Turnpike.¹⁰ The Crossroads School is a small, private, non-profit coeducational school for youngsters aged 5 to 15 whose learning profiles indicates average or above academic potential, but who process language differently and as a result have difficulty in conventional schools. Up to 118 kindergarten through Grade 8 students attend the Crossroads School. The two schools share a gymnasium, playing field, full ropes course and multipurpose room.¹¹ The Turnpike is located at the top of an embankment throughout this area.
- NSA-S3 extends eastward from Sta. 1174 to the point where Mill Road passes over the Turnpike. (Sta. 1202), a distance of approximately 2,800 feet. This NSA includes single-family homes on several cul de sacs ending near the Turnpike including Hawkweed Way, Larkspur Way, Thistle Way, and Adler Lane. The topography varies throughout the NSA with the Turnpike on fill in some portions and depressed in others.
- NSA-S4 includes the area between Mill Road (Sta. 1202) and the stream (tributary to Valley Creek) near Sta. 1224, a distance of approximately 2,200 feet. The area includes single-family homes on Armstrong Court and Burgoyne Court, multi-family residences on Sturbridge Lane and Main Street, and one two-family home at the east end of the NSA. The topography varies throughout the NSA with the Turnpike on fill in some portions and depressed in others.
- NSA-S5 runs from the stream (tributary to Valley Creek) near Sta. 1224 east to Valley Creek (Sta. 1250), a distance of approximately 2,600 feet. This NSA includes multi-family residences within the Chesterbrook Community on Washington Place, Yorktown Place, Eagles Ridge Drive, Valley Stream Circle, and Valley Stream Lane. The topography varies throughout the NSA with the Turnpike on fill in some portions and depressed in others.
- NSA-S6 extends eastward from Valley Creek (Sta. 1250) to the Valley Forge Road overpass above the Turnpike (Sta. 1295), a distance of approximately 4,500 feet. West of Wilson Road, this area includes multi-family residences and townhouses within the Chesterbrook Community on Iroquois Court, Sullivans Bridge Road, Applehouse Pond Drive, Springhouse Pond Drive, Kettlehouse Pond Drive, and Millhouse Pond Drive. The closest residences to the Turnpike in this area are located up an embankment from the roadway. East of Wilson Road, the NSA includes single-family homes on Morgan Lane, Lafayette Lane, Salomon Lane, and Franklin Lane. In general, the Turnpike is located in a shallow cut section relative to the residences in this area.
- NSA-S7 extends from Valley Forge Road (Sta. 1296) east to the point where the Turnpike crosses above Glenhardie Road (Sta. 1364), a distance of approximately 6,800 feet. The Valley Forge Service Plaza is located immediately east of the Valley Forge Road overpass between the Turnpike and single-family homes on Potter Lane, Stirling Drive, and Anthony Wayne Drive. Between the Service Plaza and Thomas Road, single-family homes are located along several cul de sacs off of Red Coat Lane including Woodford Drive, Bradford Lane, Pulaski Lane, and Lexington Lane. East of Thomas Road, the NSA includes single-family homes on Park Ridge

¹⁰ <u>http://www.vanguardschool-pa.org/About%20Vanguard/vanguard_facts.php</u> (August 6, 2007).

¹¹ <u>http://www.thecrossroadsschool.net/</u> (August 8, 2007).

Drive, Park Ridge Terrace, and Colonel Dewees Road. In general, the Turnpike is at-grade or in a shallow cut west of Thomas Road and on fill east of Thomas Road.

NSA-S8 runs eastward from Glenhardie Road (Sta. 1364) to US 422 (Sta. 1383), a distance of approximately 1,900 feet. This NSA includes multi-family residences on Drummer's Lane within the Glenhardie Community and also, immediately east of Glenhardie Road, the Glenhardie Country Club golf course. The Turnpike is elevated on fill throughout this area. An existing noise barrier along the west side of US 422 is located along the eastern end of the NSA.

4.2 Monitored Highway Traffic Noise Results

The existing noise environment within the study area was documented with measurements at 28 noisesensitive sites, including four long-term sites and 24 short-term sites, conducted from January 30 to February 1, 2007 (see Figure 2). At least one measurement was conducted in each of the 14 NSAs.

All noise measurements were conducted with either Larson Davis Model 820 or 870 sound level meters. All of the sound level meters were ANSI Precision (Type 1) instruments with calibrations traceable to the National Institute of Standards and Technology (NIST). In addition, the sound level meters were field calibrated before and after each measurement with acoustical calibrators traceable to the NIST.

The purpose of the measurements was three-fold. The first objective was to document existing sound levels within the study area; the second goal was to document the 24-hour pattern of noise levels to assist in determining the loudest hour of the day; and the third goal was to obtain measurement data that would allow "validation" of the traffic-noise prediction modeling for these particular barrier areas and thus provide increased confidence in the modeling. Section 5.1 describes the validation procedure in more detail.

4.2.1 Long-term Measurements

Long-term measurements of at least 48 hours duration were conducted at a total of four residential sites distributed in four NSAs:

- Site LT1 was located in the backyard of 2015 Yellow Springs in NSA-S1 from 4:00 PM on January 30 until 4:00 PM on February 1.
- Site LT2 was located adjacent to the backyard pool area at 940 Yellow Springs Road in NSA-N4 from 3:00 PM on January 30 until 3:00 PM on February 1.
- Site LT3 was located in the backyard of 251 Lafayette Lane in NSA-S6 from 2:00 PM on January 30 until 2:00 PM on February 1.
- Site LT4 was located behind the backyard pool area at 578 Richards Road in NSA N6 from 1:00 PM on January 30 until 4:00 PM on February 1.

The objectives of the long-term measurements were to:

- Identify the loudest-hour of the day at representative locations where Turnpike traffic dominated noise levels.
- Help document existing noise levels and provide information on the 24-hour pattern of noise levels throughout the day and night.

The four long-term measurement sites were selected according to the following requirements:

- *Provide geographical representation within the study area.* Locations were selected throughout the study area (west to east) and also on both the north and south sides of the Turnpike.
- *Determine Turnpike-influenced loudest hour.* All long-term sites were at first-row locations on the unshielded sides of buildings to ensure that Turnpike traffic dominated noise levels and that non-Turnpike noise sources would not influence determination of the loudest hour.
- *Represent noise-sensitive land uses within the assessment area.* All long-term sites were located in residential areas. Additional short-term measurements were conducted at other noise sensitive locations such as the Vanguard School and Valley Forge National Park.

For each site, these procedures were followed:

- The noise monitors were programmed to collect hourly sound level data including equivalent sound level (L_{eq}) and statistical descriptors (L_n). The hourly L_{eq} data were be used to identify loudest-hour conditions. The L_n data were used primarily for diagnostic purposes.
- The noise monitors were field calibrated before and after each long-term measurement.
- A long-term site log (see Appendix D) was completed for each measurement site.
- Photographs were taken of each measurement site showing the microphone location relative to the Turnpike, adjacent land use, and shielding features such as terrain, bridge parapets, and buildings.
- Following the field measurements, interval data were transferred to a spreadsheet to be tabulated and graphed.

The results of the long-term measurements were used to determine the daily cycle of fluctuations in noise levels and to assist in identifying the loudest hour of the day.

Figure 3 through Figure 10 show the measured hourly noise levels at the four long-term sites (the horizontal axis of each graph shows the hours of the day in 24-hour "military" time). For each site, two graphs showing contiguous 24-hour intervals are provided. Each graph includes the following noise descriptors for each one-hour interval: L_{eq} , L_1 , L_{10} , L_{33} , L_{50} , and L_{90} . The hourly L_{eq} is the most common descriptor for measuring traffic noise levels and is used in most highway noise-barrier analyses. PennDOT Publication No. 24 requires the use of L_{eq} for traffic noise studies¹². The noise descriptors with numerical subscripts are statistical descriptors, which represent a noise level that is exceeded a certain percentage of the time.

The statistical descriptors provide useful additional information about the fluctuating sound level during the measurement period. For example, L_1 is the noise level exceeded for one percent of the measurement hour -- that is, the fluctuating sound level is louder than the L_1 for only 36 seconds out of the hour. Therefore, the L_1 is nearly the highest sound level that occurred during the measurement period. In contrast, the L_{90} , which often is considered to represent the "background" sound level, is the sound level exceeded 90% of the time. The L_{33} , the noise level exceeded 33% of the hour, is often approximately equal to the hourly L_{eq} at locations dominated by traffic noise. For nearly all of the one-hour periods, the L_{33} at each of the long-term sites was approximately equal to the hourly L_{eq} . This is an indication that highway traffic was the dominant source of noise at each of the long-term sites.

¹² PennDOT Publication No. 24, Section 3.3.1, Table 1.

4.2.2 Short-term Measurements

Short-term measurements, of 20 to 30 minutes duration, were made at 24 noise-sensitive sites on January 31 and February 1, 2007. Figure 2 shows the locations of the noise measurement sites and Table 3 provides a summary of the measurement results.

The objectives of the short-term noise measurements were to:

- Document existing sound levels at noise-sensitive locations within each NSA;
- Obtain noise measurement data used to "validate" the traffic-noise prediction modeling for each NSA, thereby increasing confidence in computed noise levels at additional prediction sites; and
- Obtain counted traffic data used as input to the TNM during validation of the noise modeling for each NSA.

The short-term measurement sites were selected according to the following requirements:

- Represent noise-sensitive land uses within each NSA. Short-term measurement sites were selected to represent various categories or "clusters" of noise-sensitive receptors within each NSA. Distinguishing characteristics of various clusters included some or all of the following:
 - 1. Distance to the Turnpike.
 - 2. Absence or presence of shielding (e.g., first-row vs. second-row receptors).
 - 3. Roadway/receiver geometry (e.g., Turnpike depressed or on-fill, receptors on hillside overlooking Turnpike, presence of entrance/exit ramps, etc.).
 - 4. Influence of other noise sources such as local streets.
- When possible, represent areas of frequent human use. Alternatively, measurement sites were
 selected in areas that did not have frequent human use but were acoustically-equivalent to nearby
 locations with frequent human use (e.g., on the grass along a side street, set back the same
 distance from the Turnpike as the yard of the adjacent house).
- *Give primary consideration to first-row receivers.* Typically, traffic noise levels will be highest at the closest receivers and noise barriers will provide the greatest benefit at these locations.
- Conduct additional measurements at second-row and third-row locations. Additional
 measurements were conducted at these locations to assist in the noise modeling validation and in
 determining the effects of shielding.

For each site, these procedures were followed:

- The short-term measurements were conducted with ANSI Type 1 instruments with calibrations traceable to NIST.
- The sound level meters were field calibrated before and after each short-term measurement.
- Measurements were conducted for a 20-minute to 30-minute period. Individual one-minute L_{eq}s were recorded so that periods including events not representative of the ambient noise environment or not traffic-related could be separated or excluded. Specifically, minutes that include such events were logged, and those with events not representative of the ambient environment eliminated. Minutes with representative events not related to traffic were separated, and the total measurement period L_{eq} determined both with and without the minutes that included

these events. By comparing the two totals, the significance of non-traffic events (such as aircraft operations) to the overall noise level was determined for the measurement period.

- A short-term site data sheet (see Appendix D) was completed for each measurement site.
- Weather data including wind speed and direction, temperature, and relative humidity were recorded during each measurement period.
- During each short-term noise measurement, simultaneous traffic volume and classification counts
 were conducted for all roads on which traffic was judged to make a significant contribution to the
 measured sound level. A traffic volume count data sheet and speed data sheet (see Appendix D)
 were completed for each short-term measurement (in some cases one traffic volume and/or speed
 data sheet applied to more than one short-term noise measurement).
- No short-term measurements were conducted during periods of stop-and-go traffic or if the average speed was judged to vary significantly during the measurement period.
- No short-term measurements were conducted during periods when the mainline Turnpike pavement was wet.
- Photographs were taken of each measurement site showing the microphone location relative to the Turnpike, adjacent land use, and shielding features such as terrain, bridge parapets, and buildings.

Figure 3. LT1, 2015 Yellow Springs Road, January 30-31, 2007

Figure 4. LT1, 2015 Yellow Springs Road, January 31-February 1, 2007

Figure 5. LT2, 940 Yellow Springs Road, January 30-31, 2007

Figure 6. LT2, 940 Yellow Springs Road, January 31-February 1, 2007

Figure 7. LT3, 251 Lafayette Lane, January 30-31, 2007

Figure 8. LT3, 251 Lafayette Lane, January 31-February 1, 2007

Figure 9. LT4, 578 Richards Road, January 30-31, 2007

Figure 10. LT4, 578 Richards Road, January 31-February 1, 2007

Site No.	NSA	Site Address/Description ¹	Date	Time (24-hour)	Measured L _{eq} (dBA)		
ST1	S1	2445-2443 Yellow Springs Road 1 st row, SFH, back yard	1/31/07	10:00 to 10:30	61		
ST2	N1	2030 Green Lane 1 st row, SFH, back yard	1/31/07	11:03 to 11:33	64		
ST3	S1	2305 Yellow Springs Road 1 st row, SFH, back yard	1/31/07	11:53 to 12:23	65		
ST4	N2	1990 Chautauqua Trail 1st row (set back), SFH, back yard	1/31/07	15:49 to 16:19	50		
ST5	N2	1889 White Deer Trail 1 st row, SFH, front yard	1/31/07	14:59 to 15:29	62		
ST6	S1	1923 Standiford Drive 2 nd row, SFH, back yard	1/31/07	14:09 to 14:39	54		
ST 7	S2	1777 North Valley Road, The Vanguard School 1st row, outdoor use area/picnic tables	2/1/07	08:58 to 09:28	66		
ST 8	N3	1919 Wellspring Lane 1 st row, SFH, back yard	2/1/07	09:49 to 10:19	64		
ST 9	S3	1809 Hawkweed Way 1 st row, SFH, back yard	2/1/07	14:20 to 14:40	61		
ST10	S3	1708 Adler Lane 1 st row, SFH, back yard	2/1/07	13:34 to 14:04	62		
ST11	S4	29 Main Street 1 st row, MFH (townhouse), back yard/deck	2/1/07	11:35 to 12:05	64		
ST12	N4	1906 General Alexander Way 3rd row, SFH, side yard	2/1/07	10:40 to 11:00	58		
ST13	N4	1853 Covered Bridge Lane 1 st row, SFH, back yard	2/1/07	11:20 to 11:50	63		
ST14	S5	1213 Eagles Ridge Drive 1st row, MFH, outdoor use area	2/1/07	10:39 to 11:09	67		
ST15	S6	307 Applehouse Pond Drive 1st row, MFH (townhouse), back yard/deck	2/1/07	09:49 to 10:11	68		
ST16	N5	Lafayette's Quarters, Valley Forge National Park	2/1/07	09:08 to 09:28	65		
ST17	S7	1465 Anthony Wayne Drive 1 st row, SFH, back yard	1/31/07	17:03 to 17:23	55		
ST18	S7	1497 Lexington Lane 1 st row, SFH, back yard	1/31/07	16:01 to 16:21	62		
ST19	N6	1503 Stevens Drive 2nd row, SFH, front yard	1/31/07	12:03 to 12:33	57		
ST20	S7	587 Park Ridge Drive 1 st row, SFH, back yard	1/31/07	14:33 to 14:54	66		
ST21	S7	591 Col. Dewees Drive 3 rd row, SFH, back yard	1/31/07	15:16 to 15:36	56		
ST22	N6	780 Worthington Road 1 st row, SFH, back yard	1/31/07	11:04 to 11:34	67		
ST23	N6	799 Gulph Road 1 st row, SFH, back yard	2/1/07	15:05 to 15:35	69		
ST24	S8	Glenhardie Condominiums 1 st row, MFH, outdoor use area	2/1/07	15:13 to 15:33	63		
¹ SFH = sina	1 SEH = single-family home. MEH = multi-family housing. 1 st row = adjacent to mainline 2 nd row = 1 row of intervening buildings etc.						

Table 3. Summary of Short-term Noise Measurement Results

Source: HMMH, 2007.

5. FUTURE HIGHWAY TRAFFIC NOISE ENVIRONMENT (EXISTING AND FUTURE MODELED)

5.1 Validation of Noise Modeling

Although TNM has been shown to be quite accurate for most situations, the modeling for a specific project area typically is "validated" by comparison of computed results with measured noise data. PennDOT Publication No. 24 describes the purpose of modeling validation and describes the procedure.¹³ To help accomplish the modeling validation, simultaneous traffic counts and noise measurements were conducted during the 24 short-term measurements described in Section 4.2.2. The traffic counts included cars (including pickup trucks), medium trucks (six tires, two axles), and heavy trucks (three or more axles), by direction. Following the measurements, the traffic counts were normalized to hourly volumes and used as input to the noise prediction model. Based on a comparison of measured and computed sound levels, minor refinements were made to the TNM model. Typically these included adjustments to noise propagation and shielding assumptions including TNM parameters such as terrain lines and building rows.

Table 4 presents the measured and computed noise levels for all 24 short-term measurement sites following refinement of the noise modeling. Note that the measured and computed sound levels do not necessarily represent loudest-hour conditions. The table indicates that the sound levels computed by TNM at the measurement sites ranged from approximately four decibels higher to two decibels lower than the measured sound levels. The average difference between the calculated hourly L_{eq} and the measured L_{eq} was approximately 2 dB with a standard deviation of less than 2 dB.

PennDOT Publication No. 24, Section 2.5.3.3 states that "if the difference between the [measured and computed] values is less than +/- 3 dB(A), this is an indication that the model is within the accepted level of accuracy." Of the 24 validation sites, only one site had a difference greater than 3 dB and the average across all sites was less than 3 dB. This demonstrated agreement between measured and computed sound levels provides a high level of confidence in TNM's computations throughout the study area. In addition, the bias towards a slight overprediction of approximately 2 dB implies that the noise model is appropriately conservative and would tend to slightly overpredict, rather than underpredict, noise impacts.

5.2 Loudest-Hour Computations

Following refinement and validation of the noise model, TNM was used to compute loudest-hour noise levels at a total of 420 representative prediction sites, or receivers, distributed throughout the 14 NSAs (28 of the prediction sites also were measurement sites). Most prediction sites were outdoor, ground-floor locations. However, in some cases, sound levels were computed at second-floor and third-floor outdoor balconies when these were judged to be the primary outdoor use areas for multi-family buildings. Figure 11 shows the locations of all prediction sites. The sound propagation and shielding assumptions used in the loudest-hour predictions were similar to those developed during the noise model validation. Section 3.2 of this report describes the TNM model and Section 5.1 describes the validation procedure.

Table 5 provides the loudest-hour sound levels computed for existing (2007) and future (2035) conditions. The table is organized by NSA, starting with NSAs north of the Turnpike from west to east and followed by NSAs south of the Turnpike, also from west to east. For each prediction site, the table provides the number of receptor units represented by the prediction site and the loudest-hour sound levels

HARRIS MILLER MILLER & HANSON INC.

¹³ Ibid., Section 2.5.3.

for both existing and future conditions. The site numbers shown in the table correspond to the labels shown on Figure 11.

			Hourly L	_{eq} (dBA) ¹	Calculated		
Site No.	NSA	Address/Location	Measured	Calculated With Traffic Counted During Measurement	<i>minus</i> Measured L _{eq} (dB)		
ST1	S1	2445-2443 Yellow Springs Road	61	64	3		
ST2	N1	2030 Green Lane	64	66	2		
ST3	S1	2305 Yellow Springs Road	65	66	1		
ST4	N2	1990 Chautauqua Trail	50	52	2		
ST5	N2	1889 White Deer Trail	62	64	2		
ST6	S1	1923 Standiford Drive	54	56	2		
ST 7	S2	1777 North Valley Road, The Vanguard School	66	67	1		
ST 8	N3	1919 Wellspring Lane	64	65	1		
ST 9	S3	1809 Hawkweed Way	61	60	-1		
ST10	S3	1708 Adler Lane	62	65	3		
ST11	S4	29 Main Street	64	65	1		
ST12	N4	1906 General Alexander Way	58	56	-2		
ST13	N4	1853 Covered Bridge Lane	63	64	1		
ST14	S5	1213 Eagles Ridge Drive	67	70	3		
ST15	S6	307 Applehouse Pond Drive	68	70	2		
ST16	N5	Lafayette's Quarters, Valley Forge National Park	65	67	2		
ST17	S7	1465 Anthony Wayne Drive	55	55	0		
ST18	S7	1497 Lexington Lane	62	66	4		
ST19	N6	1503 Stevens Drive	57	60	3		
ST20	S7	587 Park Ridge Drive	66	68	2		
ST21	S7	591 Col. Dewees Drive	56	56	0		
ST22	N6	780 Worthington Road	67	70	3		
ST23	N6	799 Gulph Road	69	72	3		
ST24	S8	Glenhardie Condominiums	63	66	3		
Average	e Differe	nce:			2		
¹ Note that measured and computed sound levels do not necessarily represent loudest-hour conditions.							

Table 4. Measured vs. Computed Sound Levels

Source: HMMH, 2007.

		Number of	Loudest-hour Leq Sound Level (dBA) ¹			
NSA	Prediction Site	Receptor Units	Existing (2007)	Future (2035)	Change (2007 to 2035)	
NSA-N1	N1_01	1	71	73	+2	
NSA-N1	N1_02	2	72	74	+2	
NSA-N1	N1_03	1	71	73	+2	
NSA-N1	N1_04_ST22	1	68	71	+3	
NSA-N1	N1_05	1	64	66	+2	
NSA-N1	N1_06	1	68	70	+2	
NSA-N1	N1_07	1	64	66	+2	
NSA-N1	N1_08	1	64	66	+2	
NSA-N2	N2_01	1	71	73	+2	
NSA-N2	N2_02	1	65	67	+2	
NSA-N2	N2_03_ST5 ²	1	65	68	+3	
NSA-N2	N2_04	1	68	70	+2	
NSA-N2	N2_05	1	67	69	+2	
NSA-N2	N2_06_ST42	1	56	59	+3	
NSA-N2	N2_07	1	57	60	+3	
NSA-N2	N2_08	1	53	56	+3	
NSA-N2	N2_09	4	56	60	+4	
NSA-N2	N2_10	1	63	66	+3	
NSA-N2	N2_11	1	61	63	+2	
NSA-N3	N3_01	1	71	73	+2	
NSA-N3	N3_02	1	71	73	+2	
NSA-N3	N3_03_ST8 ²	1	72	74	+2	
NSA-N3	N3_04	1	66	69	+3	
NSA-N3	N3_05	1	62	65	+3	
NSA-N3	N3_06	1	63	66	+3	
NSA-N3	N3_07	1	64	65	+1	
NSA-N3	N3_08	1	64	66	+2	
NSA-N3	N3_09	1	60	63	+3	
NSA-N3	N3_10	1	65	66	+1	
NSA-N3	N3_11	2	62	65	+3	
NSA-N3	N3_12	2	61	63	+2	
NSA-N4	N4_01	1	71	72	+1	
NSA-N4	N4_02	1	70	72	+2	
NSA-N4	N4_03_LT2 ²	1	69	71	+2	
NSA-N4	N4_04	1	73	74	+1	
NSA-N4	N4_05_ST13 ²	3	65	67	+2	
NSA-N4	N4_06	1	62	65	+3	
NSA-N4	N4_07	5	64	66	+2	
NSA-N4	N4_08	2	61	64	+3	
NSA-N4	N4_09	2	62	65	+3	
NSA-N4	N4_10	2	62	64	+2	
NSA-N4	N4_11	2	58	60	+2	
NSA-N4	N4_12	1	56	59	+3	
NSA-N4	N4_13	1	58	61	+3	

Table 5. Computed 2007 and 2035 Loudest-Hour Sound Levels

HARRIS MILLER MILLER & HANSON INC.

		Number of Receptor Units	Loudest-hour Leq Sound Level (dBA) ¹			
NSA	Prediction Site		Existing	Future	Change	
		Receptor onits	(2007)	(2035)	(2007 to 2035)	
NSA-N4	N4_14	1	57	59	+2	
NSA-N4	N4_15_ST12 ²	4	59	62	+3	
NSA-N5	N5_01_ST16 ²	0	68	73	+5	
NSA-N5	N5_02	0	72	73	+1	
NSA-N5	N5_P1	0	73	75	+2	
NSA-N5	N5_P2	0	66	68	+2	
NSA-N5	N5_P3	0	60	62	+2	
NSA-N5	N5_P4	0	69	70	+1	
NSA-N5	N5_P5	0	66	68	+2	
NSA-N5	N5_P6	0	60	63	+3	
NSA-N5	N5_P7	0	57	59	+2	
NSA-N5	N5_P8	0	57	59	+2	
NSA-N6	N6_01	1	64	65	+1	
NSA-N6	N6_02	1	71	73	+2	
NSA-N6	N6_03	3	69	71	+2	
NSA-N6	N6_04_LT4 ²	4	68	70	+2	
NSA-N6	N6_05	3	66	68	+2	
NSA-N6	N6_06	1	66	66	0	
NSA-N6	N6_07	2	64	65	+1	
NSA-N6	N6_08	1	70	70	0	
NSA-N6	N6_09	1	65	66	+1	
NSA-N6	N6_10	1	67	68	+1	
NSA-N6	N6_11	2	69	68	-1	
NSA-N6	N6_12_ST22 ²	3	72	73	+1	
NSA-N6	N6_13	3	71	71	0	
NSA-N6	N6_14	1	70	72	+2	
NSA-N6	N6_15_ST23 ²	1	70	67	-3	
NSA-N6	N6_16	2	59	61	+2	
NSA-N6	N6_17	4	63	65	+2	
NSA-N6	N6_18_ST19 ²	4	63	64	+1	
NSA-N6	N6_19	2	63	64	+1	
NSA-N6	N6_20	2	62	63	+1	
NSA-N6	N6_21	2	61	62	+1	
NSA-N6	N6_22	6	65	66	+1	
NSA-N6	N6_23	2	64	65	+1	
NSA-N6	N6_24	1	66	66	0	
NSA-N6	N6_25	3	64	65	+1	
NSA-N6	N6_26	3	60	62	+2	
NSA-N6	N6_27	3	63	65	+2	
NSA-N6	N6_28	4	60	62	+2	
NSA-N6	N6_29	3	58	60	+2	
NSA-N6	N6_30	4	59	61	+2	
NSA-N6	N6_31	4	61	60	-1	
NSA-S1	S1_01	2	66	66	0	
NSA-S1	S1_02_ST1 ²	3	67	68	+1	
NSA-S1	S1_03	6	66	67	+1	

NSA Prediction Site Number of Receptor Units Existing (2007) Future (2003) Change (2007) NSA-S1 S1_06 1 67 68 +1 NSA-S1 S1_06 1 67 68 +1 NSA-S1 S1_06 1 67 68 +1 NSA-S1 S1_09 1 65 66 +1 NSA-S1 S1_09 1 65 66 +1 NSA-S1 S1_10 1 66 68 +2 NSA-S1 S1_11 1 70 71 +1 NSA-S1 S1_12 4 67 69 +2 NSA-S1 S1_14 1 66 66 0 NSA-S1 S1_15_2 3 66 66 0 NSA-S1 S1_16 5 63 64 +1 NSA-S1 S1_17 1 69 69 0 NSA-S1 S1_12 2 67			Number of	Loudest-hour Leq Sound Level (dBA) ¹			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NSA	Prediction Site	Receptor Units	Existing (2007)	Future (2035)	Change (2007 to 2035)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NSA-S1	S1_04	1	67	68	+1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NSA-S1	S1_05	1	66	68	+2	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NSA-S1	S1_06	1	67	68	+1	
NSA-S1S1_0816465+1NSA-S1S1_0916566+1NSA-S1S1_1016668+2NSA-S1S1_1117071+1NSA-S1S1_1246769+2NSA-S1S1_1316667+1NSA-S1S1_15_LT12366660NSA-S1S1_15_LT12366660NSA-S1S1_1656364+1NSA-S1S1_17169690NSA-S1S1_1815859+1NSA-S1S1_1026769+2NSA-S1S1_2046263+1NSA-S1S1_2126465+1NSA-S1S1_2216163+2NSA-S1S1_2316567+2NSA-S1S1_2416567+2NSA-S1S1_2716365+2NSA-S1S1_3025860+2NSA-S1S1_3025860+2NSA-S1S1_33164640NSA-S1S1_33164640NSA-S1S1_3315860+2NSA-S1S1_33164640NSA-S1S1_33164640N	NSA-S1	S1_07_ST3 ²	1	68	70	+2	
NSA-S1S1_0916566+1NSA-S1S1_1016668+2NSA-S1S1_1117071+1NSA-S1S1_1246769+2NSA-S1S1_15_L116667+1NSA-S1S1_15_L1166660NSA-S1S1_15_L1169690NSA-S1S1_1656364+1NSA-S1S1_17169690NSA-S1S1_1815859+1NSA-S1S1_1926769+2NSA-S1S1_2046263+1NSA-S1S1_2126465+1NSA-S1S1_2216163+2NSA-S1S1_2316567+2NSA-S1S1_2416567+2NSA-S1S1_2526465+1NSA-S1S1_2626365+2NSA-S1S1_2716365+2NSA-S1S1_3025860+2NSA-S1S1_32164640NSA-S1S1_33164640NSA-S1S1_3315961+2NSA-S1S1_33164640NSA-S1S1_33167670 </td <td>NSA-S1</td> <td>S1_08</td> <td>1</td> <td>64</td> <td>65</td> <td>+1</td>	NSA-S1	S1_08	1	64	65	+1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NSA-S1	S1_09	1	65	66	+1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NSA-S1	S1_10	1	66	68	+2	
NSA-S1S1_1246769+2NSA-S1S1_1316769+2NSA-S1S1_1416667+1NSA-S1S1_15_LT12366660NSA-S1S1_15_LT17169690NSA-S1S1_1656364+1NSA-S1S1_17169690NSA-S1S1_1926769+2NSA-S1S1_1926769+2NSA-S1S1_2046263+1NSA-S1S1_2126465+1NSA-S1S1_2316567+2NSA-S1S1_2316567+2NSA-S1S1_2416567+2NSA-S1S1_2716365+2NSA-S1S1_2716365+2NSA-S1S1_2826062+2NSA-S1S1_3025860+2NSA-S1S1_33164640NSA-S1S1_3426061+1NSA-S1S1_3916061+1NSA-S1S1_3865758+1NSA-S1S1_3865758+1NSA-S1S1_39164640NSA-S1S1_3865758+1 <td< td=""><td>NSA-S1</td><td>S1_11</td><td>1</td><td>70</td><td>71</td><td>+1</td></td<>	NSA-S1	S1_11	1	70	71	+1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NSA-S1	S1_12	4	67	69	+2	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NSA-S1	S1 13	1	67	69	+2	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NSA-S1	S1 14	1	66	67	+1	
NSA-S1S1_1656364+1NSA-S1S1_17169690NSA-S1S1_1815859+1NSA-S1S1_1926769+2NSA-S1S1_2046263+1NSA-S1S1_2126465+1NSA-S1S1_2216163+2NSA-S1S1_2316567+2NSA-S1S1_2416567+2NSA-S1S1_2526465+1NSA-S1S1_2626365+2NSA-S1S1_2826062+2NSA-S1S1_2826062+2NSA-S1S1_3025860+2NSA-S1S1_33164640NSA-S1S1_33164640NSA-S1S1_3315961+2NSA-S1S1_33164640NSA-S1S1_3426061+1NSA-S1S1_3625961+2NSA-S1S1_3865758+1NSA-S1S1_3865758+1NSA-S1S1_3865758+1NSA-S1S1_3916061+1NSA-S1S1_3865758+1NSA-S1 </td <td>NSA-S1</td> <td>S1 15 LT12</td> <td>3</td> <td>66</td> <td>66</td> <td>0</td>	NSA-S1	S1 15 LT12	3	66	66	0	
NSA-S1S1_17169690NSA-S1S1_1815859+1NSA-S1S1_1926769+2NSA-S1S1_2046263+1NSA-S1S1_2126465+1NSA-S1S1_2216163+2NSA-S1S1_2316567+2NSA-S1S1_2416567+2NSA-S1S1_2526465+1NSA-S1S1_2626365+2NSA-S1S1_2626365+2NSA-S1S1_2716365+2NSA-S1S1_2826062+2NSA-S1S1_3025860+2NSA-S1S1_3115961+2NSA-S1S1_33164640NSA-S1S1_3515860+2NSA-S1S1_3515860+2NSA-S1S1_3625961+2NSA-S1S1_3615860+2NSA-S1S1_36167670NSA-S1S1_36167670NSA-S1S1_3865758+1NSA-S1S1_39167670NSA-S2S2_04163630NSA-S2 <td>NSA-S1</td> <td>S1 16</td> <td>5</td> <td>63</td> <td>64</td> <td>+1</td>	NSA-S1	S1 16	5	63	64	+1	
NSA-S1S1_1815859+1NSA-S1S1_1926769+2NSA-S1S1_2046263+1NSA-S1S1_2126465+1NSA-S1S1_2216163+2NSA-S1S1_2316567+2NSA-S1S1_2416567+2NSA-S1S1_2526465+1NSA-S1S1_2626365+2NSA-S1S1_2626365+2NSA-S1S1_2716365+2NSA-S1S1_2826062+2NSA-S1S1_3025860+2NSA-S1S1_3115961+2NSA-S1S1_33164640NSA-S1S1_3515860+2NSA-S1S1_3625961+2NSA-S1S1_3625961+2NSA-S1S1_3625961+2NSA-S1S1_3865758+1NSA-S1S1_39167670NSA-S1S1_39163630NSA-S1S1_3916767+2NSA-S1S1_391665758+1NSA-S2S2_04163630<	NSA-S1	S1 17	1	69	69	0	
NSA-S1S1_1926769+2NSA-S1S1_2046263+1NSA-S1S1_2126465+1NSA-S1S1_2216163+2NSA-S1S1_2316567+2NSA-S1S1_2416567+2NSA-S1S1_2526465+1NSA-S1S1_2626365+2NSA-S1S1_2716365+2NSA-S1S1_2826062+2NSA-S1S1_2926263+1NSA-S1S1_3025860+2NSA-S1S1_33164640NSA-S1S1_33164640NSA-S1S1_3515860+2NSA-S1S1_3625961+2NSA-S1S1_3725759+2NSA-S1S1_3865758+1NSA-S1S1_3916061+1NSA-S2S2_01167670NSA-S2S2_0516162+1NSA-S2S2_0615658+2NSA-S2S2_081535557NSA-S2S2_0815355+2NSA-S2S2_0815658+2NSA-S2<	NSA-S1	S1 18	1	58	59	+1	
NSA-S1S1_2046263+1NSA-S1S1_2126465+1NSA-S1S1_2216163+2NSA-S1S1_2316567+2NSA-S1S1_2526465+1NSA-S1S1_2626365+2NSA-S1S1_2716365+2NSA-S1S1_2716365+2NSA-S1S1_2826062+2NSA-S1S1_2826062+2NSA-S1S1_3025860+2NSA-S1S1_3115961+2NSA-S1S1_32_ST6256061+1NSA-S1S1_33164640NSA-S1S1_3515860+2NSA-S1S1_3625961+2NSA-S1S1_3865758+1NSA-S1S1_3865758+1NSA-S1S1_3916061+1NSA-S2S2_01167670NSA-S2S2_04163630NSA-S2S2_0615658+2NSA-S2S2_0615658+2NSA-S2S2_081535557+2NSA-S2S2_0815355+2 <td>NSA-S1</td> <td>S1 19</td> <td>2</td> <td>67</td> <td>69</td> <td>+2</td>	NSA-S1	S1 19	2	67	69	+2	
NSA-S1S1_2126465+1NSA-S1S1_2216163+2NSA-S1S1_2316567+2NSA-S1S1_2416567+2NSA-S1S1_2526465+1NSA-S1S1_2526365+2NSA-S1S1_2716365+2NSA-S1S1_2826062+2NSA-S1S1_2926263+1NSA-S1S1_3025860+2NSA-S1S1_3115961+2NSA-S1S1_32_ST6256061+1NSA-S1S1_33164640NSA-S1S1_3426061+1NSA-S1S1_3515860+2NSA-S1S1_3625961+2NSA-S1S1_3725759+2NSA-S1S1_3865758+1NSA-S1S1_39167670NSA-S2S2_01167672NSA-S2S2_0516162+1NSA-S2S2_0615658+2NSA-S2S2_0615658+2NSA-S2S2_0815355+2NSA-S2S2_0905859+1NS	NSA-S1	S1_20	4	62	63	+1	
NSA-S1S1_2216163+2NSA-S1S1_2316567+2NSA-S1S1_2416567+2NSA-S1S1_2526465+1NSA-S1S1_2626365+2NSA-S1S1_2716365+2NSA-S1S1_2826062+2NSA-S1S1_2926263+1NSA-S1S1_3025860+2NSA-S1S1_3115961+2NSA-S1S1_33164640NSA-S1S1_33164640NSA-S1S1_3426061+1NSA-S1S1_3515860+2NSA-S1S1_3625961+2NSA-S1S1_3865758+1NSA-S1S1_3865758+1NSA-S1S1_3865758+1NSA-S2S2_021167670NSA-S2S2_04163630NSA-S2S2_0615658+2NSA-S2S2_0815355+2NSA-S2S2_0905859+1NSA-S2S2_0905859+1	NSA-S1	S1 21	2	64	65	+1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NSA-S1	S1 22	1	61	63	+2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NSA-S1	S1_23	1	65	67	+2	
NSA-S1S1_2526465+1NSA-S1S1_2626365+2NSA-S1S1_2716365+2NSA-S1S1_2826062+2NSA-S1S1_2926263+1NSA-S1S1_3025860+2NSA-S1S1_3115961+2NSA-S1S1_32_ST6256061+1NSA-S1S1_32_ST6256061+1NSA-S1S1_33164640NSA-S1S1_3515860+2NSA-S1S1_3426061+1NSA-S1S1_3515860+2NSA-S1S1_3625961+2NSA-S1S1_3725759+2NSA-S1S1_3865758+1NSA-S1S1_3916061+1NSA-S2S2_01167670NSA-S2S2_04163630NSA-S2S2_0516162+1NSA-S2S2_0615658+2NSA-S2S2_0615658+2NSA-S2S2_0815355+2NSA-S2S2_0905859+1NSA-S2S2_0905859+1<	NSA-S1	S1 24	1	65	67	+2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NSA-S1	S1 25	2	64	65	+1	
NSA-S1S1_2716365+2NSA-S1S1_2716365+2NSA-S1S1_2826062+2NSA-S1S1_2926263+1NSA-S1S1_3025860+2NSA-S1S1_3115961+2NSA-S1S1_32_ST6256061+1NSA-S1S1_33164640NSA-S1S1_3515860+2NSA-S1S1_3515860+2NSA-S1S1_3625961+2NSA-S1S1_3725759+2NSA-S1S1_3865758+1NSA-S1S1_3916061+1NSA-S2S2_01167670NSA-S2S2_04163630NSA-S2S2_0615658+2NSA-S2S2_0735557+2NSA-S2S2_0815355+2NSA-S2S2_0905859+1NSA-S2S2_0905859+1NSA-S2S2_0905859+1NSA-S2S2_0905859+1NSA-S2S2_0905859+1	NSA-S1	S1 26	2	63	65	+2	
NSA-S1 $S1_28$ 2 60 62 12 NSA-S1 $S1_28$ 2 62 63 $+1$ NSA-S1 $S1_29$ 2 62 63 $+1$ NSA-S1 $S1_30$ 2 58 60 $+2$ NSA-S1 $S1_31$ 1 59 61 $+2$ NSA-S1 $S1_32_ST6^2$ 5 60 61 $+1$ NSA-S1 $S1_32_ST6^2$ 5 60 61 $+1$ NSA-S1 $S1_33$ 1 64 64 0 NSA-S1 $S1_33$ 1 58 60 $+2$ NSA-S1 $S1_34$ 2 60 61 $+1$ NSA-S1 $S1_35$ 1 58 60 $+2$ NSA-S1 $S1_36$ 2 59 61 $+2$ NSA-S1 $S1_37$ 2 57 59 $+2$ NSA-S1 $S1_38$ 6 57 58 $+1$ NSA-S1 $S1_39$ 1 60 61 $+1$ NSA-S2 $S2_01$ 1 67 67 0 NSA-S2 $S2_03$ 0 65 67 $+2$ NSA-S2 $S2_04$ 1 63 63 0 NSA-S2 $S2_06$ 1 56 58 $+2$ NSA-S2 $S2_07$ 3 55 57 $+2$ NSA-S2 $S2_09$ 0 58 59 $+1$ NSA-S2 $S2_09$ 0 58 59 $+1$ NSA-S2 $S2$	NSA-S1	S1 27	1	63	65	+2	
NSA-S1S1_2926263+1NSA-S1S1_3025860+2NSA-S1S1_3115961+2NSA-S1S1_32_ST6256061+1NSA-S1S1_32_ST6256061+1NSA-S1S1_33164640NSA-S1S1_3426061+1NSA-S1S1_3515860+2NSA-S1S1_3515860+2NSA-S1S1_3625961+2NSA-S1S1_3725759+2NSA-S1S1_3865758+1NSA-S1S1_3916061+1NSA-S2S2_01167670NSA-S2S2_02_ST7206970+1NSA-S2S2_04163630NSA-S2S2_0516162+1NSA-S2S2_0615658+2NSA-S2S2_0735557+2NSA-S2S2_0815355+2NSA-S2S2_0905859+1NSA-S2S2_0905859+1NSA-S2S2_0905859+1	NSA-S1	S1_28	2	60	62	+2	
NSA-S1S1_3025860+2NSA-S1S1_3115961+2NSA-S1S1_32_ST6256061+1NSA-S1S1_32_ST6256061+1NSA-S1S1_33164640NSA-S1S1_3426061+1NSA-S1S1_3515860+2NSA-S1S1_3625961+2NSA-S1S1_3625961+2NSA-S1S1_3725759+2NSA-S1S1_3865758+1NSA-S1S1_3916061+1NSA-S2S2_01167670NSA-S2S2_02_ST7206970+1NSA-S2S2_04163630NSA-S2S2_0615658+2NSA-S2S2_0615658+2NSA-S2S2_0735557+2NSA-S2S2_0815355+2NSA-S2S2_0905859+1NSA-S2S2_0905859+1NSA-S2S2_0905859+1	NSA-S1	S1 29	2	62	63	+1	
NSA-S1S1_3115961+2NSA-S1S1_32_ST6256061+1NSA-S1S1_32_ST6256061+1NSA-S1S1_33164640NSA-S1S1_3426061+1NSA-S1S1_3515860+2NSA-S1S1_3625961+2NSA-S1S1_3625961+2NSA-S1S1_3725759+2NSA-S1S1_3865758+1NSA-S1S1_3916061+1NSA-S2S2_01167670NSA-S2S2_0306567+2NSA-S2S2_04163630NSA-S2S2_0516162+1NSA-S2S2_0735557+2NSA-S2S2_0815658+2NSA-S2S2_0816162+1NSA-S2S2_0815557+2NSA-S2S2_0905859+1NSA-S2S2_0905859+1NSA-S2S2_0905859+1	NSA-S1	S1_30	2	58	60	+2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NSA-S1	S1_31	1	59	61	+2	
NSA-S1S1_02_01000000NSA-S1S1_33164640NSA-S1S1_3426061+1NSA-S1S1_3515860+2NSA-S1S1_3625961+2NSA-S1S1_3725759+2NSA-S1S1_3865758+1NSA-S1S1_3916061+1NSA-S2S2_01167670NSA-S2S2_02_ST7206970+1NSA-S2S2_0306567+2NSA-S2S2_04163630NSA-S2S2_0615658+2NSA-S2S2_0615658+2NSA-S2S2_0735557+2NSA-S2S2_0815355+2NSA-S2S2_0905859+1NSA-S2S2_0905859+1	NSA-S1	$S1_32_5T6^2$	5	60	61	+1	
NSA-S1 S1_34 2 60 61 +1 NSA-S1 S1_35 1 58 60 +2 NSA-S1 S1_35 1 58 60 +2 NSA-S1 S1_35 1 58 60 +2 NSA-S1 S1_37 2 57 59 +2 NSA-S1 S1_38 6 57 58 +1 NSA-S1 S1_39 1 60 61 +1 NSA-S1 S1_38 6 57 58 +1 NSA-S1 S1_39 1 60 61 +1 NSA-S2 S2_01 1 67 67 0 NSA-S2 S2_02_ST72 0 69 70 +1 NSA-S2 S2_03 0 65 67 +2 NSA-S2 S2_04 1 63 63 0 NSA-S2 S2_05 1 61 62 +1 NSA-S2 S2_06 1 56 58 +2 NSA-S2	NSA-S1	S1_33	1	64	64	0	
NSA-S1 S1_35 1 58 60 +2 NSA-S1 S1_35 1 58 60 +2 NSA-S1 S1_36 2 59 61 +2 NSA-S1 S1_37 2 57 59 +2 NSA-S1 S1_37 2 57 59 +2 NSA-S1 S1_38 6 57 58 +1 NSA-S1 S1_39 1 60 61 +1 NSA-S2 S2_01 1 67 67 0 NSA-S2 S2_02_ST72 0 69 70 +1 NSA-S2 S2_03 0 65 67 +2 NSA-S2 S2_04 1 63 63 0 NSA-S2 S2_05 1 61 62 +1 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_07 3 55 57 +2 NSA-S2 S2_08 1 53 55 +2 NSA-S2	NSA-S1	S1_34	2	60	61	+1	
NSA-S1 S1_36 2 59 61 +2 NSA-S1 S1_37 2 57 59 +2 NSA-S1 S1_37 2 57 59 +2 NSA-S1 S1_38 6 57 58 +1 NSA-S1 S1_39 1 60 61 +1 NSA-S2 S2_01 1 67 67 0 NSA-S2 S2_02_ST72 0 69 70 +1 NSA-S2 S2_03 0 65 67 +2 NSA-S2 S2_04 1 63 63 0 NSA-S2 S2_05 1 61 62 +1 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_07 3 55 57 +2 NSA-S2 S2_08 1 53 55 +2 NSA-S2 S2_09 0 58 59 +1 NSA-S2	NSA-S1	S1 35	1	58	60	+2	
NSA-S1 S1_37 2 57 59 +2 NSA-S1 S1_38 6 57 58 +1 NSA-S1 S1_39 1 60 61 +1 NSA-S2 S2_01 1 67 67 0 NSA-S2 S2_02_ST72 0 69 70 +1 NSA-S2 S2_03 0 65 67 +2 NSA-S2 S2_04 1 63 63 0 NSA-S2 S2_05 1 61 62 +1 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_07 3 55 57 +2 NSA-S2 S2_08 1 53 55 +2 NSA-S2 S2_09 0 58 59 +1 NSA-S2 S2_09 0 58 59 +1 NSA-S2 S2_09 0 58 59 +1	NSA-S1	S1_36	2	59	61	+2	
NSA-S1 S1_38 6 57 58 +1 NSA-S1 S1_39 1 60 61 +1 NSA-S2 S2_01 1 67 67 0 NSA-S2 S2_02_ST72 0 69 70 +1 NSA-S2 S2_03 0 65 67 +2 NSA-S2 S2_04 1 63 63 0 NSA-S2 S2_05 1 61 62 +1 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_07 3 55 57 +2 NSA-S2 S2_08 1 53 55 +2 NSA-S2 S2_08 1 53 55 +2 NSA-S2 S2_09 0 58 59 +1 NSA-S2 S2_09 0 58 59 +1 NSA-S2 S2_010 0 58 59 +1 <td>NSA-S1</td> <td>S1_30</td> <td>2</td> <td>57</td> <td>59</td> <td>+2</td>	NSA-S1	S1_30	2	57	59	+2	
NSA-S1 S1_39 1 60 61 +1 NSA-S2 S2_01 1 67 67 0 NSA-S2 S2_02_ST72 0 69 70 +1 NSA-S2 S2_03 0 65 67 +2 NSA-S2 S2_04 1 63 63 0 NSA-S2 S2_05 1 61 62 +1 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_07 3 55 57 +2 NSA-S2 S2_08 1 53 55 +2 NSA-S2 S2_09 0 58 59 +1 NSA-S2 S2_09 0 58 59 +1	NSA-S1	S1_38	6	57	58	+1	
NSA-S2 S2_01 1 67 67 0 NSA-S2 S2_02_ST72 0 69 70 +1 NSA-S2 S2_03 0 65 67 +2 NSA-S2 S2_04 1 63 63 0 NSA-S2 S2_05 1 61 62 +1 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_07 3 55 57 +2 NSA-S2 S2_08 1 53 55 +2 NSA-S2 S2_09 0 58 59 +1	NSA-S1	S1_30	1	60	61	+1	
NSA-S2 S2_01 1 60 67 1 NSA-S2 S2_02_ST72 0 69 70 +1 NSA-S2 S2_03 0 65 67 +2 NSA-S2 S2_04 1 63 63 0 NSA-S2 S2_05 1 61 62 +1 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_07 3 55 57 +2 NSA-S2 S2_08 1 53 55 +2 NSA-S2 S2_09 0 58 59 +1 NSA-S2 S2_09 0 58 59 +1	NSA-S2	S2 01	1	67	67	0	
NSA-S2 S2_02_017 0 65 67 +2 NSA-S2 S2_04 1 63 63 0 NSA-S2 S2_05 1 61 62 +1 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_07 3 55 57 +2 NSA-S2 S2_08 1 53 55 +2 NSA-S2 S2_09 0 58 59 +1	NSA-S2	S2_07 S2_02_ST72	0	69	70	+1	
NSA-S2 S2_03 0 0 03 0 12 NSA-S2 S2_04 1 63 63 0 NSA-S2 S2_05 1 61 62 +1 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_07 3 55 57 +2 NSA-S2 S2_08 1 53 55 +2 NSA-S2 S2_09 0 58 59 +1 NSA-S2 S2_09 0 58 59 +1	NSA-S2	S2_02_017	0	65	67	+2	
NSA-S2 S2_05 1 61 62 +1 NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_07 3 55 57 +2 NSA-S2 S2_08 1 53 55 +2 NSA-S2 S2_09 0 58 59 +1	NSA-S2	S2_04	1	63	63	0	
NSA-S2 S2_06 1 56 58 +2 NSA-S2 S2_07 3 55 57 +2 NSA-S2 S2_08 1 53 55 +2 NSA-S2 S2_09 0 58 59 +1	NSA-S2	S2_05	1	61	62	+1	
NSA-S2 S2_00 1 50 50 12 NSA-S2 S2_07 3 55 57 +2 NSA-S2 S2_08 1 53 55 +2 NSA-S2 S2_09 0 58 59 +1	NSA-S2	S2_06	1	56	58	+2	
NSA-S2 S2_07 0 55 +2 NSA-S2 S2_09 0 58 59 +1	NSA-S2	S2_07	2	55	57	+2	
NSA-S2 S2_09 0 58 59 +1	NISA-S2	S2_07	1	53	55	+2	
	NISA-S2	S2_00		52	50	+2 +1	
I NSA-SZ I SZ IU I I () I 61 I 67 I +1	NSA-S2	S2_07	0	61	62	+1	

		Number of	Loudest-hour Leq Sound Level (dBA) ¹			
NSA	Prediction Site		Existing	Future	Change	
		Receptor Onits	(2007)	(2035)	(2007 to 2035)	
NSA-S3	S3_01	1	63	65	+2	
NSA-S3	S3_02_ST9 ²	2	66	69	+3	
NSA-S3	S3_03	2	68	70	+2	
NSA-S3	S3_04	1	67	69	+2	
NSA-S3	S3_05	1	67	69	+2	
NSA-S3	S3_06	4	62	64	+2	
NSA-S3	S3_07	1	62	64	+2	
NSA-S3	S3_08_ST10 ²	1	67	68	+1	
NSA-S3	S3_09	2	73	75	+2	
NSA-S3	S3_10	2	59	61	+2	
NSA-S3	S3_11	1	63	64	+1	
NSA-S3	S3_12	3	63	65	+2	
NSA-S3	S3_13	3	61	63	+2	
NSA-S3	S3_14	3	60	61	+1	
NSA-S3	S3_15	2	63	64	+1	
NSA-S3	S3_16	1	66	67	+1	
NSA-S3	S3_17	3	57	59	+2	
NSA-S3	S3_18	2	62	63	+1	
NSA-S3	S3_19	4	63	64	+1	
NSA-S3	S3_20	2	56	57	+1	
NSA-S3	S3_21	3	55	57	+2	
NSA-S3	S3_22	3	60	62	+2	
NSA-S3	S3_23	2	60	62	+2	
NSA-S3	S3_24	5	54	56	+2	
NSA-S4	S4_01	2	74	76	+2	
NSA-S4	S4_02	2	72	73	+1	
NSA-S4	S4_03	1	74	75	+1	
NSA-S4	S4_04	3	75	77	+2	
NSA-S4	S4_05_ST11 ²	10	68	70	+2	
NSA-S4	S4_06	6	75	77	+2	
NSA-S4	S4_07	2	74	76	+2	
NSA-S4	S4_08	2	64	65	+1	
NSA-S4	S4_09	1	66	68	+2	
NSA-S4	S4_10	2	69	70	+1	
NSA-S4	S4_11	6	70	71	+1	
NSA-S4	S4_12	14	64	66	+2	
NSA-S4	S4_13	6	61	64	+3	
NSA-S4	S4_14	3	58	59	+1	
NSA-S4	S4_15	2	60	62	+2	
NSA-S4	S4_16	6	61	63	+2	
NSA-S4	S4_17	6	60	61	+1	
NSA-S4	S4_18	3	54	55	+1	
NSA-S4	S4_19	4	58	60	+2	
NSA-S4	S4_20	11	65	67	+2	
NSA-S4	S4_21	13	61	62	+1	
NSA-S4	S4_22	5	62	64	+2	

	Prediction Site	Number of Receptor Units	Loudest-hour Leq Sound Level (dBA) ¹		
NSA			Existing (2007)	Future (2035)	Change (2007 to 2035)
NSA-S4	S4_23	9	58	60	+2
NSA-S4	S4_24	6	59	60	+1
NSA-S4	S4_25	6	61	63	+2
NSA-S5	S5_01, 1st floor	2	70	71	+1
NSA-S5	S5_01, 2nd floor	2	73	75	+2
NSA-S5	S5_02, 1st floor	2	72	73	+1
NSA-S5	S5_02, 2nd floor	2	73	75	+2
NSA-S5	S5_03, 1st floor	2	71	73	+2
NSA-S5	S5_03, 2nd floor	2	72	75	+3
NSA-S5	S5_03, 3rd floor	2	73	76	+3
NSA-S5	S5_04, 1st floor	2	69	71	+2
NSA-S5	S5_04, 2nd floor	2	71	75	+4
NSA-S5	S5_05, 1st floor	2	64	66	+2
NSA-S5	S5_05, 2nd floor	2	66	69	+3
NSA-S5	S5_06, 1st floor	2	70	72	+2
NSA-S5	S5_06, 2nd floor	2	71	74	+3
NSA-S5	S5_07, 1st floor	5	68	69	+1
NSA-S5	S5_07, 2nd floor	5	72	74	+2
NSA-S5	S5_08, 1st floor	5	71	72	+1
NSA-S5	S5_08, 2nd floor	5	72	74	+2
NSA-S5	S5_09, 1st floor	4	70	72	+2
NSA-S5	S5_09, 2nd floor	4	74	76	+2
NSA-S5	S5_10, 1st floor	5	70	71	+1
NSA-S5	S5_10, 2nd floor	5	73	75	+2
NSA-S5	S5_11, 1st floor	6	68	69	+1
NSA-S5	S5_11, 2nd floor	6	71	73	+2
NSA-S5	S5_12, 1st floor	2	64	65	+1
NSA-S5	S5_12, 2nd floor	2	68	70	+2
NSA-S5	S5_13, 1st floor	2	67	66	-1
NSA-S5	S5_13, 2nd floor	2	70	72	+2
NSA-S5	S5_14, 1st floor	2	59	61	+2
NSA-S5	S5_14, 2nd floor	2	63	65	+2
NSA-S5	S5_14, 3rd floor	2	68	70	+2
NSA-S5	S5_15, 1st floor	2	62	64	+2
NSA-S5	S5_15, 2nd floor	2	66	68	+2
NSA-S5	S5_15, 3rd floor	2	68	70	+2
NSA-S5	S5_16, 1st floor	2	60	62	+2
NSA-S5	S5_16, 2nd floor	2	64	66	+2
NSA-S5	S5_17, 1st floor	2	67	69	+2
NSA-S5	S5_17, 2nd floor	2	69	71	+2
NSA-S5	S5_18, 1st floor	5	66	67	+1
NSA-S5	S5_18, 2nd floor	5	71	72	+1
NSA-S5	S5_19, 1st floor	6	68	68	0
NSA-S5	S5_19, 2nd floor	6	70	72	+2
NSA-S5	S5_20, 1st floor	5	66	68	+2
NSA-S5	S5_20, 2nd floor	5	71	72	+1

NSA	Prediction Site	Number of Receptor Units	Loudest-hour Leq Sound Level (dBA) ¹		
			Existing (2007)	Future (2035)	Change (2007 to 2035)
NSA-S5	S5 21 1st floor	5	60	61	±1
NSA-S5	S5_21, 1st floor	5	68	70	+2
NSA-S5	S5_22, 2nd noor	1	59	60	±1
NSA-S5	S5_22, 13t floor	4	67	60 60	+1
NSA-S5	S5_22, 210 11001	4	62	63	+2
NSA-S5	S5_23, 13t floor	6	67	68 68	+1 _1
NSA-S5	S5_23, 21d 1001	2	60	61	±1
NSA-S5	S5_24, 13t floor	2	65	66	±1
NSA-S5	S5_24, 2nd floor	2	68	70	±2
NSA-55	S5_24, 310 11001	2	64	65	+2
NSA-55	S5_25, 13t floor	2	68	70	+1 _12
NSA-55	S5_25, 2nd floor	2	60	70	+2
NSA-55	S5_26_1st floor	2	50	50	+2
	S5_26, 13t 11001	2	57	57 62	1
NSA-SS NSA SE	S5_20, 2110 11001	2	62	62	+1
NSA-SS NSA SE	S5_27, 1St 11001	2	66	02 69	0
NSA-SS NSA SE	S5_27, 2110 11001	2	00 60	00 61	+2
NSA-SO	55_20, 15t 11001 SE_20, 2nd floor	2	00 45	01	+1
NSA-SO	S5_20, 2110 11001	2	00	00	+1
NSA-SO	55_29, 15t 11001	2	00 42	39	+1
NSA-SO	S5_29, 2110 11001	2	03	04 47	+1
NSA-SO	S5_29, 310 11001	2	00	0 /	+2
NSA-SO	55_30, 15t 11001	2	28 42	59	+1
NSA-SO	S5_30, 2110 11001	2	02	04	+2
NSA-SO	S5_30, 310 11001	2	04 E0	00	+2
NSA-SO	55_51, 15t 11001 SE_21_2nd floor	2	8C	00 4 E	+2
NSA-SO	S5_31, 2110 11001	2	04 4 E	CO 47	+1
NSA-SO	55_51, 510 11001 SE_22_1ct floor	2	00 50	6 7	+2
NSA-SO	55_32, 15t 11001	2	28 42	00 4 E	+2
NSA-SO	S5_32, 2110 11001	2	03	00 40	+2
NSA-SO	S5_32, 310 11001	Z E	0/ 41	09	+2
	55_33, 15t 11001	5	01	03	+2
NSA-SO	S5_33, 2110 11001	5	00	0/ 4E	+1
NSA-SO	55_34, 15t 11001	5	04 47	00 40	+1
NCA CE	SU_34, ZHU HUUI	C A	0/	07	+Z
NCA CE	SE 2E 2nd floor	0	57		+
NCA CE	SU_SU, ZHU HUUI	0	04	00 44	+1
CC-HCVI	S5 26 2nd floor	0	04 67	00 60	+Z
NCA CE	SU_SU, ZHU HUUI	0	0/ 41	00 40	+
NCA CE	SE 27 and floor	0	01 47	0Z	+
CC-HCVI	S5 20 1 of floor	0	0/ 40	00 4 A	+
NCA CE	50_30, 151 11001 SE 20 2nd floor	4	03	04 40	+1
NSA-55	55_38, 200 1000	4 Г	00	00 2 1	+2
NSA-55	55_37, ISL 11001	5	0U		+
NSA-55	55_37, 200 11000	5	04	05	+1
NSA-55	55_4U_5114 ²	0	12	74	+2
N24-20	30_01	3	13	/4	+1

Page 29

NSA	Prediction Site	Number of Receptor Units	Loudest-hour Leq Sound Level (dBA) ¹		
			Existing	Future	Change
			(2007)	(2035)	(2007 to 2035)
NSA-S6	S6_02	11	73	75	+2
NSA-S6	S6_03	6	73	75	+2
NSA-S6	S6_04_ST15 ²	4	71	75	+4
NSA-S6	S6_05	3	65	68	+3
NSA-S6	S6_06	4	71	74	+3
NSA-S6	S6_07	5	68	71	+3
NSA-S6	S6_08	5	72	74	+2
NSA-S6	S6_09	1	74	76	+2
NSA-S6	S6_10	2	71	72	+1
NSA-S6	S6_11	2	70	73	+3
NSA-S6	S6_12	2	70	74	+4
NSA-S6	S6_13_LT3 ²	3	71	74	+3
NSA-S6	S6_14	3	71	72	+1
NSA-S6	S6_15	2	71	72	+1
NSA-S6	S6_16	2	75	77	+2
NSA-S6	S6_17	1	68	68	0
NSA-S6	S6_18	2	64	66	+2
NSA-S6	S6_19	7	70	72	+2
NSA-S6	S6_20	12	65	66	+1
NSA-S6	S6_21	6	61	63	+2
NSA-S6	S6_22	4	64	67	+3
NSA-S6	S6 23	7	59	60	+1
NSA-S6	S6_24	8	63	65	+2
NSA-S6	S6_25	3	63	66	+3
NSA-S6	S6 26	6	69	71	+2
NSA-S6	S6_27	3	64	66	+2
NSA-S6		4	61	62	+1
NSA-S6		3	62	63	+1
NSA-S6		1	60	61	+1
NSA-S6		2	65	65	0
NSA-S6		4	59	60	+1
NSA-S6	S6 33	1	60	63	+3
NSA-S6	S6 34	4	64	66	+2
NSA-S6	S6 35	11	55	57	+2
NSA-S6	S6 36	16	55	57	+2
NSA-S6	S6 37	4	60	62	+2
NSA-S6	S6 38	7	58	60	+2
NSA-S6	S6 39	4	59	60	+1
NSA-S6	S6 40	4	57	58	+1
NSA-S6	S6 41	1	60	62	+2
NSA-S6	S6 42	6	62	63	+1
NSA-S6	S6 43	12	60	62	+2
NSA-S6	S6 44	7	58	60	+2
NSA-S6	S6 45	16	60	62	+2
NSA-S6	S6 46	6	63	65	+2
NSA-S6	S6_47	2	55	57	+2

Page 30

NSA	Prediction Site	Number of Receptor Units	Loudest-hour Leq Sound Level (dBA) ¹		
			Existing (2007)	Future (2035)	Change (2007 to 2035)
NSA-S6	S6_48	6	54	56	+2
NSA-S6	S6_49	2	53	53	0
NSA-S6	S6_50	11	54	56	+2
NSA-S7	S7_01	0	60	61	+1
NSA-S7	S7_02	2	64	66	+2
NSA-S7	S7_03_ST17 ²	6	58	60	+2
NSA-S7	S7_04	2	61	64	+3
NSA-S7	S7_05	2	64	66	+2
NSA-S7	S7_06	3	65	68	+3
NSA-S7	S7_07_ST18 ²	1	67	69	+2
NSA-S7	S7_08	1	70	72	+2
NSA-S7	S7_09	1	60	62	+2
NSA-S7	S7_10	2	65	67	+2
NSA-S7	S7_11	1	74	76	+2
NSA-S7	S7_12	2	73	74	+1
NSA-S7	S7_13_ST20 ²	2	70	71	+1
NSA-S7	S7_14	1	70	70	0
NSA-S7	S7_15	1	68	69	+1
NSA-S7	S7_16	2	66	68	+2
NSA-S7	S7_17	2	71	72	+1
NSA-S7	S7_18	2	74	76	+2
NSA-S7	S7_19	1	75	77	+2
NSA-S7	S7_20	2	56	57	+1
NSA-S7	S7_21	3	55	56	+1
NSA-S7	S7_22	2	53	55	+2
NSA-S7	S7_23	1	56	57	+1
NSA-S7	S7_24	1	57	58	+1
NSA-S7	S7_25	1	55	56	+1
NSA-S7	S7_26	1	55	57	+2
NSA-S7	S7_27	2	63	65	+2
NSA-S7	S7_28	4	65	66	+1
NSA-S7	S7_29	3	67	69	+2
NSA-S7	S7_30	1	68	70	+2
NSA-S7	S7_31	2	53	55	+2
NSA-S7	S7_32	2	53	54	+1
NSA-S7	S7_33	2	51	52	+1
NSA-S7	S7_34	2	55	57	+2
NSA-S7	S7_35	3	55	57	+2
NSA-S7	S7_36	3	57	59	+2
NSA-S7	S7_37	4	56	58	+2
NSA-S7	S7_38_ST21 ²	3	58	60	+2
NSA-S7	S7_39	2	64	66	+2
NSA-S7	S7_40	4	52	54	+2
NSA-S7	S7_41	5	62	64	+2
NSA-S8	S8_01, 1st floor	3	65	67	+2
NSA-S8	S8_01, 2nd floor	4	68	69	+1

NSA	Prediction Site	Number of Receptor Units	Loudest-hour Leq Sound Level (dBA) ¹		
			Existing (2007)	Future (2035)	Change (2007 to 2035)
NSA-S8	S8 01, 3rd floor	4	71	73	+2
NSA-S8	S8 02, 1st floor	4	64	66	+2
NSA-S8	S8 02, 2nd floor	4	66	68	+2
NSA-S8	S8 02, 3rd floor	4	71	73	+2
NSA-S8	S8 03, 1st floor	4	63	65	+2
NSA-S8	S8 03, 2nd floor	4	67	68	+1
NSA-S8	S8 03, 3rd floor	4	70	72	+2
NSA-S8	S8_04, 1st floor	3	66	68	+2
NSA-S8	S8_04, 2nd floor	4	68	70	+2
NSA-S8	S8_04, 3rd floor	4	71	73	+2
NSA-S8	S8_05, 1st floor	3	64	66	+2
NSA-S8	S8_05, 2nd floor	4	67	68	+1
NSA-S8	S8_05, 3rd floor	4	70	72	+2
NSA-S8	S8_06, 1st floor	3	65	67	+2
NSA-S8	S8_06, 2nd floor	4	68	69	+1
NSA-S8	S8_06, 3rd floor	4	70	72	+2
NSA-S8	S8_07, 1st floor	3	64	67	+3
NSA-S8	S8_07, 2nd floor	4	66	68	+2
NSA-S8	S8_07, 3rd floor	4	69	72	+3
NSA-S8	S8_08, 1st floor	2	63	66	+3
NSA-S8	S8_08, 2nd floor	4	65	68	+3
NSA-S8	S8_08, 3rd floor	4	69	71	+2
NSA-S8	S8_09	1	60	63	+3
NSA-S8	S8_10	0	61	63	+2
NSA-S8	S8_11	0	69	70	+1
NSA-S8	S8_12, 1st floor	4	58	60	+2
NSA-S8	S8_12, 2nd floor	4	61	63	+2
NSA-S8	S8_12, 3rd floor	4	64	66	+2
NSA-S8	S8_13, 1st floor	3	58	60	+2
NSA-S8	S8_13, 2nd floor	4	61	63	+2
NSA-S8	S8_13, 3rd floor	4	64	66	+2
NSA-S8	S8_14, 1st floor	4	61	63	+2
NSA-S8	S8_14, 2nd floor	4	65	66	+1
NSA-S8	S8_14, 3rd floor	4	68	69	+1
NSA-S8	S8_15, 1st floor	4	59	61	+2
NSA-S8	S8_15, 2nd floor	4	63	64	+1
NSA-S8	S8_15, 3rd floor	4	64	66	+2
NSA-S8	S8_16, 1st floor	4	61	62	+1
NSA-58	58_16, 2nd floor	4	04	00 ()	+2
NSA-20	58_10, 3rd floor	4	00 57	69	+1
NCA-SO	SO 17 Ded floor	3	5/ 40	5Y 41	+2
NCV 20	SO 17 2rd floor	4	0U 40	01	+1
NCV C0	50_17, 310 11001	う う	03 50	04 41	+
NSH-SO NSH-SO	30_10, 151 11001 S0 10 2nd floor	Ζ	57 67	01 65	+∠ , 2
NSA-20	S8 18 3rd floor	4 A	6/	65	+3 +1
10/100	30_10, 310 1000	т –	07	00	
		Number of	Loudest-h	our Leq Sound Le	evel (dBA) ¹
---------------------	-------------------------	----------------------	--------------------	------------------	--------------------------
NSA	Prediction Site	Receptor Units	Existing (2007)	Future (2035)	Change (2007 to 2035)
NSA-S8	S8_19, 1st floor	3	61	63	+2
NSA-S8	S8_19, 2nd floor	3	64	65	+1
NSA-S8	S8_19, 3rd floor	4	66	68	+2
NSA-S8	S8_20, 1st floor	4	58	61	+3
NSA-S8	S8_20, 2nd floor	3	61	63	+2
NSA-S8	S8_20, 3rd floor	4	65	67	+2
NSA-S8	S8_21	0	66	70	+4
NSA-S8	S8_22_ST24 ²	0	68	69	+1
1. Loudest-hour sou	nd levels indicating no	ise impacts are show	n in bold.		

2. Measurement and prediction site.

Source: HMMH, 2007.

(This page intentionally left blank.)

800 Feet

- Measurement and Prediction Site
- Prediction Site
- Benefited Prediction Site

Noise Barriers:

- Recommended for Further Consideration
- Not Recommended for Further Consideration
- •••• Existing

* Receptor represents dwelling units on multiple floors (not all floors may be benefited; see Table 7 for details)

Pennsylvania Turnpike Chester and Montgomery Counties, Pennsylvania Milepost 320 to 326 Reconstruction Project Noise Receptor Sites and Potential Noise Barrier Locations

Figure 11

800 Feet

- Measurement and Prediction Site
- Prediction SiteBenefited Predi
 - Benefited Prediction Site

Noise Barriers:

- Recommended for Further Consideration
- Not Recommended for Further Consideration

•••• Existing

* Receptor represents dwelling units on multiple floors (not all floors may be benefited; see Table 7 for details)

Pennsylvania Turnpike Chester and Montgomery Counties, Pennsylvania Milepost 320 to 326 Reconstruction Project Noise Receptor Sites and Potential Noise Barrier Locations Figure 11

* Receptor represents dwelling units on multiple floors (not all floors may be benefited; see Table 7 for details)

ო

Sheet

800 Feet

400

230

Noise Receptor Sites and Potential Noise Barrier Locations Figure 11

800 Feet

- Measurement and Prediction Site Prediction Site
- - Benefited Prediction Site

Noise Barriers:

- Recommended for Further Consideration
- Not Recommended for Further Consideration

•••• Existing

* Receptor represents dwelling units on multiple floors (not all floors may be benefited; see Table 7 for details)

Pennsylvania Turnpike Chester and Montgomery Counties, Pennsylvania Milepost 320 to 326 Reconstruction Project Noise Receptor Sites and Potential Noise Barrier Locations Figure 11

800 Feet

- Measurement and Prediction Site
- Prediction Site
 - Benefited Prediction Site

Noise Barriers:

- Recommended for Further Consideration
- Not Recommended for Further Consideration

•••• Existing

* Receptor represents dwelling units on multiple floors (not all floors may be benefited; see Table 7 for details)

Pennsylvania Turnpike Chester and Montgomery Counties, Pennsylvania Milepost 320 to 326 Reconstruction Project **Noise Receptor Sites and Potential Noise Barrier Locations** Figure 11

800 Feet

- Measurement and Prediction Site
- Prediction Site
 - Benefited Prediction Site

Noise Barriers:

- Recommended for Further Consideration
- Not Recommended for Further Consideration

URN TURN PIKE

•••• Existing

* Receptor represents dwelling units on multiple floors (not all floors may be benefited; see Table 7 for details)

Pennsylvania Turnpike Chester and Montgomery Counties, Pennsylvania Milepost 320 to 326 Reconstruction Project **Noise Receptor Sites and Potential Noise Barrier Locations** Figure 11

800 Feet

- (a) Measurement and Prediction Site
- Prediction Site
 - Benefited Prediction Site

Noise Barriers:

- Recommended for Further Consideration
- Not Recommended for Further Consideration
- •••• Existing

* Receptor represents dwelling units on multiple floors (not all floors may be benefited; see Table 7 for details)

Pennsylvania Turnpike Chester and Montgomery Counties, Pennsylvania Milepost 320 to 326 Reconstruction Project Noise Receptor Sites and Potential Noise Barrier Locations

Figure 11

5.2.1 Existing (2007) Computed Sound Levels

The PTC provided mainline Turnpike traffic volume and vehicle classification counts from January 2007 for modeling existing condition sound levels. In the morning, traffic volumes typically are higher in the eastbound direction; in the afternoon, westbound volumes are higher. As a result, sound levels at receptors adjacent to the south side of the Turnpike typically are highest in the morning and sound levels at receptors adjacent to the north side are highest in the afternoon.

To ensure a conservative evaluation, both directions of traffic were evaluated independently, and the hour with conditions corresponding to the highest noise levels was identified for each direction. For eastbound Turnpike traffic, loudest-hour traffic conditions occurred between 7:00 AM and 8:00 AM. For westbound Turnpike traffic, loudest-hour traffic conditions occurred between 3:00 PM and 4:00 PM. The 7:00 AM to 8:00 AM eastbound traffic and the 3:00 PM to 4:00 PM westbound traffic then were modeled simultaneously to produce a conservative estimate of loudest-hour conditions on both sides of the Turnpike.

STV Inc. provided May 2005 traffic data for local roads including Yellow Springs Road, Mill Road, Valley Forge Road, Thomas Road, and Glenhardie Road. The information included volume, vehicle classification, and speed data in continuous 15-minute intervals for several days at each traffic monitoring location. Traffic data from intervals corresponding to Turnpike loudest-hour conditions were used for TNM modeling.

Traffic data for US 422 were obtained from TNM files developed by Environmental Acoustics, Inc. for use on a concurrent project.

Appendix C provides further information on the modeled traffic.

Computed loudest-hour L_{eq} sound levels for existing conditions ranged from 51 to 75 dBA among all prediction sites. Typically, locations closest to the Turnpike had the highest computed sound levels. In Table 5, prediction sites with loudest-hour sound levels approaching or exceeding the NAC discussed in Section 3.1 are identified in bold. For the purpose of this evaluation, L_{eq} sound levels of 66 dBA or higher approach or exceed the NAC for residential or other noise-sensitive outdoor land uses. Under existing conditions, 172 prediction sites representing 454 receptor units were computed to experience noise impacts during the loudest hour of the day. Although noise impacts occur in all 14 NSAs under existing conditions, the highest numbers of impacted receptor units occur in NSA-S5 (173), NSA-S8 (75), and NSA-S6 (69) due to the presence of multi-family residences.

5.2.2 Future (2035) Computed Sound Levels

Loudest-hour conditions for 2035 were computed using traffic projections developed by the Delaware Valley Regional Planning Commission (DVRPC) in their March 2003 report titled "Pennsylvania Turnpike Proposed PA 29 Slip Ramp Traffic Study." The DVRPC forecasted 2025 volumes on the Turnpike using their Regional Travel Simulation Model, assuming six travel lanes on the Turnpike and slip ramps providing all four movements. Using the 2006 actual Annual Average Daily Traffic (AADT) volumes provided by the PTC and the forecasted 2025 volumes from the DVRPC, annual growth rates of 2.28% for the eastbound direction and 2.35% for the westbound direction were calculated. These growth rates were then applied to calculate the design year 2035 traffic volumes. Consistent with the methodology used for computing existing sound levels, the future loudest-hour sound levels shown in Table 5 were computed using a combination of morning and afternoon peak-hour traffic. For both the

eastbound and westbound directions, peak-hour traffic volumes were determined separately based on percentages of Average Daily Traffic (ADT) volumes. To provide a conservative estimate of future loudest-hour sound levels, the eastbound and westbound peak-hour traffic volumes then were modeled as if occurring simultaneously.

2035 traffic for local roads was computed by applying a 1.8% annual growth rate (provided by STV Inc.) to the existing conditions traffic data for Yellow Springs Road, Mill Road, Valley Forge Road, Thomas Road, and Glenhardie Road. As a conservative assumption, the escalated traffic volumes were modeled at the same speeds obtained during the May 2005 traffic counts.

2030 Traffic data for US 422 were obtained from TNM files developed by Environmental Acoustics, Inc. for use on a concurrent project. The 2030 volumes were then escalated using the same 1.8% growth rate as used for local roads to obtain projected 2035 volumes.

Loudest-hour L_{eq} sound levels for future conditions are projected to range from 52 to 77 dBA among all prediction sites. In general, locations closest to the Turnpike will experience the highest sound levels. In Table 5, prediction sites with loudest-hour sound levels approaching or exceeding the NAC discussed in Section 3.1 are identified in bold. For the purpose of this evaluation, L_{eq} sound levels of 66 dBA or higher approach or exceed the NAC for residential or other noise-sensitive outdoor land uses. Under future conditions, 225 prediction sites representing 618 receptor units are projected to experience noise impacts during the loudest hour of the day. Although noise impacts occur in all 14 NSAs under future conditions, the highest numbers of impacted receptor units occur in NSA-S5 (193), NSA-S8 (121), and NSA-S6 (100) due to the presence of multi-family residences.

The following sections provide further information on computed future sound levels and projected noise impacts in each NSA.

NSAs North of Turnpike

- NSA-N1 (near Howells Road) Nine single-family homes in this NSA will experience noise impact with loudest-hour sound levels of 66 to 74 dBA, L_{eq}. The highest L_{eq} sound levels (71 to 74 dBA) will be at first-row homes located along Howells Road and Green Lane. Increases above existing loudest-hour sound levels will range from about two to three decibels. *Consideration of traffic noise mitigation is warranted for this NSA*.
- NSA-N2 (near White Deer Trail) Six single-family homes, including five on White Deer Trail and one located off of Diamond Rock Road, with loudest-hour sound levels of 66 to 73 dBA, L_{eq} will experience noise impact. The properties along White Deer Trail are subject to an easement agreement with the PTC. Sound levels at receptors set farther back on Chautauqua Trail and Horseshoe Trail will range from 59 to 63 dBA, L_{eq}. Increases above existing sound levels are expected to range from about two to four decibels in this area. *Consideration of traffic noise mitigation is warranted for this NSA*.
- NSA-N3 (Yellow Springs Road to Mill Road) Seven single-family homes in this NSA are expected to experience noise impact. Loudest-hour L_{eq} sound levels at the closest impacted homes along Yellow Springs Road and Wellspring Lane will range from 66 to 74 dBA. Increases above existing sound levels are expected to range from about one to three decibels in this area. *Consideration of traffic noise mitigation is warranted for this NSA*.
- NSA-N4 (Mill Road to Valley Forge National Park) Loudest-hour L_{eq} sound levels of 66 to 74 dBA are expected to cause noise impacts at 12 single-family homes on Yellow Springs Road,

Rose Cottage Lane, and Covered Bridge Road. Increases above existing sound levels in this NSA are expected to range from about one to three decibels. *Consideration of traffic noise mitigation is warranted for this NSA*.

- NSA-N5 (Valley Forge National Park) Loudest-hour sound levels generally will approach or exceed the Category B NAC of 67 dBA, L_{eq} at distances of up to about 250 to 350 feet from the Turnpike right-of-way line into Valley Forge National Park. Much of this impacted land along the Park's southern boundary is undeveloped open fields or woodland. Areas near two structures in the vicinity of Wilson Road, Lafayette's Quarters and the Whittle House, will experience noise impact with loudest-hour sound levels of about 73 dBA, L_{eq}. Increases above existing sound levels in this NSA are expected to range from about one to five decibels. The greatest increases will occur in areas where the Turnpike widening will reduce noise shielding provided by existing terrain. *Consideration of traffic noise mitigation is warranted for this NSA*.
- NSA-N6 (west of Thomas Road to US 422) 32 single-family homes in this NSA will experience noise impact with loudest-hour sound levels ranging from 66 to 73 dBA, L_{eq}. The highest sound levels will be at first-row receptors located along the south sides of Richards Road and Worthington Road and also on Glenhardie Road near the Turnpike overpass and at the east end of Gulph Road. In addition, several residences on the north side of Worthington Road will experience noise impacts. Near the east end of this NSA, noise from traffic on US 422 also contributes to loudest-hour sound levels. Future computed sound levels assume the construction of a noise barrier along the west side of US 422 as part of a separate project. As a result, although sound levels are expected to increase by about one to two decibels throughout most of the NSA, future sound levels are expected to decrease in some areas close to the proposed US 422 noise barrier. Nonetheless, loudest-hour sound levels are expected to approach or exceed the NAC at receptors close to both US 422 and the Turnpike. *Consideration of traffic noise mitigation is warranted for this NSA*.

NSAs South of Turnpike

- NSA-S1 (west of Howells Road to Yellow Springs Road overpass) 32 receptor units in both single-family and multi-family residences will experience noise impacts. Most of the impacted residences are located on the north side of Yellow Springs Road and will have future loudest-hour sound levels ranging from about 66 to 71 dBA, L_{eq}. Although several receptor units south of Yellow Springs Road will be impacted, generally sound levels in that area will not exceed the NAC. Increases above existing sound levels are expected to range from about zero to two decibels. In some locations, increases in sound levels are limited because a new retaining wall will partially block line of sight to Turnpike traffic. *Consideration of traffic noise mitigation is warranted for this NSA*.
- NSA-S2 (Vanguard and Crossroads Schools, east of Yellow Springs Road overpass) In this NSA, one single-family home on North Valley Road will experience noise impact with a loudest-hour sound level of about 67 dBA, L_{eq}. In addition, outdoor activity areas at the Vanguard School (used by both the Vanguard and the Crossroads Schools) will experience loudest-hour sound levels of up to about 70 dBA, L_{eq}, thereby exceeding the NAC for Category B land use. Homes located south of the Vanguard School on Minden Lane will have loudest-hour L_{eq} sound levels of up to 58 dBA and are not expected to be impacted. In some locations, increases in sound levels are limited because a new retaining wall will partially block line of sight to Turnpike traffic. Increases above existing sound levels are expected to range from about zero to two decibels. *Consideration of traffic noise mitigation is warranted for this NSA*.

- NSA-S3 (west of Mill Road) Loudest-hour L_{eq} sound levels of 67 to 75 dBA are expected to cause noise impacts at 10 single-family homes on Hawkweed Way, Larkspur Way, Thistle Way and Adler Lane. In general, impacts will be limited to first-row residences. Increases above existing sound levels in this NSA are expected to range from about one to three decibels. *Consideration of traffic noise mitigation is warranted for this NSA*.
- NSA-S4 (east of Mill Road) 60 receptor units in both single-family and multi-family residences will experience noise impact in this NSA. Loudest-hour sound levels at impacted residences will range from about 66 to 77 dBA, L_{eq}. The highest sound levels will be at first-row, single-family homes on Armstrong Court and at multi-family residences on Sturbridge Lane and Main Street. Increases above existing loudest-hour sound levels will range from about one to three decibels. *Consideration of traffic noise mitigation is warranted for this NSA*.
- NSA-S5 (Chesterbrook, west of Valley Creek) In this NSA, noise impacts were assessed at first-, second-, and third-floor patios and balconies. Approximately 193 units in multi-family residences will experience noise impacts with loudest-hour sound levels of 66 to 76 dBA, L_{eq}. Typically sound levels will be several decibels higher at upper story locations than at ground floor locations due to decreased noise shielding and decreased ground effects. The highest sound levels will occur at residences on Washington Place, Yorktown Place, Eagles Ridge Drive, Valley Stream Circle, and Valley Stream Lane. In general, increases above existing loudest-hour sound levels will range from about zero to two decibels, although some locations will experience changes of up to four decibels. In some ground-floor locations below the Turnpike's pavement level, sound levels may decrease slightly due to increased shielding provided by the widened roadway's shoulder. *Consideration of traffic noise mitigation is warranted for this NSA*.
- NSA-S6 (Chesterbrook, Valley Creek to Valley Forge Road) 100 receptor units in both single-family and multi-family residences in this NSA will experience noise impact. Loudest-hour sound levels at impacted receptor units will range from about 66 to 77 dBA, L_{eq}. The highest sound levels will be at first-row, single-family homes on Morgan Lane, Lafayette Lane, Salomon Lane, and Franklin Lane and at townhouse-style multi-family residences on Iroquois Court, Applehouse Pond Drive, Springhouse Pond Drive, and Millhouse Pond Drive. Increases above existing loudest-hour sound levels will range from about zero to four decibels. *Consideration of traffic noise mitigation is warranted for this NSA*.
- NSA-S7 (Valley Forge Road to Glenhardie Road) In this NSA, 35 single-family homes will experience noise impacts with loudest-hour sound levels of about 66 to 77 dBA, L_{eq}. The highest sound levels will occur east of Thomas Road at homes on Park Ridge Drive and Park Ridge Terrace and also near the eastern end of Colonel Dewees Road. In the westernmost portion of the NSA, where homes are set back behind the Valley Forge Service Plaza, loudest hour sound levels will range from about 55 to 66 dBA, L_{eq}. Immediately west of Thomas Road, loudest-hour sound levels at first-row homes on Lexington Lane and Pulaski Lane will range from about 65 to 72 dBA. Increases above existing loudest-hour sound levels will range from about zero to three decibels. *Consideration of traffic noise mitigation is warranted for this NSA*.
- NSA-S8 (Glenhardie Road to US 422) In this NSA, noise impacts were assessed at first-, second-, and third-floor patios and balconies. Outdoor use areas associated with 121 receptor units in multi-family buildings will experience noise impacts. Typically sound levels will be several decibels higher at upper story locations than at ground floor locations due to decreased noise shielding and decreased ground effects. The highest loudest-hour sound levels of about 68 to 73 dBA will occur along Drummers Lane. In addition, portions of the Glenhardie Country Club Golf Course will experience loudest-hour sound levels approaching or exceeding the NAC for

Category B land use. Increases above existing loudest-hour sound levels will range from about one to four decibels.¹⁴ An existing noise barrier at the eastern end of the NSA along the west side of US 422 was included in all computations of both existing and future sound levels. *Consideration of traffic noise mitigation is warranted for this NSA*.

¹⁴ The area at the northeast corner of this NSA may experience a temporary increase of up to five decibels if a portion of an existing noise barrier is removed temporarily during construction.

6. HIGHWAY TRAFFIC NOISE CONSIDERATION AND MITIGATION ALTERNATIVES

6.1 Mitigation Alternatives

FHWA has identified certain noise mitigation measures to reduce traffic noise impact that may be incorporated into either new roadway projects or roadway improvement projects that increase traffic capacity. These include:

- Traffic management measures (e.g., traffic control devices and signing for prohibition of certain vehicle types and time-use restrictions for certain vehicle types)
- Alteration of horizontal and vertical alignments
- Acquisition of property to serve as a buffer zone to preempt development which would be adversely impacted by traffic noise
- Sound insulation of public or nonprofit institutional structures
- Construction of noise barriers¹⁵

Possible traffic management measures include reducing speeds and truck restrictions. Speed restrictions provide only a slight reduction in noise levels without significant reductions in speed. For example, to achieve a five-decibel reduction in noise from heavy trucks, average speeds would need to be reduced from 65 to 45 mph.¹⁶ Therefore, speed restrictions are not a feasible noise mitigation measure for this area. Truck restrictions would not be practical because the Turnpike is the major interstate highway across Pennsylvania's southern tier. Therefore, truck restrictions also are not a feasible noise mitigation measure for this project.

Although planned changes in grading due to the Turnpike widening will limit potential noise impacts in some areas, more significant reductions would require substantial changes to either the Turnpike's horizontal or vertical alignment. Such alignment shifts are beyond the scope of this roadway improvement project and therefore are beyond the scope of this evaluation.

Little undeveloped land exists adjacent to the Turnpike throughout the project corridor. Therefore, acquisition of buffer zones to preempt future development of noise-sensitive land uses is not a feasible alternative for this project.

Although sound insulation of public or nonprofit institutional structures may be considered, Federal and State policies require that primary consideration in determining and abating highway traffic noise impact must be given to exterior areas. The interior criterion (NAC Category E, see Section 3.1) is intended to be used "in those situations where there are no outdoor activities to be affected by the traffic noise, or where the exterior activities are far from or physically shielded from the roadway in a manner that prevents an impact on exterior activities."¹⁷

¹⁵ Adapted from CFR 772.13.c and PennDOT Publication No. 24, Section 3.2.

¹⁶ Menge, Christopher W., et al., *FHWA Traffic Noise Model, Version 1.0 Technical Manual*, Report FHWA-PD-96-101, February 1998, Figure 11, page 34.

¹⁷ CFR 772.11 and PennDOT Publication No. 24, Section 2.4.1.

6.2 **Preliminary Noise Barrier Evaluation**

Construction of noise barriers is the only remaining highway traffic noise abatement measure to be considered. A preliminary noise barrier evaluation was conducted for each NSA meeting the warranted criteria described in Section 3.1.1. The objective of each evaluation was to determine whether a noise barrier could meet the feasibility and reasonableness criteria described in Section 3.1.2 and Section 3.1.3. The evaluations were conducted to determine the preferred alignment, approximate end points, and the approximate average height of each proposed noise barrier.

Although the analysis was conducted using the validated traffic noise prediction model with the full set of prediction sites for each NSA, the noise barrier design was conducted at a preliminary level. Specifically, ranges of barrier heights were evaluated in two-foot increments with the noise barrier assumed to be of constant height for its entire length. In general, noise barriers were evaluated for feasibility and reasonableness with constant heights of 10, 12, 14, 16, 18, and 20 feet above ground level to determine whether a barrier could be designed to meet the feasibility and reasonableness criteria. For any recommended noise barriers, further acoustical and engineering design would be necessary prior to construction.

6.2.1 Summary of Results and Recommendations

Based on studies conducted to date, noise barriers in 11 of the 14 NSAs were found to be warranted, feasible, and reasonable. The 11 areas include NSA-N1, NSA-N5 and NSA-N6 on the north side of the Turnpike and NSA-S1, NSA-S2, NSA-S3, NSA-S4, NSA-S5, NSA-S6, NSA-S7, and NSA-S8 on the south side of the Turnpike. These 11 noise barriers therefore are recommended for further consideration during final design. The recommended noise barriers would range in height from approximately 12 to 16 feet and would have a total length of approximately 37,300 feet. The recommended barriers would benefit approximately 1,006 receptor units and would have a total cost of approximately \$13,148,000, based on a unit cost of \$25 per square foot.¹⁸ If it subsequently develops during the final design phase that conditions have changed, these noise barriers may no longer be recommended. A final decision on the recommendations will be made upon completion of the project design and the public involvement processes.

The potential effects of sound reflected between noise barriers on opposite sides of the Turnpike were evaluated using TNM's parallel barrier module. Due to the presence of noise-sensitive land use on both sides of the Turnpike throughout the majority of the project area, it is recommended that all noise barriers be constructed with sound-absorptive materials on the side facing the Turnpike. In locations with noise barriers directly across the Turnpike from one another, sound-absorptive materials will reduce the degradation of each barrier's effectiveness that may be caused by multiple reflections of sound between the barriers. In locations where a noise barrier is constructed on only one side of the Turnpike, sound-absorptive materials will reduce potential increases in noise levels at residences on the opposite side of the Turnpike caused by reflected traffic noise.

The results provided in Table 7 (and also summarized in Table 1 and Table 6) assume the use of soundabsorptive noise barriers.

¹⁸ PennDOT Publication No. 24 provides for the use of a cost index factor of \$25.00 per square foot for calculation of noise barrier reasonableness (PennDOT Pub. 24, Section 3.3.3.1, May 2007). Actual construction costs are expected to be higher.

Figure 11 shows the locations of the potential noise barriers and Table 6 provides a summary of the noise barriers considered within each NSA:

- The first column of Table 6 identifies the NSA.
- The second column provides the number of impacted receptor units and/or identifies other noisesensitive land uses within the NSA, including Valley Forge National Park and the Vanguard School.
- The third column identifies, based on the presence of noise-sensitive land where traffic noise impacts are predicted, whether each NSA warrants consideration of noise abatement (see Section 3.1.1 for a description of the Warranted Criteria). Because consideration of noise abatement was warranted within each NSA, preliminary noise barrier design was conducted for each area.
- The table's fourth column indicates that noise barriers were found to be feasible within each NSA. As described in Section 3.1.2, this means that noise barriers would provide highway traffic noise reductions of at least five decibels at a majority of impacted receptor units and also satisfy other engineering and safety criteria.
- The next three columns provide information on the approximate location (in terms of station numbers), length, and average height of the best preliminary barrier design for each NSA. Although other length and height combinations were evaluated, the barrier configurations shown in the table were judged to provide the best combination of satisfying noise reduction goals and feasibility and cost reasonableness requirements. In cases where it was not possible to design a noise barrier for the entire NSA that would satisfy the feasibility and reasonableness criteria, attempts were made to sub-divide the NSA and to design noise barriers for smaller clusters of residences. Appendix E provides data for other barrier designs that were considered during the analysis.
- The following three columns show the estimated cost of each noise barrier based on the unit cost of \$25 per square foot described under the Reasonableness Criteria in Section 3.1.3, the number of receptor units benefited by the barrier and therefore included in the cost reasonableness calculation, and the cost per benefited receptor unit. The number of benefited receptor units assumes the use of sound absorptive noise barriers.
- The final column indicates whether the best preliminary barrier design meets the reasonableness criteria.

NSA	Number of Impacted Receptor Units and/or Other Noise-sensitive Land Use	Warrants Noise Abatement Consideration?	Feasible?	Approximate Barrier Location (Station Nos.)	Barrier Length (feet) ¹	Average Barrier Height (feet)	Barrier Cost (x 1,000) ¹	Number of Benefited Receptor Units ²	Cost per Benefited Receptor Unit ¹ (x 1,000)	Reasonable?
NSA-N1	9	Yes	Yes	1071+10 to 1079+35	815	16	\$325	7	\$46.5	Yes
NSA-N2	6	Yes	Yes	1116+55 to 1149+90	3,375	18	\$1,518	4	\$379.5	No
NSA-N3	7	Yes	Yes	1149+90 to 1201+50	5,260	18	\$2,367	14	\$169.1	No
NSA-N4	12	Yes	Yes	1201+90 to 1238+55	3,670	16	\$1,467	16	\$91.7	No
NSA-N5	Valley Forge National Park	Yes	Yes	1256+95 to 1271+25	1,430	12	\$430	Valley Forge National Park	NA	Yes
NSA-N6	32	Yes	Yes	1336+05 to 1383+55	4,760	14	\$1,667	73	\$22.8	Yes
NSA-S1	32	Yes	Yes	1071+15 to 1148+50	7,740	14	\$2,710	55	\$49.3	Yes
NSA-S2	1 + Vanguard School	Yes	Yes	1148+50 to 1170+40	2,200	14	\$770	7 + Vanguard and Crossroads Schools	NA	Yes
NSA-S3	10	Yes	Yes	1177+70 to 1202+00	2,435	16	\$973	45	\$21.6	Yes
NSA-S4	60	Yes	Yes	1202+95 to 1222+10	1,930	14	\$676	126	\$5.4	Yes
NSA-S5	193	Yes	Yes	1224+55 to 1249+80	2,530	14	\$886	278	\$3.2	Yes
NSA-S6	100	Yes	Yes	1249+80 to 1295+45	4,590	14	\$1,607	194	\$8.3	Yes
NSA-S7	35	Yes	Yes	1297+20 to 1363+90	6,765	14	\$2,368	49	\$48.3	Yes
NSA-S8	121	Yes	Yes	1363+90 to 1384+40	2,105	14	\$736	172	\$4.3	Yes

 Table 6. Summary of Evaluated Noise Barriers

Notes:

1. Approximate barrier lengths and costs are from FHWA Traffic Noise Model (TNM) output. Results shown in table have been rounded. Apparent discrepancies with roadway station nos. are due to non-parallel or overlapping barrier sections.

2. Impacted receptor units with at least 3 dBA of noise reduction and/or non-impacted receptor units with at least 5 dBA of noise reduction. Assumes sound-absorptive barriers.

Source: HMMH, 2007.

6.2.2 Detailed Noise Barrier Descriptions

This section of the report provides further information on the preliminary noise barrier evaluation for each NSA. Table 7 provides with-barrier sound levels and insertion loss (noise reduction) values at all receptors for each recommended noise barrier. In Table 7, impacted receptors are shown in **bold** and benefited receptors are **highlighted**. All with-barrier sound levels in Table 7 assume the use of sound absorptive noise barriers.

NSAs North of Turnpike

NSA-N1 (near Howells Road) A 16-foot high, 815-foot long noise barrier would reduce noise levels by five to seven decibels at five of the nine impacted receptor units in this NSA, thereby providing at least five decibels of noise reduction at 50% or more of the impacted receptor units. The barrier also would satisfy each of the other feasibility criteria described in Section 3.1.2. In addition, two other impacted residences would receive noise reductions of at least three decibels, for a total of seven benefited receptor units.

The estimated cost for the noise barrier (based on a unit cost of \$25 per square foot) would be approximately \$325,000, or about \$46,500 per benefited receptor unit. This meets the cost reasonableness standard of \$50,000 per receptor unit. Barrier alternatives that were either lower in height or shorter in length would benefit fewer receptor units, resulting in higher costs per receptor. Barrier alternatives that were either taller or longer would be higher in cost and would not benefit additional receptors. It is possible that revised information or further optimization during final design could result in a design that benefits additional receptors.

This noise barrier satisfies both the feasibility criteria and the reasonableness criteria. Therefore, based on the studies done to date, this noise barrier is recommended. If it subsequently develops during the final design phase that conditions have changed, the barrier may no longer be recommended. A final decision on the recommendation will be made upon completion of the project design and the public involvement processes.

• NSA-N2 (near White Deer Trail). An 18-foot high noise barrier extending for approximately 3,375 feet would provide noise reductions of five to eight decibels at four of the six impacted homes in this NSA, thereby providing at least five decibels of noise reduction at 50% or more of the impacted receptor units. The barrier also would satisfy each of the other feasibility criteria.

The estimated cost for the noise barrier would be approximately \$1,518,000 or about \$379,500 per receptor unit. This cost exceeds the cost reasonableness standard of \$50,000 per receptor unit. Barrier alternatives that were either lower in height or shorter in length would not provide at least five decibels of noise reduction at 50% or more of the impacted receptor units. Barrier alternatives that were either taller or longer would be more costly per receptor unit.

Because the impacted homes in this NSA are widely spaced and are set back on a hillside overlooking the Turnpike, additional attempts at barrier optimization are unlikely to provide a noise barrier alternative that meets the reasonableness criteria. The properties along White Deer Trail are subject to an easement agreement with the PTC.

This noise barrier satisfies the feasibility criteria but does not satisfy the reasonableness criteria. Therefore, this noise barrier is not recommended for further consideration.

 NSA-N3 (Yellow Springs Road to Mill Road) An 18-foot high noise barrier extending for approximately 5,260 feet would provide noise reductions of five to 13 decibels at all seven impacted homes in this NSA, thereby providing at least five decibels of noise reduction at 50% or more of the impacted receptor units. The barrier also would satisfy each of the other feasibility criteria. In addition, the noise barrier would provide at least five decibels of noise reduction at seven non-impacted homes, resulting in a total of 14 benefited homes.

The estimated cost for the noise barrier would be approximately \$2,367,000, or about \$169,100 per receptor unit. This cost exceeds the cost reasonableness standard of \$50,000 per receptor unit. Barrier alternatives that were either lower in height or shorter in length would benefit fewer receptor units, resulting in higher costs per receptor. Barrier alternatives that were either taller or longer would be more costly, but would not benefit additional homes.

This noise barrier satisfies the feasibility criteria but does not satisfy the reasonableness criteria. Therefore, this noise barrier is not recommended for further consideration.

NSA-N4 (Mill Road to Valley Forge National Park) A 16-foot high noise barrier extending for approximately 3,670 feet would provide noise reductions of five to 11 decibels at seven of 12 impacted homes in this NSA, thereby providing at least five decibels of noise reduction at 50% or more of the impacted receptor units. The barrier also would satisfy each of the other feasibility criteria. In addition, the noise barrier would provide at least three decibels of noise reduction at five other impacted homes and five decibels of noise reduction at four non-impacted homes, resulting in a total of 16 benefited homes.

The estimated cost for the noise barrier would be approximately \$1,467,000, or about \$91,700 per receptor unit. This cost exceeds the cost reasonableness standard of \$50,000 per receptor unit. Barrier alternatives that were either lower in height or shorter in length would benefit fewer receptor units, resulting in higher costs per receptor. Barrier alternatives that were either taller or longer would be more costly, but would not benefit additional homes.

This noise barrier satisfies the feasibility criteria but does not satisfy the reasonableness criteria. Therefore, this noise barrier is not recommended for further consideration.

• NSA-N5 (Valley Forge National Park) A 12-foot high noise barrier extending for approximately 1,430 feet near the edge of pavement would provide noise reductions of about seven to nine decibels in outdoor areas near Lafayette's Quarters and the Whittle House. The estimated cost for the barrier, which would cross Wilson Road on the Turnpike overpass, would be approximately \$430,000.

A noise barrier is recommended for a portion of this property due to its national historical significance. If it subsequently develops during the final design phase that conditions have changed, the barrier may no longer be recommended. A final decision on the recommendation will be made upon completion of the project design and the public involvement processes.

NSA-N6 (west of Thomas Road to US 422) A 14-foot high noise barrier extending for approximately 4,760 feet would provide noise reductions of five to 10 decibels at all 32 impacted residences in this NSA, thereby providing at least five decibels of noise reduction at 50% or more of the impacted receptor units. The barrier also would satisfy each of the other feasibility criteria. The noise barrier also would provide at least five decibels of noise reduction at 41 non-impacted residences, resulting in a total of 73 benefited receptor units.

The estimated cost for the noise barrier would be approximately \$1,667,000, or about \$22,800 per receptor unit. This meets the cost reasonableness standard of \$50,000 per receptor unit. Barrier alternatives that were either lower in height or shorter in length would benefit fewer receptor

units, resulting in higher costs per receptor. Barrier alternatives that were either taller or longer would not benefit additional impacted receptors.

This noise barrier satisfies both the feasibility criteria and the reasonableness criteria. Therefore, based on the studies done to date, this noise barrier is recommended. If it subsequently develops during the final design phase that conditions have changed, the barrier may no longer be recommended. A final decision on the recommendation will be made upon completion of the project design and the public involvement processes.

NSAs South of Turnpike

• NSA-S1 (west of Howells Road to Yellow Springs Road overpass) A 14-foot high noise barrier extending for approximately 7,740 feet would provide noise reductions of five to nine decibels at 25 of 32 receptor units in this NSA, thereby providing at least five decibels of noise reduction at 50% or more of the impacted receptor units. The barrier also would satisfy each of the other feasibility criteria. The noise barrier also would provide at least three decibels of noise reduction at four other impacted residences and at least five decibels of noise reduction at 26 non-impacted residences, resulting in a total of 55 benefited receptor units.

The estimated cost for the noise barrier would be approximately \$2,710,000, or about \$49,300 per receptor unit. This just meets the cost reasonableness standard of \$50,000 per receptor unit. Barrier alternatives that were either lower in height or shorter in length would benefit fewer receptor units, resulting in higher costs per receptor. Barrier alternatives that were either taller or longer would benefit additional receptors, but would be more costly, and would exceed the cost reasonableness standard. It is possible that revised information or further optimization during final design could result in a design that benefits additional receptors.

The western end of this barrier would begin near the residences located immediately west of Howell's Road. The eastern end would be contiguous with the western end of the barrier in NSA-S2, meeting at the Yellow Springs Road overpass.

This noise barrier satisfies both the feasibility criteria and the reasonableness criteria. Therefore, based on the studies done to date, this noise barrier is recommended. If it subsequently develops during the final design phase that conditions have changed, the barrier may no longer be recommended. A final decision on the recommendation will be made upon completion of the project design and the public involvement processes.

 NSA-S2 (Vanguard and Crossroads Schools, east of Yellow Springs Road overpass) A 14-foot high noise barrier extending for approximately 2,200 feet would provide noise reductions of about five to nine decibels at outdoor use areas, including playing fields, a ropes course, and outdoor dining areas, used by both the Vanguard School and the Crossroads School. In addition, the noise barrier would provide five to nine decibels of noise reduction at seven benefited homes and would satisfy each of the feasibility criteria.

The western end of this barrier would be contiguous with the eastern end of the barrier in NSA-S1, meeting at the Yellow Springs Road overpass. The barrier would terminate east of the Vanguard School. The estimated cost for the noise barrier would be approximately \$770,000.

Based on the studies done so far, this noise barrier is recommended. If it subsequently develops during the final design phase that these conditions have changed substantially, the barrier may no longer be recommended. A final decision on the recommendation will be made upon completion of the project design and the public involvement processes.

• NSA-S3 (west of Mill Road) A 16-foot high noise barrier extending for approximately 2,435 feet would provide noise reductions of five to 11 decibels at all 10 impacted residences in this NSA, thereby providing at least five decibels of noise reduction at 50% or more of the impacted receptor units. The barrier also would satisfy each of the other feasibility criteria. The noise barrier also would provide at least five decibels of noise reduction at 35 non-impacted residences, resulting in a total of 45 benefited receptor units.

The estimated cost for the noise barrier would be approximately \$973,000, or about \$21,600 per receptor unit. This meets the cost reasonableness standard of \$50,000 per receptor unit. Barrier alternatives that were either lower in height or shorter in length would benefit fewer receptor units. Barrier alternatives that were either taller or longer would benefit additional receptors, but would be more costly.

The western end of this barrier would begin west of Hawkweed Way. The eastern end would terminate adjacent to the Valley Forge Road bridge over the Turnpike.

This noise barrier satisfies both the feasibility criteria and the reasonableness criteria. Therefore, based on the studies done to date, this noise barrier is recommended. If it subsequently develops during the final design phase that conditions have changed, the barrier may no longer be recommended. A final decision on the recommendation will be made upon completion of the project design and the public involvement processes.

NSA-S4 (east of Mill Road) A 14-foot high noise barrier extending for approximately 1,930 feet would provide noise reductions of five to 13 decibels at all 60 impacted residences in this NSA, thereby providing at least five decibels of noise reduction at 50% or more of the impacted receptor units. The barrier also would satisfy each of the other feasibility criteria. The noise barrier also would provide at least five decibels of noise reduction at 66 non-impacted residences, resulting in a total of 126 benefited receptor units.

The estimated cost for the noise barrier would be approximately \$676,000, or about \$5,400 per receptor unit. This meets the cost reasonableness standard of \$50,000 per receptor unit. Barrier alternatives that were either lower in height or shorter in length would benefit fewer receptor units. Barrier alternatives that were either taller or longer would benefit additional impacted receptors and would be more costly.

This noise barrier satisfies both the feasibility criteria and the reasonableness criteria. Therefore, based on the studies done to date, this noise barrier is recommended. If it subsequently develops during the final design phase that conditions have changed, the barrier may no longer be recommended. A final decision on the recommendation will be made upon completion of the project design and the public involvement processes.

NSA-S5 (Chesterbrook, west of Valley Creek) A 14-foot high noise barrier extending for approximately 2,530 feet would provide noise reductions of five to 13 decibels at all 193 impacted receptor units in this NSA, thereby providing at least five decibels of noise reduction at 50% or more of the impacted receptor units. The barrier also would satisfy each of the other feasibility criteria. The noise barrier also would provide at least five decibels of noise reduction at 85 non-impacted residences, resulting in a total of 278 benefited receptor units.

The estimated cost for the noise barrier would be approximately \$886,000, or about \$3,200 per receptor unit. This meets the cost reasonableness standard of \$50,000 per receptor unit. Barrier alternatives that were either lower in height or shorter in length would benefit fewer receptor units. Barrier alternatives that were either taller or longer would not benefit additional impacted receptors and would be more costly.

This noise barrier satisfies both the feasibility criteria and the reasonableness criteria. Therefore, based on the studies done to date, this noise barrier is recommended. If it subsequently develops during the final design phase that conditions have changed, the barrier may no longer be recommended. A final decision on the recommendation will be made upon completion of the project design and the public involvement processes.

• NSA-S6 (Chesterbrook, Valley Creek to Valley Forge Road) A 14-foot high noise barrier extending for approximately 4,590 feet would provide noise reductions of five to 12 decibels at 98 of 100 impacted residences in this NSA, thereby providing at least five decibels of noise reduction at 50% or more of the impacted receptor units. The barrier also would satisfy each of the other feasibility criteria. The noise barrier also would provide at least three decibels of noise reduction at the two remaining impacted residences and at least five decibels of noise reduction at 94 non-impacted receptor units, resulting in a total of 194 benefited receptor units. The estimated cost for the noise barrier would be approximately \$1,607,000, or about \$8,300 per receptor unit. This meets the cost reasonableness standard of \$50,000 per receptor unit. Barrier alternatives that were either lower in height or shorter in length would benefit fewer receptor units. Barrier alternatives that were either taller or longer would be more costly per receptor unit.

The west end of this barrier would be contiguous with the eastern end of the barrier in NSA-S5. The east end of the barrier would terminate immediately west of the Valley Forge Road bridge over the Turnpike.

This noise barrier satisfies both the feasibility criteria and the reasonableness criteria. Therefore, based on the studies done to date, this noise barrier is recommended. If it subsequently develops during the final design phase that conditions have changed, the barrier may no longer be recommended. A final decision on the recommendation will be made upon completion of the project design and the public involvement processes.

• NSA-S7 (Valley Forge Road to Glenhardie Road)

A 14-foot high noise barrier extending for approximately 6,765 feet would provide noise reductions of five to 11 decibels at all 35 impacted residences in this NSA, thereby providing at least five decibels of noise reduction at 50% or more of the impacted receptor units. The barrier also would satisfy each of the other feasibility criteria. The noise barrier also would provide at least five decibels of noise reduction at 14 non-impacted residences, resulting in a total of 49 benefited receptor units. The estimated cost for the noise barrier would be approximately \$2,368,000, or about \$48,300 per receptor unit. This meets the cost reasonableness standard of \$50,000 per receptor unit. Barrier alternatives that were either lower in height or shorter in length would benefit fewer receptor units. Barrier alternatives that were either taller or longer would not benefit additional impacted receptors and would be more costly.

The west end of this barrier would begin east of Valley Forge Road bridge over the Turnpike. The east end of the barrier would be contiguous with the western end of the barrier in NSA-S8, meeting at the bridge over Glenhardie Road.

This noise barrier satisfies both the feasibility criteria and the reasonableness criteria. Therefore, based on the studies done to date, this noise barrier is recommended. If it subsequently develops during the final design phase that conditions have changed, the barrier may no longer be recommended. A final decision on the recommendation will be made upon completion of the project design and the public involvement processes.

• NSA-S8 (Glenhardie Road to US 422) A 14-foot high noise barrier extending for approximately 2,105 feet would provide noise reductions of five to 11 decibels at 107 of 121 impacted receptor

units in this NSA, thereby providing at least five decibels of noise reduction at 50% or more of the impacted receptor units. The barrier also would satisfy each of the other feasibility criteria. The noise barrier also would provide at least three decibels of noise reduction at the remaining 14 impacted receptor units and at least five decibels of noise reduction at 51 non-impacted receptor units, resulting in a total of 172 benefited receptor units. The estimated cost for the noise barrier would be approximately \$736,000, or about \$4,300 per receptor unit. This meets the cost reasonableness standard of \$50,000 per receptor unit. Barrier alternatives that were either lower in height or shorter in length would benefit fewer receptor units. Barrier alternatives that were either taller or longer would not benefit additional impacted receptors and would be more costly. In addition to reducing noise levels at the receptor units within this NSA, the noise barrier also would benefit the portions of the Glenhardie Country Club Golf Course closest to the Turnpike.

The west end of this barrier would be contiguous with the east end of the barrier in NSA-S7, meeting at the bridge over Glenhardie Road. The east end of this barrier would be contiguous with the northern end of the existing noise barrier along the west side of US 422.

This noise barrier satisfies both the feasibility criteria and the reasonableness criteria. Therefore, based on the studies done to date, this noise barrier is recommended. If it subsequently develops during the final design phase that these conditions have changed, the barrier may no longer be recommended. A final decision on the recommendation will be made upon completion of the project design and the public involvement processes.

			Loudest-hour Leq Sound Level (dBA) ¹					
NSA	Prediction Site	Number of Recentor	_ · ··		Future (2035)			
NSA	Treatenion Site	Units	(2007)	No Barrier	With Barrier	Insertion Loss		
NSA-N1	N1_01	1	71	73	68	5		
NSA-N1	N1_02	2	72	74	67	7		
NSA-N1	N1_03	1	71	73	68	5		
NSA-N1	N1_04_ST2 ²	1	68	71	70	1		
NSA-N1	N1_05	1	64	66	65	1		
NSA-N1	N1_06	1	68	70	65	5		
NSA-N1	N1_07	1	64	66	63	3		
NSA-N1	N1_08	1	64	66	63	3		
NSA-N5	N5_01_S116 ²	0	68	73	66	/		
NSA-N5	N5_02	0	/2	/3	64	9		
NSA-N5	N5_P1	0	13	/5	3	3		
NSA-N5	N5_P2	0	66	68	3	3		
	N5_P3	0	60	62 70	3	3		
	NO_P4	0	09	70		5		
	ND_PD NF_D6	0	60	00 62	3	3		
	NS_FO	0	57	03 50	3	3		
	NS_F7 NS_P8	0	57	59	3	3		
NSA-N6	N6_10	1	64	65	60	5		
NSA-N6	N6_02	1	71	73	63	10		
NSA-N6	N6_03	3	69	71	62	9		
NSA-N6	N6 04 LT4 ²	4	68	70	62	8		
NSA-N6	N6_05	3	66	68	60	8		
NSA-N6	N6_06	1	66	66	58	8		
NSA-N6	N6_07	2	64	65	58	7		
NSA-N6	N6_08	1	70	70	61	9		
NSA-N6	N6_09	1	65	66	58	8		
NSA-N6	N6_10	1	67	68	60	8		
NSA-N6	N6_11	2	69	68	60	8		
NSA-N6	N6_12_ST22 ²	3	72	73	63	10		
NSA-N6	N6_13	3	71	71	62	9		
NSA-N6	N6_14	1	70	72	63	9		
NSA-N6	N6_15_ST23 ²	1	70	67	63	4		
NSA-N6	N6_16	2	59	61	56	5		
NSA-N6	N6_1/	4	63	65	58	/		
NSA-N6	N6_18_S1192	4	63	64	57	/		
NSA-N6	IN6_19	2	63	64	5/	/		
	NO_2U	2	02 41	03 40				
	NO_21	۷ ک		02 24	55			
	NO_22 NA 22	0 2	CU 64	00 65	59	- / F		
	NG 24	∠ 1	64	60 64	61	5		
	N6 25	2	64	65	52	7		
11371-110	110_23	5	04	05	50			

Table 7.	Computed	Loudest-Hour	Sound	Levels	and	Insertion	Loss	Values
----------	----------	--------------	-------	--------	-----	-----------	------	--------

			Loudest-hour Leq Sound Level (dBA) ¹					
NSΔ	Prediction Site	Number of Recentor	Eulatia a	Future (2035)				
NGA	Trediction Site	Units	(2007)	No Barrier	With Barrier	Insertion Loss		
NSA-N6	N6_26	3	60	62	56	6		
NSA-N6	N6_27	3	63	65	57	8		
NSA-N6	N6_28	4	60	62	55	7		
NSA-N6	N6_29	3	58	60	55	5		
NSA-N6	N6_30	4	59	61	56	5		
NSA-N6	N6_31	4	61	60	58	2		
NSA-S1	S1_01	2	66	66	62	4		
NSA-S1	S1_02_ST1 ²	3	67	68	62	6		
NSA-S1	S1_03	6	66	67	60	7		
NSA-S1	S1_04	1	67	68	62	6		
NSA-S1	S1_05	1	66	68	64	4		
NSA-S1	S1_06	1	67	68	61	7		
NSA-S1	S1_07_ST3 ²	1	68	70	62	8		
NSA-S1	S1_08	1	64	65	60	5		
NSA-S1	S1_09	1	65	66	59	7		
NSA-S1	S1_10	1	66	68	61	7		
NSA-S1	S1 11	1	70	71	62	9		
NSA-S1	S1 12	4	67	69	62	7		
NSA-S1	S1 13	1	67	69	61	8		
NSA-S1	S1 14	1	66	67	59	8		
NSA-S1	S1 15 LT1 ²	3	66	66	58	8		
NSA-S1	S1 16	5	63	64	58	6		
NSA-S1	S1 17	1	69	69	61	8		
NSA-S1	S1 18	1	58	59	51	8		
NSA-S1	S1 19	2	67	69	67	2		
NSA-S1	S1_20	4	62	63	59	4		
NSA-S1	S1 21	2	64	65	63	2		
NSA-S1	S1 22	1	61	63	60	3		
NSA-S1	S1 23	1	65	67	65	2		
NSA-S1	S1 24	1	65	67	64	2		
NSA-S1	S1 25	2	64	65	61	4		
NSA-S1	S1_26	2	63	65	62	3		
NSA-S1	S1_20	1	63	65	61	3		
NSA-S1	S1_27	2	60	62	55	7		
NSA-S1	S1_20	2	62	63	60	3		
NSA-S1	S1_27	2	58	60	53	3 7		
	S1_30	1	50	61	55	, Б		
	S1_37_ST62	5	60	61	50	3		
NSA-S1	S1_32_310 ⁻	1	64	6/	60	Л		
	S1_33 S1_34	1	60	61	54	4		
	S1_34 S1_25	۲ ۲	50 50	40	54 52	7		
	S1_30 S1_26	ן ר	50	61	50 50	7		
	SI_SU S1_27	2	57		04 E1			
	SI_S/ S1_20	۷.	5/ E7	57 50	01 E 0	Ö		
INSA-ST	SI_30	0	5/	58 71	53	5		
NSA-ST	51_39		60	61	55	6		

			Loudest-hour Leq Sound Level (dBA) ¹					
NSA	Prediction Site	Number of Recentor	Eviating		Future (2035)			
Nort	Trediction Site	Units	(2007)	No Barrier	With Barrier	Insertion Loss		
NSA-S2	S2_01	1	67	67	58	9		
NSA-S2	S2_02_ST7 ²	0	69	70	61	9		
NSA-S2	S2_03	0	65	67	59	8		
NSA-S2	S2_04	1	63	63	56	7		
NSA-S2	S2_05	1	61	62	55	7		
NSA-S2	S2_06	1	56	58	53	5		
NSA-S2	S2_07	3	55	57	52	5		
NSA-S2	S2_08	1	53	55	51	4		
NSA-S2	S2_09	0	58	59	53	6		
NSA-S2	S2_10	0	61	62	55	7		
NSA-S3	S3_01	1	63	65	60	5		
NSA-S3	S3_02_ST9 ²	2	66	69	61	8		
NSA-S3	S3_03	2	68	70	60	10		
NSA-S3	S3_04	1	67	69	58	11		
NSA-S3	S3_05	1	67	69	60	9		
NSA-S3	S3_06	4	62	64	58	6		
NSA-S3	S3_07	1	62	64	55	9		
NSA-S3	S3_08_ST10 ²	1	67	68	58	10		
NSA-S3	S3_09	2	73	75	62	13		
NSA-S3	S3_10	2	59	61	58	3		
NSA-S3	S3_11	1	63	64	57	7		
NSA-S3	S3_12	3	63	65	56	9		
NSA-S3	S3_13	3	61	63	56	7		
NSA-S3	S3_14	3	60	61	53	8		
NSA-S3	S3_15	2	63	64	56	8		
NSA-S3	S3_16	1	66	67	61	6		
NSA-S3	S3_17	3	57	59	54	5		
NSA-S3	S3_18	2	62	63	55	8		
NSA-S3	S3_19	4	63	64	53	11		
NSA-S3	S3_20	2	56	57	49	8		
NSA-S3	S3_21	3	55	57	50	7		
NSA-S3	S3_22	3	60	62	55	7		
NSA-S3	S3_23	2	60	62	59	3		
NSA-S3	S3_24	5	54	56	52	4		
NSA-S4	S4_01	2	74	76	64	12		
NSA-S4	S4_02	2	72	73	62	11		
NSA-S4	S4_03	1	74	75	63	12		
NSA-S4	S4_04	3	75	77	65	12		
NSA-S4	S4_05_ST11 ²	10	68	70	61	9		
NSA-S4	S4_06	6	75	77	64	13		
NSA-S4	S4_07	2	74	76	63	13		
NSA-S4	S4_08	2	64	65	61	4		
NSA-S4	S4_09	1	66	68	59	9		
NSA-S4	S4_10	2	69	70	59	11		
NSA-S4	S4_11	6	70	71	61	10		

			Loudest-hour Leq Sound Level (dBA) ¹					
NSA	Prodiction Sito	Number of Recentor			Future (2035)			
NSA	Prediction Site	Units	Existing (2007)	No Barrier	With Barrier	Insertion Loss		
NSA-S4	S4_12	14	64	66	57	9		
NSA-S4	S4_13	6	61	64	56	8		
NSA-S4	S4_14	3	58	59	53	6		
NSA-S4	S4_15	2	60	62	55	7		
NSA-S4	S4_16	6	61	63	55	8		
NSA-S4	S4_17	6	60	61	55	6		
NSA-S4	S4_18	3	54	55	51	4		
NSA-S4	S4_19	4	58	60	52	8		
NSA-S4	S4_20	11	65	67	57	10		
NSA-S4	S4_21	13	61	62	53	9		
NSA-S4	S4_22	5	62	64	55	9		
NSA-S4	S4_23	9	58	60	52	8		
NSA-S4	S4_24	6	59	60	52	8		
NSA-S4	S4_25	6	61	63	54	9		
NSA-S5	S5_01, 1st floor	2	70	71	63	8		
NSA-S5	S5_01, 2nd floor	2	73	75	66	9		
NSA-S5	S5_02, 1st floor	2	72	73	61	12		
NSA-S5	S5_02, 2nd floor	2	73	75	65	10		
NSA-S5	S5_03, 1st floor	2	71	73	63	10		
NSA-S5	S5_03, 2nd floor	2	72	75	66	9		
NSA-S5	S5_03, 3rd floor	2	73	76	69	7		
NSA-S5	S5_04, 1st floor	2	69	71	62	9		
NSA-S5	S5_04, 2nd floor	2	71	75	66	9		
NSA-S5	S5_05, 1st floor	2	64	66	59	7		
NSA-S5	S5_05, 2nd floor	2	66	69	61	8		
NSA-S5	S5_06, 1st floor	2	70	72	61	11		
NSA-S5	S5_06, 2nd floor	2	71	74	64	10		
NSA-S5	S5_07, 1st floor	5	68	69	59	10		
NSA-S5	S5_07, 2nd floor	5	72	74	62	12		
NSA-S5	S5_08, 1st floor	5	71	72	60	12		
NSA-S5	S5_08, 2nd floor	5	72	74	64	10		
NSA-S5	S5_09, 1st floor	4	70	72	62	10		
NSA-S5	S5_09, 2nd floor	4	74	76	63	13		
NSA-S5	S5_10, 1st floor	5	70	71	62	9		
NSA-S5	S5_10, 2nd floor	5	73	75	62	13		
NSA-S5	S5_11, 1st floor	6	68	69	60	9		
NSA-S5	S5_11, 2nd floor	6	71	73	61	12		
NSA-S5	S5_12, 1st floor	2	64	65	61	4		
NSA-S5	S5_12, 2nd floor	2	68	70	63	7		
NSA-S5	S5_13, 1st floor	2	67	66	59	7		
NSA-S5	S5_13, 2nd floor	2	70	72	64	8		
NSA-S5	S5_14, 1st floor	2	59	61	57	4		
NSA-S5	S5_14, 2nd floor	2	63	65	59	6		
NSA-S5	S5_14, 3rd floor	2	68	70	62	8		
NSA-S5	S5_15, 1st floor	2	62	64	57	7		

			Loudest-hour Leq Sound Level (dBA) ¹					
NCA	Dradiction Site	Number of		Future (2035)				
NSA	Prediction Site	Units	Existing (2007)	No Barrier	With Barrier	Insertion Loss		
NSA-S5	S5_15, 2nd floor	2	66	68	60	8		
NSA-S5	S5_15, 3rd floor	2	68	70	62	8		
NSA-S5	S5_16, 1st floor	2	60	62	56	6		
NSA-S5	S5_16, 2nd floor	2	64	66	58	8		
NSA-S5	S5_17, 1st floor	2	67	69	59	10		
NSA-S5	S5_17, 2nd floor	2	69	71	61	10		
NSA-S5	S5_18, 1st floor	5	66	67	58	9		
NSA-S5	S5_18, 2nd floor	5	71	72	60	12		
NSA-S5	S5_19, 1st floor	6	68	68	58	10		
NSA-S5	S5_19, 2nd floor	6	70	72	60	12		
NSA-S5	S5_20, 1st floor	5	66	68	58	10		
NSA-S5	S5_20, 2nd floor	5	71	72	60	12		
NSA-S5	S5_21, 1st floor	5	60	61	53	8		
NSA-S5	S5_21, 2nd floor	5	68	70	57	13		
NSA-S5	S5_22, 1st floor	4	59	60	53	7		
NSA-S5	S5_22, 2nd floor	4	67	69	56	13		
NSA-S5	S5_23, 1st floor	6	62	63	55	8		
NSA-S5	S5_23, 2nd floor	6	67	68	58	10		
NSA-S5	S5_24, 1st floor	2	60	61	58	3		
NSA-S5	S5_24, 2nd floor	2	65	66	61	5		
NSA-S5	S5_24, 3rd floor	2	68	70	64	6		
NSA-S5	S5_25, 1st floor	2	64	65	58	7		
NSA-S5	S5_25, 2nd floor	2	68	70	62	8		
NSA-S5	S5_25, 3rd floor	2	69	71	64	7		
NSA-S5	S5_26, 1st floor	2	59	59	56	3		
NSA-S5	S5_26, 2nd floor	2	62	63	59	4		
NSA-S5	S5_27, 1st floor	2	62	62	57	5		
NSA-S5	S5_27, 2nd floor	2	66	68	61	7		
NSA-S5	S5_28, 1st floor	2	60	61	56	5		
NSA-S5	S5_28, 2nd floor	2	65	66	59	7		
NSA-S5	S5_29, 1st floor	2	58	59	54	5		
NSA-S5	S5_29, 2nd floor	2	63	64	57	7		
NSA-S5	S5_29, 3rd floor	2	65	67	59	8		
NSA-S5	S5_30, 1st floor	2	58	59	54	5		
NSA-S5	S5_30, 2nd floor	2	62	64	56	8		
NSA-S5	S5_30, 3rd floor	2	64	66	58	8		
NSA-S5	S5_31, 1st floor	2	58	60	54	6		
NSA-S5	S5_31, 2nd floor	2	64	65	56	9		
NSA-S5	S5_31, 3rd floor	2	65	67	58	9		
NSA-S5	S5_32, 1st floor	2	58	60	54	6		
NSA-S5	S5_32, 2nd floor	2	63	65	58	7		
NSA-S5	S5_32, 3rd floor	2	67	69	60	9		
NSA-S5	S5_33, 1st floor	5	61	63	54	9		
NSA-S5	S5_33, 2nd floor	5	66	67	56	11		
NSA-S5	S5_34, 1st floor	5	64	65	55	10		

			Lo	oudest-hour Leq S	Sound Level (dBA) ¹
NCA	Dradiction Site	Number of			Future (2035)	
NSA	Prediction Site	Units	Existing (2007)	No Barrier	With Barrier	Insertion Loss
NSA-S5	S5_34, 2nd floor	5	67	69	57	12
NSA-S5	S5_35, 1st floor	6	59	60	52	8
NSA-S5	S5_35, 2nd floor	6	64	65	55	10
NSA-S5	S5_36, 1st floor	6	64	66	56	10
NSA-S5	S5_36, 2nd floor	6	67	68	58	10
NSA-S5	S5_37, 1st floor	6	61	62	54	8
NSA-S5	S5_37, 2nd floor	6	67	68	56	12
NSA-S5	S5_38, 1st floor	4	63	64	54	10
NSA-S5	S5_38, 2nd floor	4	66	68	57	11
NSA-S5	S5_39, 1st floor	5	60	61	53	8
NSA-S5	S5_39, 2nd floor	5	64	65	55	10
NSA-S5	S5_40_ST14 ²	0	72	74	62	12
NSA-S6	S6_01	3	73	74	63	11
NSA-S6	S6_02	11	73	75	65	10
NSA-S6	S6_03	6	73	75	67	8
NSA-S6	S6_04_ST15 ²	4	71	75	66	9
NSA-S6	S6_05	3	65	68	61	7
NSA-S6	S6_06	4	71	74	67	7
NSA-S6	S6_07	5	68	71	66	5
NSA-S6	S6_08	5	72	74	67	7
NSA-S6	S6_09	1	74	76	70	6
NSA-S6	S6_10	2	71	72	64	8
NSA-S6	S6_11	2	70	73	63	10
NSA-S6	S6_12	2	70	74	63	11
NSA-S6	S6_13_LT3 ²	3	71	74	63	11
NSA-S6	S6_14	3	71	72	62	10
NSA-S6	S6_15	2	71	72	61	11
NSA-S6	S6_16	2	75	77	65	12
NSA-S6	S6_17	1	68	68	61	7
NSA-S6	S6_18	2	64	66	62	4
NSA-S6	S6_19	7	70	72	61	11
NSA-S6	S6_20	12	65	66	61	5
NSA-S6	S6_21	6	61	63	59	4
NSA-S6	S6_22	4	64	67	61	6
NSA-S6	S6_23	7	59	60	57	3
NSA-S6	S6_24	8	63	65	60	5
NSA-S6	S6_25	3	63	66	60	6
NSA-S6	S6_26	6	69	71	61	10
NSA-S6	S6_27	3	64	66	58	8
NSA-S6	S6_28	4	61	62	56	6
NSA-S6	S6_29	3	62	63	57	6
NSA-S6	S6_30	1	60	61	54	7
NSA-S6	S6_31	2	65	65	57	8
NSA-S6	S6_32	4	59	60	56	4
NSA-S6	S6_33	1	60	63	62	1

			Lo	oudest-hour Leq S	Sound Level (dBA) ¹
NSA	Prodiction Site	Number of Recentor	E		Future (2035)	
NSA	Frediction Site	Units	Existing (2007)	No Barrier	With Barrier	Insertion Loss
NSA-S6	S6_34	4	64	66	56	10
NSA-S6	S6_35	11	55	57	51	6
NSA-S6	S6_36	16	55	57	54	3
NSA-S6	S6_37	4	60	62	54	8
NSA-S6	S6_38	7	58	60	55	5
NSA-S6	S6_39	4	59	60	54	6
NSA-S6	S6_40	4	57	58	55	3
NSA-S6	S6_41	1	60	62	61	1
NSA-S6	S6_42	6	62	63	54	9
NSA-S6	S6_43	12	60	62	56	6
NSA-S6	S6_44	7	58	60	56	4
NSA-S6	S6_45	16	60	62	56	6
NSA-S6	S6_46	6	63	65	57	8
NSA-S6	S6_47	2	55	57	50	7
NSA-S6	S6_48	6	54	56	51	5
NSA-S6	S6_49	2	53	53	48	5
NSA-S6	S6_50	11	54	56	53	3
NSA-S7	S7_01	0	60	61	57	4
NSA-S7	S7_02	2	64	66	59	7
NSA-S7	S7_03_ST17 ²	6	58	60	57	3
NSA-S7	S7_04	2	61	64	58	6
NSA-S7	S7_05	2	64	66	59	7
NSA-S7	S7_06	3	65	68	60	8
NSA-S7	S7_07_ST18 ²	1	67	69	61	8
NSA-S7	S7_08	1	70	72	65	7
NSA-S7	S7_09	1	60	62	58	4
NSA-S7	S7_10	2	65	67	60	7
NSA-S7	S7_11	1	74	76	66	10
NSA-S7	S7_12	2	73	74	64	10
NSA-S7	S7_13_ST20 ²	2	70	71	62	9
NSA-S7	S7_14	1	70	70	61	9
NSA-S7	S7_15	1	68	69	60	9
NSA-S7	S7_16	2	66	68	58	10
NSA-S7	S/_1/	2	71	72	61	11
NSA-S7	S7_18	2	74	76	66	10
NSA-S7	S7_19	1	/5	77	70	/
NSA-S7	S7_20	2	56	57	55	2
NSA-S7	S7_21	3	55	56	54	2
NSA-S/	57_22	2	53	55	54	1
NSA-S/	57_23	1	56	57	55	2
NSA-S7	57_24		5/	58	56	2
NSA-S/	57_25	1	55	56	55	1
NSA-S/	57_26	1	55	57	56	1
NSA-S7	57_27	2	63	65	61	4
NSA-S7	57_28	4	65	66	57	9

			Loudest-hour Leq Sound Level (dBA) ¹					
NCA	Dradiction Site	Number of			Future (2035)			
NSA	Prediction Site	Units	Existing (2007)	No Barrier	With Barrier	Insertion Loss		
NSA-S7	S7_29	3	67	69	61	8		
NSA-S7	S7_30	1	68	70	62	8		
NSA-S7	S7_31	2	53	55	53	2		
NSA-S7	S7_32	2	53	54	54	0		
NSA-S7	S7_33	2	51	52	52	0		
NSA-S7	S7_34	2	55	57	55	2		
NSA-S7	S7_35	3	55	57	55	2		
NSA-S7	S7_36	3	57	59	55	4		
NSA-S7	S7_37	4	56	58	53	5		
NSA-S7	S7_38_ST21 ²	3	58	60	53	7		
NSA-S7	S7_39	2	64	66	58	8		
NSA-S7	S7_40	4	52	54	52	2		
NSA-S7	S7_41	5	62	64	56	8		
NSA-S8	S8_01, 1st floor	3	65	67	58	9		
NSA-S8	S8_01, 2nd floor	4	68	69	59	10		
NSA-S8	S8_01, 3rd floor	4	71	73	62	11		
NSA-S8	S8_02, 1st floor	4	64	66	58	8		
NSA-S8	S8_02, 2nd floor	4	66	68	59	9		
NSA-S8	S8 02, 3rd floor	4	71	73	62	11		
NSA-S8	S8 03, 1st floor	4	63	65	57	8		
NSA-S8	S8 03, 2nd floor	4	67	68	59	9		
NSA-S8	S8 03, 3rd floor	4	70	72	61	11		
NSA-S8	S8 04, 1st floor	3	66	68	60	8		
NSA-S8	S8 04, 2nd floor	4	68	70	61	9		
NSA-S8	S8 04, 3rd floor	4	71	73	62	11		
NSA-S8	S8 05, 1st floor	3	64	66	59	7		
NSA-S8	S8 05, 2nd floor	4	67	68	61	7		
NSA-S8	S8 05, 3rd floor	4	70	72	63	9		
NSA-S8	S8 06, 1st floor	3	65	67	61	6		
NSA-S8	S8_06, 2nd floor	4	68	69	62	7		
NSA-S8	S8_06. 3rd floor	4	70	72	63	9		
NSA-S8	S8_07. 1st floor	3	64	67	62	5		
NSA-S8	S8_07, 2nd floor	4	66	68	61	7		
NSA-S8	S8_07_3rd floor	4	69	72	65	7		
NSA-S8	S8_08_1st floor	2	63	66	62	4		
NSA-S8	S8_08_2nd floor	4	65	68	64	4		
NSA-S8	S8 08 3rd floor	4	69	71	66	5		
NSA-S8	S8_09	1	60	63	57	6		
NSA-S8	S8_10	0	61	63	55	8		
NSA-S8	S8 11	Õ	69	70	60	10		
NSA-S8	S8 12 1st floor	۵ ۵	58	60	54	6		
NSV-20	S8 12 2nd floor	т Л	61	63	55	8		
NSA-S8	S8 12 2rd floor	-т Л	64	65 66	50	8		
N24-20	SQ 13 1st floor	+ 2	59 50	60	50	6		
N24-20	SQ 13 2nd floor	Л	50 61	62	54	7		
NSH-SO	30_13, 2HU HOU	4	01	00	00			

			Lo	oudest-hour L _{eq} S	Sound Level (dBA) 1	
NSΔ	Prediction Site	Number of Recentor	Evitatia a	Future (2035)			
Nort	Treatenion Site	Units	(2007)	No Barrier	With Barrier	Insertion Loss	
NSA-S8	S8_13, 3rd floor	4	64	66	58	8	
NSA-S8	S8_14, 1st floor	4	61	63	57	6	
NSA-S8	S8_14, 2nd floor	4	65	66	59	7	
NSA-S8	S8_14, 3rd floor	4	68	69	60	9	
NSA-S8	S8_15, 1st floor	4	59	61	55	6	
NSA-S8	S8_15, 2nd floor	4	63	64	57	7	
NSA-S8	S8_15, 3rd floor	4	64	66	59	7	
NSA-S8	S8_16, 1st floor	4	61	62	57	5	
NSA-S8	S8_16, 2nd floor	4	64	66	60	6	
NSA-S8	S8_16, 3rd floor	4	68	69	61	8	
NSA-S8	S8_17, 1st floor	3	57	59	55	4	
NSA-S8	S8_17, 2nd floor	4	60	61	56	5	
NSA-S8	S8_17, 3rd floor	3	63	64	59	5	
NSA-S8	S8_18, 1st floor	2	59	61	57	4	
NSA-S8	S8_18, 2nd floor	4	62	65	60	5	
NSA-S8	S8_18, 3rd floor	4	64	65	60	5	
NSA-S8	S8_19, 1st floor	3	61	63	59	4	
NSA-S8	S8_19, 2nd floor	3	64	65	61	4	
NSA-S8	S8_19, 3rd floor	4	66	68	64	4	
NSA-S8	S8_20, 1st floor	4	58	61	60	1	
NSA-S8	S8_20, 2nd floor	3	61	63	62	1	
NSA-S8	S8_20, 3rd floor	4	65	67	64	3	
NSA-S8	S8_21	0	66	70	65	5	
NSA-S8	S8_22_ST24 ²	0	68	69	62	7	
1 Loudest-hour	sound levels indicatin	a noise imnacts a	re shown in hold	Insertion losses for	r henefited recent	ors are	

1. Loudest-hour sound levels indicating noise impacts are shown in **bold**. Insertion losses for benefited receptors are highlighted. All with-barrier sound levels and insertion losses assume sound absorptive barriers.

2. Measurement and prediction site.

3. No noise barrier recommended in this portion of NSA-N5. The recommended noise barrier will benefit only those receptors near Lafayette's Quarters and the Whittle House.

Source: HMMH, 2007.

7. CONSTRUCTION NOISE CONSIDERATION AND MITIGATION ALTERNATIVES

An increase in project area noise levels will occur during the construction of the proposed project improvements. Construction noise differs from that generated by normal traffic due to differences in the spectral and temporal characteristics of the noise. The degree of noise impact during construction will be a function of the number and types of equipment being used, and the distances between the construction equipment and the noise sensitive areas. The PTC is committed to reasonable abatement of construction noise contingent on detailed construction noise analysis, design considerations during the Final Design process, and safety and engineering aspects.

8. PUBLIC INVOLVEMENT PROCESS

The results of the Noise Study will be conveyed to the public as part of an open house plans display. During the final design phase, the public will be invited to take part in a design charrette(s) to identify a noise wall treatment that reflects contextual sensitivity to its location.

APPENDIX A. WARRANTED, FEASIBLE AND REASONABLE WORKSHEETS
(This page intentionally left blank.)

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Date JULY 16, 2007 Project Name PA TURNPIKE TOTAL RECONSTRUCTION PROJECT MP 320-326 County CHESTER COUNTY SR, Section NOT APPLICABLE

Community Name and/or NSA # NSA-N1

General

1. Type I or Type II project: **TYPE I**

2. Number of impacted Receptor Units in Community/NSA: 9

Warranted

- 1. Community Documentation
 - a. Date community was planned, designed and programmed: N/A
 - b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): **N/A**
 - c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was planned, designed, and programmed after the date of approval of *CE*, *ROD*, *or FONSI as appropriate*." N/A
- 2. Criteria requiring consideration of noise abatement
 - a. Project increases noise levels to greater than or equal to 66 dB(A)? YES
 - b. Project causes a substantial increase of 10 dB(A) or more? NO
 - c. Project decreases existing noise levels, but future noise levels are still greater than or equal to 66 dB(A)? NO

- 1. Impacted Receptor Units
 - a. Number of Impacted Receptor Units: 9
 - b. Percentage of impacted Receptor Units receiving 5 dB(A) insertion losses: 56%
 - c. Is the percentage 50 or greater? **YES**
- 2. Can the noise barrier be physically constructed at the proposed location? YES
- 3. Any safety or engineering problems associated with the barrier, which preclude construction? NO
- 4. Does the barrier deny access to local vehicular and/or pedestrian travel? NO
- 5. Is the noise barrier maintainable? **YES**
- 6. Does the noise barrier impact utilities and/or vice versa? NO
- 7. Does the noise barrier impact drainage and/or vice versa? NO

- 1. Community Desires Related to the Barrier
 - a. Do at least 50 percent of the impacted and benefited receptor unit owner(s) desire the noise barrier? If yes, continue with the reasonableness questions. If no, the barrier can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier." **UNKNOWN**
- 2. Land-use Conformity
 - a. Local zoning and planning controlled noise-sensitive land used within corridor? YES
 - b. Land use in corridor expected to change in the future? **NO**
- 3. Additional Noise Barrier Details
 - a. Length of the proposed noise barrier **814 FT.**
 - b. Average height of the proposed noise barrier 16 FT.
 - c. Barrier material **TBD**
 - d. Post material **TBD**
 - e. Additional right-of-way required? If so, cost associated with the right-of-way acquisition. NO
 - f. Highway side color and texture? **TBD**
 - g. Receptor side color and texture? **TBD**
- 4. Cost-Benefit Factors
 - a. Cost of the proposed Noise Barrier \$325,000
 - b. Number of impacted receptor units receiving 3 dB(A) or more insertion loss or greater 7
 - c. Number of non-impacted benefited receptor units receiving 5 dB(A) or more insertion loss **0**
 - d. Cost per benefited receptor unit (impacting and/or benefited) **\$46,500**

Decision

Is the Noise Barrier(s) WARRANTED? **YES** Is the Noise Barrier(s) FEASIBLE? **YES** Is the Noise Barrier(s) REASONABLE? **YES**

Additional Reasons for Decision:

Responsible/Qualified Individuals Making the Above Decisions

Date:

PennDOT, Engineering District Environmental Manager

Date: July 16, 2007

Qualified Professional Performing the Analysis Grant S. Anderson, Principal Scientist, HMMH Inc.

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Date MAY 21, 2007 Project Name PA TURNPIKE TOTAL RECONSTRUCTION PROJECT MP 320-326 County CHESTER COUNTY SR, Section NOT APPLICABLE

Community Name and/or NSA # NSA-N2

General

1. Type I or Type II project: **TYPE I**

2. Number of impacted Receptor Units in Community/NSA: 6

Warranted

- 1. Community Documentation
 - a. Date community was planned, designed and programmed: N/A
 - b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): **N/A**
 - c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was planned, designed, and programmed after the date of approval of *CE*, *ROD*, *or FONSI as appropriate*." N/A
- 2. Criteria requiring consideration of noise abatement
 - a. Project increases noise levels to greater than or equal to 66 dB(A)? YES
 - b. Project causes a substantial increase of 10 dB(A) or more? NO
 - c. Project decreases existing noise levels, but future noise levels are still greater than or equal to 66 dB(A)? NO

- 1. Impacted Receptor Units
 - a. Number of Impacted Receptor Units: 6
 - b. Percentage of impacted Receptor Units receiving 5 dB(A) insertion losses: 67%
 - c. Is the percentage 50 or greater? **YES**
- 2. Can the noise barrier be physically constructed at the proposed location? YES
- 3. Any safety or engineering problems associated with the barrier, which preclude construction? NO
- 4. Does the barrier deny access to local vehicular and/or pedestrian travel? NO
- 5. Is the noise barrier maintainable? **YES**
- 6. Does the noise barrier impact utilities and/or vice versa? NO
- 7. Does the noise barrier impact drainage and/or vice versa? NO

- 1. Community Desires Related to the Barrier
 - a. Do at least 50 percent of the impacted and benefited receptor unit owner(s) desire the noise barrier? If yes, continue with the reasonableness questions. If no, the barrier can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier." **UNKNOWN**
- 2. Land-use Conformity
 - a. Local zoning and planning controlled noise-sensitive land used within corridor? YES
 - b. Land use in corridor expected to change in the future? NO
- 3. Additional Noise Barrier Details
 - a. Length of the proposed noise barrier 3,374 FT.
 - b. Average height of the proposed noise barrier 18 FT.
 - c. Barrier material **TBD**
 - d. Post material **TBD**
 - e. Additional right-of-way required? If so, cost associated with the right-of-way acquisition. NO
 - f. Highway side color and texture? **TBD**
 - g. Receptor side color and texture? **TBD**
- 4. Cost-Benefit Factors
 - a. Cost of the proposed Noise Barrier \$1,518,000
 - b. Number of impacted receptor units receiving 3 dB(A) or more insertion loss or greater 4
 - c. Number of non-impacted benefited receptor units receiving 5 dB(A) or more insertion loss 0
 - d. Cost per benefited receptor unit (impacting and/or benefited) \$379,500

Decision

Is the Noise Barrier(s) WARRANTED? **YES** Is the Noise Barrier(s) FEASIBLE? **YES** Is the Noise Barrier(s) REASONABLE? **NO**

Additional Reasons for Decision:

Responsible/Qualified Individuals Making the Above Decisions

Date:

PennDOT, Engineering District Environmental Manager

Date: May 21, 2007

Qualified Professional Performing the Analysis Grant S. Anderson, Principal Scientist, HMMH Inc.

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Date APRIL 20, 2007 Project Name PA TURNPIKE TOTAL RECONSTRUCTION PROJECT MP 320-326 County CHESTER COUNTY SR, Section NOT APPLICABLE

Community Name and/or NSA # NSA-N3

General

- 1. Type I or Type II project: **TYPE I**
- 2. Number of impacted Receptor Units in Community/NSA: 7

Warranted

- 1. Community Documentation
 - a. Date community was planned, designed and programmed: N/A
 - b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): **N/A**
 - c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was planned, designed, and programmed after the date of approval of *CE*, *ROD*, *or FONSI as appropriate*." N/A
- 2. Criteria requiring consideration of noise abatement
 - a. Project increases noise levels to greater than or equal to 66 dB(A)? YES
 - b. Project causes a substantial increase of 10 dB(A) or more? NO
 - c. Project decreases existing noise levels, but future noise levels are still greater than or equal to 66 dB(A)? NO

- 1. Impacted Receptor Units
 - a. Number of Impacted Receptor Units: 7
 - b. Percentage of impacted Receptor Units receiving 5 dB(A) insertion losses: 100%
 - c. Is the percentage 50 or greater? **YES**
- 2. Can the noise barrier be physically constructed at the proposed location? YES
- 3. Any safety or engineering problems associated with the barrier, which preclude construction? NO
- 4. Does the barrier deny access to local vehicular and/or pedestrian travel? NO
- 5. Is the noise barrier maintainable? **YES**
- 6. Does the noise barrier impact utilities and/or vice versa? NO
- 7. Does the noise barrier impact drainage and/or vice versa? NO

- 1. Community Desires Related to the Barrier
 - a. Do at least 50 percent of the impacted and benefited receptor unit owner(s) desire the noise barrier? If yes, continue with the reasonableness questions. If no, the barrier can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier." **UNKNOWN**
- 2. Land-use Conformity
 - a. Local zoning and planning controlled noise-sensitive land used within corridor? YES
 - b. Land use in corridor expected to change in the future? NO
- 3. Additional Noise Barrier Details
 - a. Length of the proposed noise barrier 5,260 FT.
 - b. Average height of the proposed noise barrier 18 FT.
 - c. Barrier material **TBD**
 - d. Post material **TBD**
 - e. Additional right-of-way required? If so, cost associated with the right-of-way acquisition. NO
 - f. Highway side color and texture? **TBD**
 - g. Receptor side color and texture? TBD
- 4. Cost-Benefit Factors
 - a. Cost of the proposed Noise Barrier \$2,367,000
 - b. Number of impacted receptor units receiving 3 dB(A) or more insertion loss or greater 7
 - c. Number of non-impacted benefited receptor units receiving 5 dB(A) or more insertion loss 7
 - d. Cost per benefited receptor unit (impacting and/or benefited) \$ 169,100

Decision

Is the Noise Barrier(s) WARRANTED? **YES** Is the Noise Barrier(s) FEASIBLE? **YES** Is the Noise Barrier(s) REASONABLE? **NO**

Additional Reasons for Decision:

Responsible/Qualified Individuals Making the Above Decisions

Date:

PennDOT, Engineering District Environmental Manager

Date: April 20, 2007

Qualified Professional Performing the Analysis Joseph Cardello, Consultant, HMMH Inc.

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Date MAY 17, 2007 Project Name PA TURNPIKE TOTAL RECONSTRUCTION PROJECT MP 320-326 County CHESTER COUNTY SR, Section NOT APPLICABLE

Community Name and/or NSA # NSA-N4

General

1. Type I or Type II project: **TYPE I**

2. Number of impacted Receptor Units in Community/NSA: 12

Warranted

- 1. Community Documentation
 - a. Date community was planned, designed and programmed: N/A
 - b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): **N/A**
 - c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was planned, designed, and programmed after the date of approval of *CE*, *ROD*, *or FONSI as appropriate*." N/A
- 2. Criteria requiring consideration of noise abatement
 - a. Project increases noise levels to greater than or equal to 66 dB(A)? YES
 - b. Project causes a substantial increase of 10 dB(A) or more? NO
 - c. Project decreases existing noise levels, but future noise levels are still greater than or equal to 66 dB(A)? NO

- 1. Impacted Receptor Units
 - a. Number of Impacted Receptor Units: **12**
 - b. Percentage of impacted Receptor Units receiving 5 dB(A) insertion losses: 58%
 - c. Is the percentage 50 or greater? YES
- 2. Can the noise barrier be physically constructed at the proposed location? YES
- 3. Any safety or engineering problems associated with the barrier, which preclude construction? NO
- 4. Does the barrier deny access to local vehicular and/or pedestrian travel? NO
- 5. Is the noise barrier maintainable? **YES**
- 6. Does the noise barrier impact utilities and/or vice versa? NO
- 7. Does the noise barrier impact drainage and/or vice versa? NO

- 1. Community Desires Related to the Barrier
 - a. Do at least 50 percent of the impacted and benefited receptor unit owner(s) desire the noise barrier? If yes, continue with the reasonableness questions. If no, the barrier can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier." **UNKNOWN**
- 2. Land-use Conformity
 - a. Local zoning and planning controlled noise-sensitive land used within corridor? YES
 - b. Land use in corridor expected to change in the future? NO
- 3. Additional Noise Barrier Details
 - a. Length of the proposed noise barrier **3,669 FT.**
 - b. Average height of the proposed noise barrier 16 FT.
 - c. Barrier material **TBD**
 - d. Post material **TBD**
 - e. Additional right-of-way required? If so, cost associated with the right-of-way acquisition. NO
 - f. Highway side color and texture? **TBD**
 - g. Receptor side color and texture? **TBD**
- 4. Cost-Benefit Factors
 - a. Cost of the proposed Noise Barrier \$1,467,000
 - b. Number of impacted receptor units receiving 3 dB(A) or more insertion loss or greater 12
 - c. Number of non-impacted benefited receptor units receiving 5 dB(A) or more insertion loss 4
 - d. Cost per benefited receptor unit (impacting and/or benefited) \$91,700

Decision

Is the Noise Barrier(s) WARRANTED? **YES** Is the Noise Barrier(s) FEASIBLE? **YES** Is the Noise Barrier(s) REASONABLE? **NO**

Additional Reasons for Decision:

Responsible/Qualified Individuals Making the Above Decisions

Date:

PennDOT, Engineering District Environmental Manager

Date: May 17, 2007

Qualified Professional Performing the Analysis Joseph Cardello, Consultant, HMMH Inc.

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Date APRIL 17, 2007 Project Name PA TURNPIKE TOTAL RECONSTRUCTION PROJECT MP 320-326 County CHESTER COUNTY SR, Section NOT APPLICABLE

Community Name and/or NSA # NSA-N5

General

1. Type I or Type II project: **TYPE I**

2. Number of impacted Receptor Units in Community/NSA: 0

Warranted

- 1. Community Documentation
 - a. Date community was planned, designed and programmed: N/A
 - b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): **N/A**
 - c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was planned, designed, and programmed after the date of approval of *CE*, *ROD*, *or FONSI as appropriate*." N/A
- 2. Criteria requiring consideration of noise abatement
 - a. Project increases noise levels to greater than or equal to 66 dB(A)? YES
 - b. Project causes a substantial increase of 10 dB(A) or more? NO
 - c. Project decreases existing noise levels, but future noise levels are still greater than or equal to 66 dB(A)? NO

- 1. Impacted Receptor Units
 - a. Number of Impacted Receptor Units: **0**
 - b. Percentage of impacted Receptor Units receiving 5 dB(A) insertion losses: 0%
 - c. Is the percentage 50 or greater? NO
- 2. Can the noise barrier be physically constructed at the proposed location? YES
- 3. Any safety or engineering problems associated with the barrier, which preclude construction? NO
- 4. Does the barrier deny access to local vehicular and/or pedestrian travel? NO
- 5. Is the noise barrier maintainable? **YES**
- 6. Does the noise barrier impact utilities and/or vice versa? NO
- 7. Does the noise barrier impact drainage and/or vice versa? NO

- 1. Community Desires Related to the Barrier
 - a. Do at least 50 percent of the impacted and benefited receptor unit owner(s) desire the noise barrier? If yes, continue with the reasonableness questions. If no, the barrier can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier." **UNKNOWN**
- 2. Land-use Conformity
 - a. Local zoning and planning controlled noise-sensitive land used within corridor? YES
 - b. Land use in corridor expected to change in the future? NO
- 3. Additional Noise Barrier Details
 - a. Length of the proposed noise barrier 1,432 FT.
 - b. Average height of the proposed noise barrier 12 FT.
 - c. Barrier material **TBD**
 - d. Post material **TBD**
 - e. Additional right-of-way required? If so, cost associated with the right-of-way acquisition. NO
 - f. Highway side color and texture? **TBD**
 - g. Receptor side color and texture? TBD
- 4. Cost-Benefit Factors
 - a. Cost of the proposed Noise Barrier \$430,000
 - b. Number of impacted receptor units receiving 3 dB(A) or more insertion loss or greater **0**
 - c. Number of non-impacted benefited receptor units receiving $5 \, dB(A)$ or more insertion loss 0
 - d. Cost per benefited receptor unit (impacting and/or benefited) NA

Decision

Is the Noise Barrier(s) WARRANTED? YES Is the Noise Barrier(s) FEASIBLE? YES Is the Noise Barrier(s) REASONABLE? YES

Additional Reasons for Decision: Barrier benefits portion of Valley Forge National Park.

Responsible/Qualified Individuals Making the Above Decisions

Date:

PennDOT, Engineering District Environmental Manager

Date: April 17, 2007

Qualified Professional Performing the Analysis Alexander Donaldson, Consultant, HMMH Inc.

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Date MAY 16, 2007 Project Name PA TURNPIKE TOTAL RECONSTRUCTION PROJECT MP 320-326 County CHESTER COUNTY SR, Section NOT APPLICABLE

Community Name and/or NSA # NSA-N6

General

1. Type I or Type II project: **TYPE I**

2. Number of impacted Receptor Units in Community/NSA: 32

Warranted

- 1. Community Documentation
 - a. Date community was planned, designed and programmed: N/A
 - b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): **N/A**
 - c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was planned, designed, and programmed after the date of approval of *CE*, *ROD*, *or FONSI as appropriate*." N/A
- 2. Criteria requiring consideration of noise abatement
 - a. Project increases noise levels to greater than or equal to 66 dB(A)? YES
 - b. Project causes a substantial increase of 10 dB(A) or more? NO
 - c. Project decreases existing noise levels, but future noise levels are still greater than or equal to 66 dB(A)? NO

- 1. Impacted Receptor Units
 - a. Number of Impacted Receptor Units: **32**
 - b. Percentage of impacted Receptor Units receiving 5 dB(A) insertion losses: 100%
 - c. Is the percentage 50 or greater? **YES**
- 2. Can the noise barrier be physically constructed at the proposed location? YES
- 3. Any safety or engineering problems associated with the barrier, which preclude construction? NO
- 4. Does the barrier deny access to local vehicular and/or pedestrian travel? NO
- 5. Is the noise barrier maintainable? **YES**
- 6. Does the noise barrier impact utilities and/or vice versa? NO
- 7. Does the noise barrier impact drainage and/or vice versa? NO

- 1. Community Desires Related to the Barrier
 - a. Do at least 50 percent of the impacted and benefited receptor unit owner(s) desire the noise barrier? If yes, continue with the reasonableness questions. If no, the barrier can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier." **UNKNOWN**
- 2. Land-use Conformity
 - a. Local zoning and planning controlled noise-sensitive land used within corridor? YES
 - b. Land use in corridor expected to change in the future? **NO**
- 3. Additional Noise Barrier Details
 - a. Length of the proposed noise barrier 4,761 FT.
 - b. Average height of the proposed noise barrier 14 FT.
 - c. Barrier material **TBD**
 - d. Post material **TBD**
 - e. Additional right-of-way required? If so, cost associated with the right-of-way acquisition. NO
 - f. Highway side color and texture? **TBD**
 - g. Receptor side color and texture? **TBD**
- 4. Cost-Benefit Factors
 - a. Cost of the proposed Noise Barrier \$1,667,000
 - b. Number of impacted receptor units receiving 3 dB(A) or more insertion loss or greater 32
 - c. Number of non-impacted benefited receptor units receiving 5 dB(A) or more insertion loss **41**
 - d. Cost per benefited receptor unit (impacting and/or benefited) \$22,800

Decision

Is the Noise Barrier(s) WARRANTED? **YES** Is the Noise Barrier(s) FEASIBLE? **YES** Is the Noise Barrier(s) REASONABLE? **YES**

Additional Reasons for Decision:

Responsible/Qualified Individuals Making the Above Decisions

Date:

PennDOT, Engineering District Environmental Manager

Date: May 16, 2007

Qualified Professional Performing the Analysis Alexander Donaldson, Consultant, HMMH Inc.

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Date APRIL 18, 2007 Project Name PA TURNPIKE TOTAL RECONSTRUCTION PROJECT MP 320-326 County CHESTER COUNTY SR, Section NOT APPLICABLE

Community Name and/or NSA # NSA-S1

General

- 1. Type I or Type II project: **TYPE I**
- 2. Number of impacted Receptor Units in Community/NSA: 32

Warranted

- 1. Community Documentation
 - a. Date community was planned, designed and programmed: N/A
 - b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): **N/A**
 - c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was planned, designed, and programmed after the date of approval of *CE*, *ROD*, *or FONSI as appropriate*." N/A
- 2. Criteria requiring consideration of noise abatement
 - a. Project increases noise levels to greater than or equal to 66 dB(A)? YES
 - b. Project causes a substantial increase of 10 dB(A) or more? NO
 - c. Project decreases existing noise levels, but future noise levels are still greater than or equal to 66 dB(A)? NO

- 1. Impacted Receptor Units
 - a. Number of Impacted Receptor Units: **32**
 - b. Percentage of impacted Receptor Units receiving 5 dB(A) insertion losses: 78%
 - c. Is the percentage 50 or greater? **YES**
- 2. Can the noise barrier be physically constructed at the proposed location? YES
- 3. Any safety or engineering problems associated with the barrier, which preclude construction? NO
- 4. Does the barrier deny access to local vehicular and/or pedestrian travel? NO
- 5. Is the noise barrier maintainable? **YES**
- 6. Does the noise barrier impact utilities and/or vice versa? NO
- 7. Does the noise barrier impact drainage and/or vice versa? NO

- 1. Community Desires Related to the Barrier
 - a. Do at least 50 percent of the impacted and benefited receptor unit owner(s) desire the noise barrier? If yes, continue with the reasonableness questions. If no, the barrier can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier." **UNKNOWN**
- 2. Land-use Conformity
 - a. Local zoning and planning controlled noise-sensitive land used within corridor? YES
 - b. Land use in corridor expected to change in the future? **NO**
- 3. Additional Noise Barrier Details
 - a. Length of the proposed noise barrier 7,741 FT.
 - b. Average height of the proposed noise barrier 14 FT.
 - c. Barrier material **TBD**
 - d. Post material **TBD**
 - e. Additional right-of-way required? If so, cost associated with the right-of-way acquisition. NO
 - f. Highway side color and texture? **TBD**
 - g. Receptor side color and texture? **TBD**
- 4. Cost-Benefit Factors
 - a. Cost of the proposed Noise Barrier **\$2,710,000**
 - b. Number of impacted receptor units receiving 3 dB(A) or more insertion loss or greater 29
 - c. Number of non-impacted benefited receptor units receiving 5 dB(A) or more insertion loss **26**
 - d. Cost per benefited receptor unit (impacting and/or benefited) **\$49,300**

Decision

Is the Noise Barrier(s) WARRANTED? **YES** Is the Noise Barrier(s) FEASIBLE? **YES** Is the Noise Barrier(s) REASONABLE? **YES**

Additional Reasons for Decision:

Responsible/Qualified Individuals Making the Above Decisions

Date:

PennDOT, Engineering District Environmental Manager

Date: April 18, 2007

Qualified Professional Performing the Analysis Grant S. Anderson, Principal Scientist, HMMH Inc.

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Date AUGUST 10, 2007 Project Name PA TURNPIKE TOTAL RECONSTRUCTION PROJECT MP 320-326 County CHESTER COUNTY SR, Section NOT APPLICABLE

Community Name and/or NSA # NSA-S2

General

1. Type I or Type II project: **TYPE I**

2. Number of impacted Receptor Units in Community/NSA: 1

Warranted

- 1. Community Documentation
 - a. Date community was planned, designed and programmed: N/A
 - b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): **N/A**
 - c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was planned, designed, and programmed after the date of approval of *CE*, *ROD*, *or FONSI as appropriate*." N/A
- 2. Criteria requiring consideration of noise abatement
 - a. Project increases noise levels to greater than or equal to 66 dB(A)? YES
 - b. Project causes a substantial increase of 10 dB(A) or more? NO
 - c. Project decreases existing noise levels, but future noise levels are still greater than or equal to 66 dB(A)? NO

- 1. Impacted Receptor Units
 - a. Number of Impacted Receptor Units: 1
 - b. Percentage of impacted Receptor Units receiving 5 dB(A) insertion losses: 100%
 - c. Is the percentage 50 or greater? **YES**
- 2. Can the noise barrier be physically constructed at the proposed location? YES
- 3. Any safety or engineering problems associated with the barrier, which preclude construction? NO
- 4. Does the barrier deny access to local vehicular and/or pedestrian travel? NO
- 5. Is the noise barrier maintainable? **YES**
- 6. Does the noise barrier impact utilities and/or vice versa? NO
- 7. Does the noise barrier impact drainage and/or vice versa? NO

- 1. Community Desires Related to the Barrier
 - a. Do at least 50 percent of the impacted and benefited receptor unit owner(s) desire the noise barrier? If yes, continue with the reasonableness questions. If no, the barrier can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier." **UNKNOWN**
- 2. Land-use Conformity
 - a. Local zoning and planning controlled noise-sensitive land used within corridor? YES
 - b. Land use in corridor expected to change in the future? NO
- 3. Additional Noise Barrier Details
 - a. Length of the proposed noise barrier 2,200 FT.
 - b. Average height of the proposed noise barrier 14 FT.
 - c. Barrier material **TBD**
 - d. Post material **TBD**
 - e. Additional right-of-way required? If so, cost associated with the right-of-way acquisition. NO
 - f. Highway side color and texture? **TBD**
 - g. Receptor side color and texture? TBD
- 4. Cost-Benefit Factors
 - a. Cost of the proposed Noise Barrier \$770,000
 - b. Number of impacted receptor units receiving 3 dB(A) or more insertion loss or greater 1
 - c. Number of non-impacted benefited receptor units receiving 5 dB(A) or more insertion loss 6
 - d. Cost per benefited receptor unit (impacting and/or benefited) NA

Decision

Is the Noise Barrier(s) WARRANTED? **YES** Is the Noise Barrier(s) FEASIBLE? **YES**

Is the Noise Barrier(s) REASONABLE? YES

Additional Reasons for Decision: Noise barrier benefits outdoor use areas at the Vanguard and Crossroads Schools.

Responsible/Qualified Individuals Making the Above Decisions

Date:

PennDOT, Engineering District Environmental Manager

Date: August 10, 2007

Qualified Professional Performing the Analysis Joseph Cardello, Consultant, HMMH Inc.

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Date MAY 16, 2007 Project Name PA TURNPIKE TOTAL RECONSTRUCTION PROJECT MP 320-326 County CHESTER COUNTY SR, Section NOT APPLICABLE

Community Name and/or NSA # NSA-S3

General

1. Type I or Type II project: **TYPE I**

2. Number of impacted Receptor Units in Community/NSA: 10

Warranted

- 1. Community Documentation
 - a. Date community was planned, designed and programmed: N/A
 - b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): **N/A**
 - c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was planned, designed, and programmed after the date of approval of *CE*, *ROD*, *or FONSI as appropriate*." N/A
- 2. Criteria requiring consideration of noise abatement
 - a. Project increases noise levels to greater than or equal to 66 dB(A)? YES
 - b. Project causes a substantial increase of 10 dB(A) or more? NO
 - c. Project decreases existing noise levels, but future noise levels are still greater than or equal to 66 dB(A)? NO

- 1. Impacted Receptor Units
 - a. Number of Impacted Receptor Units: **10**
 - b. Percentage of impacted Receptor Units receiving 5 dB(A) insertion losses: 100%
 - c. Is the percentage 50 or greater? **YES**
- 2. Can the noise barrier be physically constructed at the proposed location? YES
- 3. Any safety or engineering problems associated with the barrier, which preclude construction? NO
- 4. Does the barrier deny access to local vehicular and/or pedestrian travel? NO
- 5. Is the noise barrier maintainable? **YES**
- 6. Does the noise barrier impact utilities and/or vice versa? NO
- 7. Does the noise barrier impact drainage and/or vice versa? NO

- 1. Community Desires Related to the Barrier
 - a. Do at least 50 percent of the impacted and benefited receptor unit owner(s) desire the noise barrier? If yes, continue with the reasonableness questions. If no, the barrier can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier." **UNKNOWN**
- 2. Land-use Conformity
 - a. Local zoning and planning controlled noise-sensitive land used within corridor? YES
 - b. Land use in corridor expected to change in the future? **NO**
- 3. Additional Noise Barrier Details
 - a. Length of the proposed noise barrier 2,434 FT.
 - b. Average height of the proposed noise barrier 16 FT.
 - c. Barrier material **TBD**
 - d. Post material **TBD**
 - e. Additional right-of-way required? If so, cost associated with the right-of-way acquisition. NO
 - f. Highway side color and texture? **TBD**
 - g. Receptor side color and texture? **TBD**
- 4. Cost-Benefit Factors
 - a. Cost of the proposed Noise Barrier **\$ 973,000**
 - b. Number of impacted receptor units receiving 3 dB(A) or more insertion loss or greater 10
 - c. Number of non-impacted benefited receptor units receiving 5 dB(A) or more insertion loss **35**
 - d. Cost per benefited receptor unit (impacting and/or benefited) \$21,600

Decision

Is the Noise Barrier(s) WARRANTED? **YES** Is the Noise Barrier(s) FEASIBLE? **YES** Is the Noise Barrier(s) REASONABLE? **YES**

Additional Reasons for Decision:

Responsible/Qualified Individuals Making the Above Decisions

Date:

PennDOT, Engineering District Environmental Manager

Date: May 16, 2007

Qualified Professional Performing the Analysis Joseph Cardello, Consultant, HMMH Inc.

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Date APRIL 13, 2007 Project Name PA TURNPIKE TOTAL RECONSTRUCTION PROJECT MP 320-326 County CHESTER COUNTY SR, Section NOT APPLICABLE

Community Name and/or NSA # NSA-S4

General

1. Type I or Type II project: **TYPE I**

2. Number of impacted Receptor Units in Community/NSA: 60

Warranted

- 1. Community Documentation
 - a. Date community was planned, designed and programmed: N/A
 - b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): **N/A**
 - c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was planned, designed, and programmed after the date of approval of *CE*, *ROD*, *or FONSI as appropriate*." N/A
- 2. Criteria requiring consideration of noise abatement
 - a. Project increases noise levels to greater than or equal to 66 dB(A)? YES
 - b. Project causes a substantial increase of 10 dB(A) or more? NO
 - c. Project decreases existing noise levels, but future noise levels are still greater than or equal to 66 dB(A)? NO

- 1. Impacted Receptor Units
 - a. Number of Impacted Receptor Units: **60**
 - b. Percentage of impacted Receptor Units receiving 5 dB(A) insertion losses: 100%
 - c. Is the percentage 50 or greater? **YES**
- 2. Can the noise barrier be physically constructed at the proposed location? YES
- 3. Any safety or engineering problems associated with the barrier, which preclude construction? NO
- 4. Does the barrier deny access to local vehicular and/or pedestrian travel? NO
- 5. Is the noise barrier maintainable? **YES**
- 6. Does the noise barrier impact utilities and/or vice versa? NO
- 7. Does the noise barrier impact drainage and/or vice versa? NO

- 1. Community Desires Related to the Barrier
 - a. Do at least 50 percent of the impacted and benefited receptor unit owner(s) desire the noise barrier? If yes, continue with the reasonableness questions. If no, the barrier can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier." **UNKNOWN**
- 2. Land-use Conformity
 - a. Local zoning and planning controlled noise-sensitive land used within corridor? YES
 - b. Land use in corridor expected to change in the future? **NO**
- 3. Additional Noise Barrier Details
 - a. Length of the proposed noise barrier 1,930 FT.
 - b. Average height of the proposed noise barrier 14 FT.
 - c. Barrier material **TBD**
 - d. Post material **TBD**
 - e. Additional right-of-way required? If so, cost associated with the right-of-way acquisition. NO
 - f. Highway side color and texture? **TBD**
 - g. Receptor side color and texture? **TBD**
- 4. Cost-Benefit Factors
 - a. Cost of the proposed Noise Barrier **\$676,000**
 - b. Number of impacted receptor units receiving 3 dB(A) or more insertion loss or greater 60
 - c. Number of non-impacted benefited receptor units receiving 5 dB(A) or more insertion loss **66**
 - d. Cost per benefited receptor unit (impacting and/or benefited) **\$5,400**

Decision

Is the Noise Barrier(s) WARRANTED? **YES** Is the Noise Barrier(s) FEASIBLE? **YES** Is the Noise Barrier(s) REASONABLE? **YES**

Additional Reasons for Decision:

Responsible/Qualified Individuals Making the Above Decisions

Date:

PennDOT, Engineering District Environmental Manager

Date: April 13, 2007

Qualified Professional Performing the Analysis Joseph Cardello, Consultant, HMMH Inc.

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Date MAY 15, 2007 Project Name PA TURNPIKE TOTAL RECONSTRUCTION PROJECT MP 320-326 County CHESTER COUNTY SR, Section NOT APPLICABLE

Community Name and/or NSA # NSA-S5

General

1. Type I or Type II project: **TYPE I**

2. Number of impacted Receptor Units in Community/NSA: 193

Warranted

- 1. Community Documentation
 - a. Date community was planned, designed and programmed: N/A
 - b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): **N/A**
 - c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was planned, designed, and programmed after the date of approval of *CE*, *ROD*, *or FONSI as appropriate*." N/A
- 2. Criteria requiring consideration of noise abatement
 - a. Project increases noise levels to greater than or equal to 66 dB(A)? YES
 - b. Project causes a substantial increase of 10 dB(A) or more? NO
 - c. Project decreases existing noise levels, but future noise levels are still greater than or equal to 66 dB(A)? NO

- 1. Impacted Receptor Units
 - a. Number of Impacted Receptor Units: **193**
 - b. Percentage of impacted Receptor Units receiving 5 dB(A) insertion losses: 100%
 - c. Is the percentage 50 or greater? **YES**
- 2. Can the noise barrier be physically constructed at the proposed location? YES
- 3. Any safety or engineering problems associated with the barrier, which preclude construction? NO
- 4. Does the barrier deny access to local vehicular and/or pedestrian travel? NO
- 5. Is the noise barrier maintainable? **YES**
- 6. Does the noise barrier impact utilities and/or vice versa? NO
- 7. Does the noise barrier impact drainage and/or vice versa? NO

- 1. Community Desires Related to the Barrier
 - a. Do at least 50 percent of the impacted and benefited receptor unit owner(s) desire the noise barrier? If yes, continue with the reasonableness questions. If no, the barrier can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier." **UNKNOWN**
- 2. Land-use Conformity
 - a. Local zoning and planning controlled noise-sensitive land used within corridor? YES
 - b. Land use in corridor expected to change in the future? **NO**
- 3. Additional Noise Barrier Details
 - a. Length of the proposed noise barrier 2,531 FT.
 - b. Average height of the proposed noise barrier 14 FT.
 - c. Barrier material **TBD**
 - d. Post material **TBD**
 - e. Additional right-of-way required? If so, cost associated with the right-of-way acquisition. NO
 - f. Highway side color and texture? **TBD**
 - g. Receptor side color and texture? **TBD**
- 4. Cost-Benefit Factors
 - a. Cost of the proposed Noise Barrier **\$886,000**
 - b. Number of impacted receptor units receiving 3 dB(A) or more insertion loss or greater 193
 - c. Number of non-impacted benefited receptor units receiving 5 dB(A) or more insertion loss **85**
 - d. Cost per benefited receptor unit (impacting and/or benefited) \$3,200

Decision

Is the Noise Barrier(s) WARRANTED? **YES** Is the Noise Barrier(s) FEASIBLE? **YES** Is the Noise Barrier(s) REASONABLE? **YES**

Additional Reasons for Decision:

Responsible/Qualified Individuals Making the Above Decisions

Date:

PennDOT, Engineering District Environmental Manager

Date: May 15, 2007

Qualified Professional Performing the Analysis Joseph Cardello, Consultant, HMMH Inc.

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Date MAY 15, 2007 Project Name PA TURNPIKE TOTAL RECONSTRUCTION PROJECT MP 320-326 County CHESTER COUNTY SR, Section NOT APPLICABLE

Community Name and/or NSA # NSA-S6

General

1. Type I or Type II project: **TYPE I**

2. Number of impacted Receptor Units in Community/NSA: 100

Warranted

- 1. Community Documentation
 - a. Date community was planned, designed and programmed: N/A
 - b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): **N/A**
 - c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was planned, designed, and programmed after the date of approval of *CE*, *ROD*, *or FONSI as appropriate*." N/A
- 2. Criteria requiring consideration of noise abatement
 - a. Project increases noise levels to greater than or equal to 66 dB(A)? YES
 - b. Project causes a substantial increase of 10 dB(A) or more? NO
 - c. Project decreases existing noise levels, but future noise levels are still greater than or equal to 66 dB(A)? NO

- 1. Impacted Receptor Units
 - a. Number of Impacted Receptor Units: **100**
 - b. Percentage of impacted Receptor Units receiving 5 dB(A) insertion losses: 98%
 - c. Is the percentage 50 or greater? **YES**
- 2. Can the noise barrier be physically constructed at the proposed location? YES
- 3. Any safety or engineering problems associated with the barrier, which preclude construction? NO
- 4. Does the barrier deny access to local vehicular and/or pedestrian travel? NO
- 5. Is the noise barrier maintainable? **YES**
- 6. Does the noise barrier impact utilities and/or vice versa? NO
- 7. Does the noise barrier impact drainage and/or vice versa? NO

- 1. Community Desires Related to the Barrier
 - a. Do at least 50 percent of the impacted and benefited receptor unit owner(s) desire the noise barrier? If yes, continue with the reasonableness questions. If no, the barrier can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier." **UNKNOWN**
- 2. Land-use Conformity
 - a. Local zoning and planning controlled noise-sensitive land used within corridor? YES
 - b. Land use in corridor expected to change in the future? **NO**
- 3. Additional Noise Barrier Details
 - a. Length of the proposed noise barrier 4,591 FT.
 - b. Average height of the proposed noise barrier 14 FT.
 - c. Barrier material **TBD**
 - d. Post material **TBD**
 - e. Additional right-of-way required? If so, cost associated with the right-of-way acquisition. NO
 - f. Highway side color and texture? **TBD**
 - g. Receptor side color and texture? **TBD**
- 4. Cost-Benefit Factors
 - a. Cost of the proposed Noise Barrier **\$1,607,000**
 - b. Number of impacted receptor units receiving 3 dB(A) or more insertion loss or greater 100
 - c. Number of non-impacted benefited receptor units receiving 5 dB(A) or more insertion loss **94**
 - d. Cost per benefited receptor unit (impacting and/or benefited) **\$8,300**

Decision

Is the Noise Barrier(s) WARRANTED? **YES** Is the Noise Barrier(s) FEASIBLE? **YES** Is the Noise Barrier(s) REASONABLE? **YES**

Additional Reasons for Decision:

Responsible/Qualified Individuals Making the Above Decisions

Date:

PennDOT, Engineering District Environmental Manager

Date: May 15, 2007

Qualified Professional Performing the Analysis Joseph Cardello, Consultant, HMMH Inc.

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Date AUGUST 17, 2007 Project Name PA TURNPIKE TOTAL RECONSTRUCTION PROJECT MP 320-326 County CHESTER COUNTY SR, Section NOT APPLICABLE

Community Name and/or NSA # NSA-S7

General

1. Type I or Type II project: **TYPE I**

2. Number of impacted Receptor Units in Community/NSA: 35

Warranted

- 1. Community Documentation
 - a. Date community was planned, designed and programmed: N/A
 - b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): **N/A**
 - c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was planned, designed, and programmed after the date of approval of *CE*, *ROD*, *or FONSI as appropriate*." N/A
- 2. Criteria requiring consideration of noise abatement
 - a. Project increases noise levels to greater than or equal to 66 dB(A)? YES
 - b. Project causes a substantial increase of 10 dB(A) or more? NO
 - c. Project decreases existing noise levels, but future noise levels are still greater than or equal to 66 dB(A)? NO

- 1. Impacted Receptor Units
 - a. Number of Impacted Receptor Units: **35**
 - b. Percentage of impacted Receptor Units receiving 5 dB(A) insertion losses: 100%
 - c. Is the percentage 50 or greater? **YES**
- 2. Can the noise barrier be physically constructed at the proposed location? YES
- 3. Any safety or engineering problems associated with the barrier, which preclude construction? NO
- 4. Does the barrier deny access to local vehicular and/or pedestrian travel? NO
- 5. Is the noise barrier maintainable? **YES**
- 6. Does the noise barrier impact utilities and/or vice versa? NO
- 7. Does the noise barrier impact drainage and/or vice versa? NO

- 1. Community Desires Related to the Barrier
 - a. Do at least 50 percent of the impacted and benefited receptor unit owner(s) desire the noise barrier? If yes, continue with the reasonableness questions. If no, the barrier can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier." **UNKNOWN**
- 2. Land-use Conformity
 - a. Local zoning and planning controlled noise-sensitive land used within corridor? YES
 - b. Land use in corridor expected to change in the future? **NO**
- 3. Additional Noise Barrier Details
 - a. Length of the proposed noise barrier 6764 FT.
 - b. Average height of the proposed noise barrier 14 FT.
 - c. Barrier material **TBD**
 - d. Post material **TBD**
 - e. Additional right-of-way required? If so, cost associated with the right-of-way acquisition. NO
 - f. Highway side color and texture? **TBD**
 - g. Receptor side color and texture? **TBD**
- 4. Cost-Benefit Factors
 - a. Cost of the proposed Noise Barrier **\$2,368,000**
 - b. Number of impacted receptor units receiving 3 dB(A) or more insertion loss or greater 35
 - c. Number of non-impacted benefited receptor units receiving 5 dB(A) or more insertion loss 14
 - d. Cost per benefited receptor unit (impacting and/or benefited) \$48,300

Decision

Is the Noise Barrier(s) WARRANTED? **YES** Is the Noise Barrier(s) FEASIBLE? **YES** Is the Noise Barrier(s) REASONABLE? **YES**

Additional Reasons for Decision:

Responsible/Qualified Individuals Making the Above Decisions

Date:

PennDOT, Engineering District Environmental Manager

Date: August 17, 2007

Qualified Professional Performing the Analysis Alexander Donaldson, Consultant, HMMH Inc.

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Date MAY 15, 2007 Project Name PA TURNPIKE TOTAL RECONSTRUCTION PROJECT MP 320-326 County CHESTER COUNTY SR, Section NOT APPLICABLE

Community Name and/or NSA # NSA-S8

General

1. Type I or Type II project: **TYPE I**

2. Number of impacted Receptor Units in Community/NSA: 121

Warranted

- 1. Community Documentation
 - a. Date community was planned, designed and programmed: N/A
 - b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): **N/A**
 - c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was planned, designed, and programmed after the date of approval of *CE*, *ROD*, *or FONSI as appropriate*." N/A
- 2. Criteria requiring consideration of noise abatement
 - a. Project increases noise levels to greater than or equal to 66 dB(A)? YES
 - b. Project causes a substantial increase of 10 dB(A) or more? NO
 - c. Project decreases existing noise levels, but future noise levels are still greater than or equal to 66 dB(A)? NO

- 1. Impacted Receptor Units
 - a. Number of Impacted Receptor Units: **121**
 - b. Percentage of impacted Receptor Units receiving 5 dB(A) insertion losses: 88%
 - c. Is the percentage 50 or greater? **YES**
- 2. Can the noise barrier be physically constructed at the proposed location? YES
- 3. Any safety or engineering problems associated with the barrier, which preclude construction? NO
- 4. Does the barrier deny access to local vehicular and/or pedestrian travel? NO
- 5. Is the noise barrier maintainable? **YES**
- 6. Does the noise barrier impact utilities and/or vice versa? NO
- 7. Does the noise barrier impact drainage and/or vice versa? NO

- 1. Community Desires Related to the Barrier
 - a. Do at least 50 percent of the impacted and benefited receptor unit owner(s) desire the noise barrier? If yes, continue with the reasonableness questions. If no, the barrier can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier." **UNKNOWN**
- 2. Land-use Conformity
 - a. Local zoning and planning controlled noise-sensitive land used within corridor? YES
 - b. Land use in corridor expected to change in the future? NO
- 3. Additional Noise Barrier Details
 - a. Length of the proposed noise barrier 2,104FT.
 - b. Average height of the proposed noise barrier 14 FT.
 - c. Barrier material **TBD**
 - d. Post material **TBD**
 - e. Additional right-of-way required? If so, cost associated with the right-of-way acquisition. NO
 - f. Highway side color and texture? **TBD**
 - g. Receptor side color and texture? **TBD**
- 4. Cost-Benefit Factors
 - a. Cost of the proposed Noise Barrier \$736,000
 - b. Number of impacted receptor units receiving 3 dB(A) or more insertion loss or greater 121
 - Number of non-impacted benefited receptor units receiving 5 dB(A) or more insertion loss 51
 - d. Cost per benefited receptor unit (impacting and/or benefited) **\$4,300**

Decision

Is the Noise Barrier(s) WARRANTED? **YES** Is the Noise Barrier(s) FEASIBLE? **YES** Is the Noise Barrier(s) REASONABLE? **YES**

Additional Reasons for Decision:

Responsible/Qualified Individuals Making the Above Decisions

Date:

PennDOT, Engineering District Environmental Manager

Date: May 15, 2007

Qualified Professional Performing the Analysis Alexander Donaldson, Consultant, HMMH Inc.

APPENDIX B. DESCRIPTION OF NOISE METRICS

This Appendix describes the noise metrics used in this report.

B.1 A-weighted Sound Level, dBA

Loudness is a subjective quantity that enables a listener to order the magnitude of different sounds on a scale from soft to loud. Although the perceived loudness of a sound is based somewhat on its frequency and duration, chiefly it depends upon the sound pressure level. Sound pressure level is a measure of the sound pressure at a point relative to a standard reference value; sound pressure level is always expressed in decibels (dB), a logarithmic quantity.

Another important characteristic of sound is its frequency, or "pitch." This is the rate of repetition of sound pressure oscillations as they reach our ears. Frequency is expressed in units known as Hertz (abbreviated "Hz" and equivalent to one cycle per second). Sounds heard in the environment usually consist of a range of frequencies. The distribution of sound energy as a function of frequency is termed the "frequency spectrum."

The human ear does not respond equally to identical noise levels at different frequencies. Although the normal frequency range of hearing for most people extends from a low of about 20 Hz to a high of 10,000 Hz to 20,000 Hz, people are most sensitive to sounds in the voice range, between about 500 Hz to 2,000 Hz. Therefore, to correlate the amplitude of a sound with its level as perceived by people, the sound energy spectrum is adjusted, or "weighted."

The weighting system most commonly used to correlate with people's response to noise is "A-weighting" (or the "A-filter") and the resultant noise level is called the "A-weighted noise level" (dBA). A-weighting significantly de-emphasizes those parts of the frequency spectrum from a noise source that occurs both at lower frequencies (those below about 500 Hz) and at very high frequencies (above 10,000 Hz) where we do not hear as well. The filter has very little effect, or is nearly "flat," in the middle range of frequencies between 500 and 10,000 Hz. A-weighted sound levels have been found to correlate better than other weighting networks with human perception of "noisiness." One of the primary reasons for this is that the A-weighting network emphasizes the frequency range where human speech occurs.

B.2 Equivalent Sound Level, Leq

The Equivalent Sound Level, abbreviated L_{eq} , is a measure of the exposure resulting from the accumulation of A-weighted sound levels over a particular period of interest -- for example, an hour, an 8-hour school day, nighttime, or a full 24-hour day. However, because the length of the period can be different depending on the time frame of interest, the applicable period should always be identified or clearly understood when discussing the metric. Such durations are often identified through a subscript, for example $L_{eq(24)}$.

 L_{eq} may be thought of as a constant sound level over the period of interest that contains as much sound energy as (is "equivalent" to) the actual time-varying sound level with its normal peaks and valleys. It is important to recognize, however, that the two signals (the constant one and the time-varying one) would sound very different from each other. Also, the "average" sound level suggested by L_{eq} is not an arithmetic value, but a logarithmic, or "energy-averaged" sound level. Thus, the loudest events may dominate the noise environment described by the metric, depending on the relative loudness of the events.

Page C1

APPENDIX C. MODELED TRAFFIC DATA

This appendix provides loudest-hour classified traffic volumes and speeds for each roadway modeled in TNM. Section 3.3 describes the loudest-hour computations and sources of traffic data.

Table C1	Existing	(2007) 1	Loudest-Hour	Traffic Data	used for	TNM Modeling
----------	----------	----------	--------------	---------------------	----------	---------------------

Roadway		Volumes (vehicles/hour)		
		Medium Trucks	Heavy Trucks	(mph)
Pennsylvania Turnpike eastbound	2,326	93	263	65
Pennsylvania Turnpike westbound	1,323	87	266	65
US Route 422 northbound	1,889	90	143	55
US Route 422 southbound	1,951	101	147	55
Yellow Springs Road, south of Turnpike (eastbound and westbound combined)	598	15	20	30
Yellow Springs Road, north of Turnpike (eastbound and westbound combined)	371	19	17	30
Mill Road (northbound and southbound combined)	262	7	4	40
Valley Forge Road (northbound and southbound combined)	531	16	14	45
Thomas Road (northbound and southbound combined)	179	9	4	30
Glenhardie Road (northbound and southbound combined)		5	0	35

Table C2. Future (2035) Loudest-Hour Traffic Data used for TNM Modeling

Roadway		Volumes (vehicles/hour)		
		Medium Trucks	Heavy Trucks	(mph)
Pennsylvania Turnpike eastbound	2,923	104	452	65
Pennsylvania Turnpike westbound	3,154	142	248	65
US Route 422 northbound	3,280	171	248	60
US Route 422 southbound	2,663	138	201	60
Yellow Springs Road, south of Turnpike (eastbound and westbound combined)	985	25	33	30
Yellow Springs Road, north of Turnpike (eastbound and westbound combined)	611	31	28	30
Mill Road (northbound and southbound combined)	432	12	7	40
Valley Forge Road (northbound and southbound combined)	875	26	23	45
Thomas Road (northbound and southbound combined)	295	15	7	30
Glenhardie Road (northbound and southbound combined)	222	8	0	35

APPENDIX D. FIELD MEASUREMENT DATA SHEETS

The following sections contain the field sketches from each of the long-term measurement sites, followed by the field sketches, log sheets, and traffic counts from each of the short-term measurement sites.

(This page intentionally left blank.)

PENNSYLVANIA TURNPIKE MILEPOST 320-326 LONG-TERM NOISE MONITORING SITE LOG

NOISE STUDY AREA ID:	5-1	MEASU	JREMENT SITE NO .:	LT-1
ADDRESS:	2015 42	Law SPI	21145 RD	
OWNER:		ş		
DESCRIPTION:	SINGLE	FAMILY	HOME , BACK	TARD
NOISE SOURCES:	TURNPIKE	TRAFP	16	
NOISE MONITOR:	1 820 #	-	S/N:	
MICROPHONE:			S/N:	
CALIBRATOR:	QC10/20		S/N:	Q 000 4 002
START DATE:	130107	_DBDAC	END DATE:	
START TIME:	15:50		END TIME:	
SYNCH W/HOURS?	YE3			
METRICS STORED:	hegely 1-	SEL HI	STORY	
EXCEEDENCE THRESHOLD:	TOBA		EXCEEDENCE DURATION:	55.
TEMP. RANGE (°F):		_ WEAT	HER CONDITIONS:	

SITE SKETCH: Show Turnpike, homes, local roads, reference distances, arrows for North & wind direction, where Turnpike is in cut, at grade, elevated, where direct lines of sight exist.

N 40.07520 W 075,50404P
A WB WB, OVLY TRUCKS VISIRIE
MOTOR WARD PAN
The BENEFIC
FENCE TRUNK OF TIST FENCE TRUNK PAULIENT
P (191) Q (SE) E JET UP (ASHO)
of the second the trank
A PENCE
5 Pra rest
) Viled in the company of the compan
TO PULLE HUKE
Fall

PENNSYLVANIA TURNPIKE MILEPOST 320-326 LONG-TERM NOISE MONITORING SITE LOG

NOISE STUDY AREA ID:	N-4 MEASUREMENT	SITE NO .:
ADDRESS:	940 YELOW SPRIN	IGS RD
OWNER:		· · · · ·
DESCRIPTION:	SINGLE FAMILY HOME	BACKYARD
NOISE SOURCES:	- AUTAGENT TO POOL A - TURNPIKE TRAFFIC	REA
NOISE MONITOR:	LD 970 #2	S/N:
MICROPHONE:		S/N:
CALIBRATOR:	BAK 4231	S/N: 2039365
START DATE:	130/07 DEBUTAK E	ND DATE:
START TIME:	<u>15:00</u> E	ND TIME:
SYNCH W/HOURS?	45	
METRICS STORED:	Leg, Ly 1-50 HISTORY	ſ
EXCEEDENCE THRESHOLD:	<u> </u>	EEDENCE URATION: 55
TEMP. RANGE (°F):	WEATHER CON	IDITIONS:

SITE SKETCH: Show Turnpike, homes, local roads, reference distances, arrows for North & wind direction, where Turnpike is in cut, at grade, elevated, where direct lines of sight exist.

HARRIS MILLER MILLER & HANSON INC.

PROJECT: <u>PT(320-326</u> JOB NO.: <u>301940</u>

PENNSYLVANIA TURNPIKE MILEPOST 320-326 LONG-TERM NOISE MONITORING SITE LOG

NOISE STUDY AREA ID:	5-6	MEASURE	EMENT SITE NO.:	LT-3
ADDRESS:	VAN5111 251	LAFAYE	TTE LANG	
OWNER:	·····	·		······································
DESCRIPTION:	- SNGLT3	FAMILY	HOME, BACK)	ARD
NOISE SOURCES:	TURNPIKE	TRAFF	16	
NOISE MONITOR:	LD 820 H3		S/N:	
MICROPHONE:		_	S/N:	
CALIBRATOR:	LO (A 250	_ ,	S/N:	2.942
START DATE:	130/07	DEBLAC	END DATE:	
START TIME:	13115	_	END TIME:	
SYNCH W/HOURS?	YE3	-		
METRICS STORED:	Legily 1.	SE-HIST	ORY	
EXCEEDENCE THRESHOLD:	TOBA	- -	EXCEEDENCE DURATION:	5 5.
TEMP. RANGE (°F):		WEATHE	R CONDITIONS:	

SITE SKETCH: Show Turnpike, homes, local roads, reference distances, arrows for North & wind direction, where Turnpike is in cut, at grade, elevated, where direct lines of sight exist.

4	VALIGY PORGE NIP.	WB (TURNPIKE IN CUT)
MK 5 501 50. 0P PEUCE/	1111111 41 1111111 State ~10 1~3 Sol D State Oct.	O' FROM TOP OF SLOPE TO PENCE 6' WODEN STOCKALE TRUCKS VISIBLE THROUGH GAPS
40 NO. OF HOUSE	251	SLIGHT SLOPE (3-4') TRAES HUSE TO FEVGE
	LAFAMETTE. LA	W 075, 449940

PENNSYLVANIA TURNPIKE MILEPOST 320-326 LONG-TERM NOISE MONITORING SITE LOG

NOISE STUDY AREA ID:	N-6	_ MEASUREMENT SITE NO	D.: <u>LT-4</u>
ADDRESS:	578 RICHA	RDS RD.	9
OWNER:	· · · · · · · · · · · · · · · · · · ·		
DESCRIPTION:	SUGE FAM	LY HOME, LOCATED	VEAR Pack
	AREA IN	BA(KTARD	· · · · · · · · · · · · · · · · · · ·
NOISE SOURCES:	TURUPIKE -	TRAFFIC	
	-	1	
NOISE MONITOR:	LD 820 #4	S/	N:
MICROPHONE:	B&K 4189	S/	N: 2386155
CALIBRATOR:	QC-20	S/	N: 00050009
START DATE:	130107	_ END DAT	E:
START TIME:	12:15	END TIM	E:
SYNCH W/HOURS?	<u> </u>	_	
METRICS STORED:	legitin,	-sec THE HISTORY	
EXCEEDENCE	1 ~ m \	EXCEEDENC	
	10.054		N. <u><u> </u></u>
IEMP. RANGE (°F):		_ WEATHER CONDITION	S:

SITE SKETCH: Show Turnpike, homes, local roads, reference distances, arrows for North & wind direction, where Turnpike is in cut, at grade, elevated, where direct lines of sight exist.

PROJECT: ptc 320-326

JOB NO .: 301940

NOISE STUDY AREA ID:	NSA-SI	MEASUREMENT SI	TE NO.:	<u>ST-1</u>
ADDRESS:	2445-2443 Ve	llow Spring Rd		
OWNER:				
DESCRIPTION:	Dadryard			
NOISE SOURCES:	PT / Howall's	Rd		-
NOISE MONITOR:	LD 870 #5		S/N:	an a
MICROPHONE:			S/N:	
CALIBRATOR:	Manna Robony		S/N:	
TEMP. RANGE (°F):	30°	WEATHER CONDI	TIONS:	clear
SITE SKETCH: Show Turn wind direction, where Turn	pike, homes, local i pike is in cut, at gra	roads, reference distar de, elevated, where di	nces, arro rect lines	ws for North & of sight exist.
J	76 mat	CARAGE		
N from Row to edge of road metal guard ro 3' parpit alar over pass or	n 30' Ray . il and Annon	60' 05 Norman Howse 1000 E 2445 - 2443	1 2 Millionol	
	YELLOW SPR	SPUS RO		
carit see w traffic st see tops Eastbound in Apa-	estbound Elbut can if the cks can see ans lane			

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MEASUREMENT DATA SHEET

PROJECT & SITE NO .: PTC 320-326 ST-1 LOCATION/ADDRESS: 2445-2443 Yellin Springs RL

PERSONNEL: JAC 1020 DATE: 131107

#	<u>1</u> Minute Period Starting	Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
1	10:00	60.6						Pre-Cal 114.0
2	10:01	62.0		Yellan	Spina	SRJ.		Post-cg1 117.8
3	16:02	61.1					2	
4	10:03	57.2		49	_5	3		
5	16:04	62.5					30 min	
6	10:05	56.5		Have	I'S RJ.		\sum	
7	10:06	58.7		1 / -		annan an a		
8	10:07	58.9		24	2	2		
9	10:08	59.9						
10	10:09	60.3						· · · · ·
11	10:10	62.2						
12	10:11	64.0						· · ·
13	10:12	62.1	W					Feder on Howell
14	10:13	Le1. Le		· · ·				overflight no contribution
15	10:14	58.8						<u> </u>
16	10:15	Gel. 3			~			
17	10:14	62.9	M					Truch on Vellow Spring
18	[0:1]	61.8			· .			Flapping metal on kruc
19	10:18	E.	61.4					
20	10:19	● 夏	61.9				. * - 1	
21	10:20	60.1		. 1				
22	10:21	66.3	i den					/ Tota
23	10:22	59.7		ġ				loud car carrier
24	10:23	61.5					S.	*
25	10:24	59.9					<i>,</i>	
26	10:25	58.3	\checkmark			-		over flight
27	10:24	60.9						
28	10:27	61.6					. "	
29	10:28	62.7	m				7	truck on Howell
30	10:29	62.5						truch on Hunell
				SI	JBSET Lec			Jake wrake

 $\sqrt{-1}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTC-320-326

JOB NO .: 301940

NOISE STUDY AREA ID:	NSA-NI	MEASUREMENT SITE NO .:
ADDRESS:	2030 Green	Lane
OWNER:		
DESCRIPTION:	Single Family	Residence I backyard
NOISE SOURCES:	Turnpike	
NOISE MONITOR:	LO 810 # 5	S/N:
MICROPHONE:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	S/N:
CALIBRATOR:	-	S/N:
TEMP. RANGE (°F):	30°	WEATHER CONDITIONS: Clear
SITE SKETCH: Show Turn wind direction, where Turn	whi Mistly (dim pike, homes, local ro pike is in cut, at grac	bads, reference distances, arrows for North & le, elevated, where direct lines of sight exist.
	Tumpik	
direct LOS to both eastbound twestbound lots of tire noise prevalent N LOS Lost W due to h sloping up	steep drop of to turn pike	small down slope in this swing ret TO POOL 3' trop Wall House 2030

PROJECT & SITE NO .: PTC 326-326 ST-2 LOCATION/ADDRESS: 2030 Green Lane DATE: 1/31/07

 $\sqrt{}$ Minute Meas'd COMMENTS Medium Heavy Other Noise Period Leq Autos (Include Calibration # or Trucks Trucks Sources Starting (dBA) Data) Х 11:03 66.8 Pre-cal 114.00 1 65.2 Post-ral 113,9 2 11:04 62.0 11:05 3 62.2 11:06 4 66.1 11:07 5 11:08 62.9 6 62.5 11:09 7 11:10 63.1 8 65.3 9 11:11 64.9 10 11: 12 64.6 11 11: 13 65.0 12 11:14 Lele.4 13 11:15 group of trucks 14 11:16 67.2 63.4 15 11:17 62.6 16 11:18 63.8 17 11:19 63.7 18 11:20 45.5 19 11:21 63.0 20 11:22 61.7 21 11:23 64.1 22 11:24 63.8 23 11:25 V-Single +nsine 64.1 Sp 24 11:24 62.5 25 11:27 44.0 26 11:22 62.8 27 11.29 28 11:50 62.8 29 11:31 65.0 63.4 30 11: 32

TOTAL Leq =

SUBSET Leq =

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTC - 320-326

JOB NO .: 301940

NOISE STUDY AREA ID:	NSA-SI	MEASUREMENT SITE NO .: _	ST-3
ADDRESS:	2305 Yellow	Spring, Rd	
OWNER:			
DESCRIPTION:	Single Family	home / backyard	
NOISE SOURCES:	Turn pike		
NOISE MONITOR:	L0810 #5	S/N: _	,
MICROPHONE:		S/N: _	
CALIBRATOR:		S/N: _	~~~~
TEMP. RANGE (°F):	30	WEATHER CONDITIONS:	clear
SITE SKETCH: Show Turn wind direction, where Turnp	pike, homes, local r bike is in cut, at grad	bads, reference distances, arrow de, elevated, where direct lines of	ws for North & of sight exist.
	Turn	niko	ĸĸ₩₽₩₩₽₩₩₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₩₩₩₽₩₩₩₽₩₩₩₽₩₩₩₽₩₩₩₽₩₩₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩
			wyspecialization and an and the substitution and an anti-
	So' from R	ow - guard rail along edge of paveme	At-
N	® T	_ <\.ch L	washaa
		from	hours
and the	mueury 175'	From Main house form	pike ~ 12 ft
		- Failler 1	Light with the
[h	oure 1	- Westbornd	The of
/ 3	305	cars v	isible truch
·		tires m	ut visible
	and the second	- steep hill	side north
		ot turnp	,Kp
Yellow	Spriss R	logd	

PR	OJECT & S	SITE NO.:	PTC-	320-326	55-3)	PEF	RSONNEL: JACIDE
LOC	CATION/AI	DDRESS:	230	5 Yellow	N Soling	is Rd		DATE: 1/107
#	<u>I</u> Minute Period Starting	Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
1	11:53	666.1						Pre-cal 14.0
2	11:54	66.7						post - cal 114.0
3	11:545	45.2						
4	11:516	64.7						
5	11:541	64.0					·	
6	11:578	60.8						
7	11:589	63.3					1 - 155 - 164 A	
8	12: 91 00	68.6						lave truck stack
9	n: 001	45.3					·	-
10	11:042	64.1						4 s
11	iz: otz	63.6						
12	12:014	63.2			· .			· · ·
13	12:045	65.0						·
14	17:00	64.3	·					
15	12:07	63.8						
16	12:08	64.8						
17	12:09	62.8						
18	12!10	65.Z						
19	にい	64.3						
20	2112	66.6						Loud truch
21	12 / 13	6.0						
22	12:14	(o4.7						
23	12:11	65.5						
24	12:16	43.8						
25	12 117	Le5.1						
26	12118	63.7						· · · · · · · · · · · · · · · · · · ·
27	12:19	un.e						
28	12:20	58.1						
29	12:21	65.9						
30	n:22	62.3						
	Al Leg =			SI	JBSET Leo	a =		

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTC 320-326

JOB NO .: 301940

NOISE STUDY AREA ID:	NSA-NZ	MEASUREMENT SITE NO .:	ST-4
ADDRESS:	1990 Chuat	raugua Srail	
OWNER:			<i></i>
DESCRIPTION:	Single fam.	home / back y and	
NOISE SOURCES:	Turnpike in	He distance	-
NOISE MONITOR:	LD 810 # 5	S/N:	
MICROPHONE:		S/N: _	
CALIBRATOR:		S/N: _	
TEMP. RANGE (°F):	20°	WEATHER CONDITIONS:	Clear
SITE SKETCH: Show Turn wind direction, where Turn	5 mph from sout pike, homes, local r pike is in cut, at grad	h oads, reference distances, arro de, elevated, where direct lines	ws for North & of sight exist.
	Go' bach From bach eige of hoes eige of	PIKE Steep hillsde View of entore J drop off is h of feet 40' Some tire no for a-dible b drage no LOS	ire is the rs

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MEASUREMENT DATA SHEET

PRO	OJECT & CATION/A	SITE NO.: DDRESS:	PT0	< 320-37 Chau	tauque	- 4 a Trail	PE	RSONNEL: JAC DATE: 1/31/07
#	L Minute Period Starting	e Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
1	15: 504	9 50.9						Pre-001 114,0
2	15:50	48.0						Dast-rgl 114.0
3	15: 51	49.2						
4	15:52	47.9						
5	15:53	50.4						
6	15:54	52.2						
7	15:55	49.3	_				· · · · · · · · · · · · · · · · · · ·	
8	15:56	49.4					···	-
9	15:57	48.4	_				• · .	
10	15:58	47.5						1
11	15:59	53.6						
12	16:00	51.5				· .		
13	16:01	48.8	1.					
14	16:02	50.1						
15	16:03	50.1		·				
16	16:04	56.1	X		·			medical helicopler la
17	16:05	54.1						
18	16:06	49.0						
19	16:07	48.4					-	
20	16:08	47.4						
21	16:09	yn.3				н. С		
22	6:10	46.2					1	
23	6:11	48.3			<i></i>			
24	6:17	51.0	V				-	over-flight
25	6:(3	48.7						······································
26 1	6:14	47.7				· · · ·		
27 (6:15	57.9	\checkmark					prop overflight
28 1	6:16	47.5						
29 (6: 17	48.7						
30 (1	1: (B	49.4						
~								

TOTAL Leq =

SUBSET Leq =

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTC 320-326

JOB NO .: 301940

NOISE STUI	DY AREA ID:	NSA-NZ	MEAS	UREMENT SITE NO .:	ST-5
ADDRESS:		1889 WV	ite Dee	r Trail	· · · · · · · · · · · · · · · · · · ·
OWNER:		<u>.</u>			
DESCRIPTIC	DN:	Single fami	1, home	1 front Ward	
NOISE SOU	RCES:	Turnpike	·	· /	-
NOISE MON	ITOR:	LO 870 HS		S/N:	
MICROPHON	NE:			S/N:	
CALIBRATO	R:		-	S/N:	
TEMP. RANG	GE (°F):	30°	WEA	THER CONDITIONS:	clear
SITE SKETC wind direction	H: Show Turn	bike, homes, loc bike is in cut, at c	For south al roads, re grade, eleva	n ference distances, arro ated, where direct lines	ows for North & of sight exist.
N					
	and the second	₩₩₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	2007.48000.000.000.000.000.000.000.000.000.0		n for gran and a superficient series and a superficient series and a superficient series of the superficient series and
		1	URNPI	KE	
	Management of the second s		1999 year older die alstralige opgeweigte alstration die state die state die state die state die state die stat		
	\ <i>a</i> •	Q er125'd	~~Q		
	Ste	slot white	Jean	Lal	
	angastan nanan kata kata kata kata kata kata				
		(steep ope	2	Direct line	of site
			~ 50' Lrop	to all cash	r bund lane,
	-		Ð	Cannot see	near
	Hou se	= 1 Juoit	<u> </u>	westbu	ind lane
		t		tire noise audible	and stacks
					1

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MEASUREMENT DATA SHEET

PROJECT & SITE NO .: PTC- 320-326 ST-5 LOCATION/ADDRESS: 1889 while door trail					PEF	DATE: 1/31/07		
#	<u> Minute</u> Period Starting	Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
1	14:59	60.2						pre-al 114.0
2	15:00	62.6				· · · · · · · · · · · · · · · · · · ·		post ral 113.9
3	15:0201	60.4						
4	15:09:02	59.2						
5	15:0103	60.8						
6	15:05 04	61.6						
7	15:05:05	40.7						
8	15:0006	60.5						
9	5:00 07	59.7					(
10	5:04 08	62.6						ч.
11	15:10 09	62.6						
12	5.19 10	61.9						
13	5:12 11	62.3	1.			·		
14	5: 6 12	61.0				:		
15	5:19 13	64.0						
16	5:15-14	60.5						
17	5:18:15	60.1					-	
18	5:14 16	61.0						
19	5.8 17	60.3	*					overflight
20	5:11118	63.1						jake brake
21	5:20 19	61.6						
22 1	5. \$ 20	67.4					·	
23	5. 8 21	40.1						
24 1	5:19.22	41.4						
25 1	5: 23	63.0						
26	5. 75 24	62.2						
27	5. #15	623						
28 1	5: 20 26	61.4						
29	5:78 27	62.9						
30 1	5: 14 28	61.4						

TOTAL Leq =

SUBSET Leq =

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: NT C- 320-326

JOB NO .: 30194 0

NOISE STUDY AREA ID:	NSA - SI	MEASUREMENT SITE NO .:	57-6
ADDRESS:	1923 Stand	ford Drive	
OWNER:			
DESCRIPTION:	Single family	home / backing and	
NOISE SOURCES:	Turnpike / Ye	How Spriss road	-
NOISE MONITOR:	L0810 #5	S/N:	S
MICROPHONE:	ي 2000 مېرى بىرى بىرى بىرى بىرى بىرى بىرى بىرى ب	S/N:	ي المراجع
CALIBRATOR:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	S/N:	
TEMP. RANGE (°F):	30	WEATHER CONDITIONS:	clean
SITE SKETCH: Show Turn wind direction, where Turn	pike, homes, local r pike is in cut, at grad	oads, reference distances, arro de, elevated, where direct lines	ows for North & sof sight exist.
		rnpike	
		1////	100°
	Yell	ow springs Rd	
biadayard slopes up to yellow spins m 15' Thre noise from truch audible N No line of sign	there is the yello spring	45'I House	

TURN PIKE

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MEASUREMENT DATA SHEET

DATE: 1/31/07

COMMENTS

(Include Calibration

PROJECT & SITE NO.PTC 320.326 57-6 PERSONNEL: JAC LOCATION/ADDRESS: 1923 STandiford Drive Minute Meas'd $\sqrt{}$ Medium Heavy Other Noise # Period Leq Autos or Trucks Trucks Sources (dBA) Starting \mathbf{v}

	Starting	(dBA)	×	(Trucks	THUCKS	Sources	Data)
1	14:09	52.8					•	Pre-ral 114.1
2	14:6	52.9						Part. rd 114.0
3	14:11	53.1				·		
4	14:12	53.6					·	
5	14:13	54.2						
6	14 :14	53.1						
7	14:15	52.1					Sector and the sector	
8	14:14	54.7						truck on Yellow
9	14 :17	51.3				·	4	
10	14:18	54.8						
11	14:19	34.8						
12	14 :20	53.6						
13	M :21	52.3	1.					
14	14:22	52.9		•				
15	14:23	52.0						
16	14:24	55.7						
17	14:25	55.9						
18	14:24	54.9						
19	14:27	51.9						
20	14 128	56.1						Vellar soring
21	14:21	54.5						
22	14:30	52.0						
23	14:31	52.4						
24	14:32	55.4		·				truch exhaust
25	14:33	54.9	X					}
26	14:34	51.0	X					workerstmaking house on ladders
27	14:35	55.2					· · · · · · · · · · · · · · · · · · ·	
28	14:16	54.7						
29	14:37	55.0						
30	14:78	52.5						

TOTAL Leg =

SUBSET Leq =

 $\sqrt{1}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTC 320-326

JOB NO .: 301940

NOISE STUDY AREA ID:	NSA- 52	MEASUREMENT	SITE NO.:	57-7	
ADDRESS:	The Uanguard	School Yells	w Springe	Rd	
OWNER:	1999 North	Valles Rd	•		
DESCRIPTION:	School Outdo	or use Areq	/ Picnie Ta	bles	
NOISE SOURCES:	Turnpike			-	-
NOISE MONITOR:	LO 870 #5		S/N:		
MICROPHONE:			S/N:		
CALIBRATOR:			S/N:	<i></i>	
TEMP. RANGE (°F):	302	WEATHER CON	NDITIONS:	overcast 19	now
SITE SKETCH: Show Turn wind direction, where Turn	45 neh trim We pike, homes, local ro pike is in cut, at grad	st (Gusty bads, reference dis le, elevated, where	tances, arrow	s for North & f sight exist.	
N N Reading N Reading N N N N N N N N N N N N N	TURNP a) raired about above picnic ea Part Av School builtings	tKE 40° Hubles tubles	Athletic Field	a fenre	

PR	OJECT &	SITE NO.:	79	C 320-	326 57		PEF	SONNEL: JAC	
	CATION/A	DDRESS:	Uai	nsvard	School		·	DATE: 2/110	7
#	<u> </u>	e Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)	
1	8:58	68.2						pre-cal 114.0	1
2	8:59	69.1				,		large group of the	ke
3	9:00	67.7				· · · · ·			
4	9:01	64.9						some crows	
5	9:02	66.1						squaking in	
6	9:03	65.0				· .		nearby free	
7	9:04	65.3							
8	9:05	64.0							
9	9:06	65.2					4	DAGE Cal 13.9	н
10	9:07	66.7							
11	9:08	63.6							
12	9:04	64.9							-
13	9:10	67.1	5.					·	
14	9:11	66.2		· .					
15	9:12	64.9							
16	9:13	67.4							
17	9:14	65.6							
18	9:15	64.1							
19	9:16	63.8							
20	9:17	67.4							
21	9:18	67.3				· .			
22	9:19	65.8	ľ						
23	9:20	66.0							
24	9:01	66.8							
25	9:22	67.8							
26	9:23	65.8							
27	9:24	67.9							
28	9:15	65.6			· · · ·				
29	9:24	65-8							
30	1:27	64.0							
OTA	AL Leg =	· · ·		SI	JBSET Leg	=	Ŷ		

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTL 320-326

JOB NO .: 301940

NOISE STUDY AREA ID:	NSA · N3	MEASUREMENT SITE NO.: <u>ST - 8</u>
ADDRESS:	1919 Wellson	ne Lane
OWNER:		
DESCRIPTION:	Single family	home / backyard
NOISE SOURCES:	Turnpike	
NOISE MONITOR:	1011045	S/N:
MICROPHONE:	and the second	S/N:
CALIBRATOR:	توریخه 	S/N:
TEMP. RANGE (°F):	35	WEATHER CONDITIONS: Overcart / 61 Snow
الا SITE SKETCH: Show Turn wind direction, where Turnp	o aph Fram SW pike, homes, local re pike is in cut, at grac	oads, reference distances, arrows for North & le, elevated, where direct lines of sight exist.
N		
	turnpike	
	ET IS	A Hillside slopes town about 1501 to turnpike
String set	18' Dech	B plantre stockede
	1919 Wellsonice	Deck of Level with
		1 1 st flour there is
		9 walk in basement in
		the back
		Fence bloch all LOS
		without Ence with
		CB and WB are both
	100	/ hisible. Time noise and
	200	stack andible

PR	OJECT &	SITE NO .:	979	- 320-3	26 ST	- 8	PEI	RSONNEL: JAC
LO	CATION/A	DDRESS:	ST.	- 8 1919	Wellspi	ring Lane	-	DATE: 211/07
#	L Minute Period Starting	e Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
1	9:49	61.8						Precal 113.9
2	9:50	63.4						post-cal 113.9
3	9:51	40.5						
4	9:57	63.8						
5	9:53	62.3					2 C	
6	9:54	61.1						
7	9:55	62.5			· · · · · · · · · · · · · · · · · · ·			
8	<u>9:56</u>	64.6					·····	
9	9:57	60.1					٠ 	-
10	9:58	Lele .3						loud truck stee
11	9:59	64.1						
12	10:00	65.6						
13	10:01	61.8				·		
14	10.02	65.6			*		-	
15	10:03	62.8		·····				
16	10:04	61.7						
17	10:05	65.7			· · · · · · · · · · · · · · · · · · ·		•	strip
18	10:00	65.4				·····		
19	10:01	61.6				-		
20	10.08	63.4						
21	10:04	67.5			· · ·			
22	19.60	64.2					·	·9 -
23	10:11	P.C 0		· · · · · · · · · · · · · · · · · · ·	6			
24	10. (7	623						
25	10.13	67.9		·				
26	10.14	64.6						-
27	10-17	07.9						
28	10.10	65.5						aver Flight
29		64.6		<u> </u>				
30	10:18	63.4						

-C

TOTAL Leq =

SUBSET Leq =

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTC 320-326

JOB NO .: 301940

NOISE STUDY AREA ID:	NSA-53	MEASUREMENT SITE NO .:	<u>st-9</u>
ADDRESS:	1809 Hauken	seed way	
OWNER:		J	
DESCRIPTION:	Single Family	Home 1 bachyart	
NOISE SOURCES:	Turn pike		-
NOISE MONITOR:	087045	S/N:	100010/sa.
MICROPHONE:		S/N:	
CALIBRATOR:		S/N:	
TEMP. RANGE (°F):	30	WEATHER CONDITIONS:	Overrait
SITE SKETCH: Show Turn wind direction, where Turn	pike, homes, local r bike is in cut, at grad	oads, reference distances, arro de, elevated, where direct lines	ws for North & of sight exist.
	TURNI	PEKE	
	- 000ED AT	REP	
	w	stacked.	fonde
-tops of trucks vi fence both EB - time noise + sta audible	sible ever + WB	BERM 101 Depression HUNE	
	HAWKWEED		

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MEASUREMENT DATA SHEET

PR	OJECT & 3 CATION/A	RSONNEL: JAC DATE: 21/107						
#	Minute Period Starting	e Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
1	14:20	60.1						pre cal 113.9
2	14:21	61.9				-		•
3	14:27	40.8						
4	14:23	62.5						
5	14:24	58.0						
6	14:25	60.1	[]					
7	14:26	59.8					· · · · · · · ·	
8	17:27	60.9					··· ···	
9	M:28	59.9					4	-
10	14:29	60.3						en e
11	N :30	61.5						
12	M:31	43.0						Loud rumbling free
13	14:32	60.6	·					
14	14:33	61.5	· · · ·					
15	14:34	60.7						
16	14:35	62.3			·			
17	14:36	62.1						
18	H:37	61.9						
19	14:38	60.6					-	
20	11:39	61.3					.*	
21	1					÷		
22								
23								
24								
25								
26								
27								
28								
29				· · ·				
30								
	VI lea =			SL	JBSET Lea		L	

 $\sqrt{1}$ = Other sources contributed to Leq

SUBSET Leq =

X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTL 320-326

JOB NO .: 301940

NOISE STUDY AREA ID: NSA - ST	MEASUREMENT SITE NO .: 57-10
ADDRESS: 1708 Adi	er St
OWNER:	
DESCRIPTION: Single Fa	mily home / Vard
NOISE SOURCES:	
NOISE MONITOR: LD & 70 #5	S/N:
MICROPHONE:	S/N:
CALIBRATOR:	S/N:
TEMP. RANGE (°F): <u>30</u>	WEATHER CONDITIONS: Overcait
SITE SKETCH: Show Turnpike, homes, loo wind direction, where Turnpike is in cut, at	کھنے کے cal roads, reference distances, arrows for North & grade, elevated, where direct lines of sight exist.
T S S S S S S S S S S S S S S S S S S S	PRNPEKE 20' in Front of driverary - gaurd rail - turn pite level with local but there is a depressed area in Detween - Autos Visible in Doth directions - WB tire not visible - across from twelk turn off area

TURN-PIKE

<u>Minute</u>

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MEASUREMENT DATA SHEET

Madium

PROJECT & SITE NO .: PTC 320-326 ST-10 LOCATION/ADDRESS: 1708 Alder St

V

Meas'd

PERSONNEL: JAC

Heavy Other Noise Trucks Sources COMMENTS (Include Calibration Data)

#	Period Starting	Leq (dBA)	or X	Autos	Trucks	Trucks	Sources	(Include Calibration Data)	
1	13:34	60.0						pre cal = 114.0	
2	13:35	62.0				•		portial - 113.9	
3	13:34	62.2							
4	13:37	61.5							
5	13:38	59.7					-		
6	13:39	60.8							
7	13:40	61.6					· · · · · · · · ·		
8	13:41	65.4						Rumble strip	
9	13: 42	62.3					4	-	
10	13:43	63.4						· · · · ·	
11	13:44	62.1							
12	17:45	62.3							
13	13:46	62.4							
14	13:47	61.1	ļ. ·						
15	13:48	61.6							
16	13:49	60.9		-					
17	13:5)	59.5			·		·		
18	13:51	62.4							
19	13:52	62.3							
20	13:53	57.8	· ·	·					
21	17:54	60.2				ж			
22	13:55	65.6			· · · · · · · · · · · · · · · · · · ·		· .	Pumptrude with love	exhard
23	13:54	641							
24	13:57	411							
25	13:58	59.2							
26	13:59	59.5							
27	14:00	61.3							
28	14:01	62.8							
29	14:07	61.5		. [Jake brake	
30	14:03	Le 2.3					trocks	accellember and u	F
OT	AL Leq =			SI	JBSET Leq	=		stop area	

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTC 320-326

JOB NO .: 301940

ADDRESS 20 Main SL	
DESCRIPTION PA TA	
NOISE SOURCES: GPS W2 600 NILOO7756 W75 11 7356	
NOISE MONITOR: $\frac{1}{2}$	

TEMP. RANGE (°F): 36 WEATHER CONDITIONS: They doud as	Nav
SITE SKETCH: Show Turnpike, homes, local roads, reference distances, arrows for North & wind direction, where Turnpike is in cut, at grade, elevated, where direct lines of sight exist.	
	460
PATR	Part
Tops of the brucks Tops of the brucks visible through lence	antiponensisten and an
Developertance 6' Wooden Stockade	
Palt	and and the line and low
Torrence) Torrence) Stope u (~554)	0
Kmie	
BET grazzing	
29 Main St Dogotbarn Sor	

PR	OJECT & S	SITE NO.:	PTC	320-	326	Ş	ЭП РЕ	RSONNEL: ADD/DE
LOC	CATION/A	DDRESS: [Behr	y 29/3	> Main St			DATE: 2/1/07
#	Minute Period Starting	Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
1	11:35	63.0					· [Pecal 14:1
2	11:36	63.0	· ·					
3	1:37	62.6						
4	11:38	63.3						
5	11:39	63.8						
6	11:40	64.1				· · ·		
7	11:41	64-8						
8	11142	63.1						~
9	11:43	64.6						and.
10	11:44	66.0				• .		
11	11:45	62-8						
12	11/46	64.5						
13	11:47	65.3	*.				14 - C	
14	11:48	63-0				-		
15	11:49	64.0					aurcraft	
16	11:50	631			·			
17	11:51	63-8						5
8	11152	65-9					quelt anout	bad blich
9	11:53	62,6						
20	1154	62.1					ENCRUST AND	27-1
1	1;55	64.9					0	
2	1,56	641						
3	11:57	633						
4	1158	63.8						
5	1.59	617						
6	12:00	64.9						
7	12-01	623						i
8 1	2:62	(4.5			· ·		a vi vist (m)	et, squard tous to
9 1	2:03	62.8						y and the second
0	12:04	6215						Postical 114.0
					BSETLOG	L	l	

 $\sqrt{}$ = Other sources contributed to Leq

X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: prc 320 - 326

JOB NO .: 301940

NOISE STUDY AREA ID:	NSA - NH MEASUREMENT SITE NO	: ST-12 (41)
ADDRESS:	1906 General Alexander	HH HH
OWNER:		
DESCRIPTION:	Single fam.ly home / side yard	AT
NOISE SOURCES:	Turnpike / Yellow Sprngr Rd	
NOISE MONITOR:	LD 870 #5 S/M	J:
MICROPHONE:	S/M	J:
CALIBRATOR:	S/M	V:
TEMP. RANGE (°F):	30 WEATHER CONDITIONS	S: Over cast
SITE SKETCH: Show Turn wind direction, where Turn	Smen Fam South pike, homes, local roads, reference distances, a pike is in cut, at grade, elevated, where direct lin	rrows for North & es of sight exist.
N		
	TURNPIKE	
		antaria di Anglia. Antaria di Anglia
ter en tra	coveret bright rd	**
	/ Vellow spings Rh	ogenerations and
topography sloper d to turnipilie from Houses provide little Blockage	moniter (1) Los (2) Los (2) Lo	Ps of trucks isible on Tumpike hrough houses in covered bridge Rd iro noise and tacks auduble

PROJECT & SITE NO .: PTC			320-32	6 ST-	12	PERSONNEL: JAC		
LOC	ATION/AE	DRESS:1	906	Genera	I Alex	ander	<u></u>	DATE: 2/1/07
#	⊥ Minute Period Starting	Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
1	10:40	51.8						pre cal 114,0
2	10:41	59.0					£	
3	10:42	56.7					$\phi_{1} = \frac{1}{2}$	·
4	10:43	58.6				-		
5	10:44	59.1		30	2 cars	on Yel	a some	The 20 minutes
6	10:45	58.7	ļ	0	mT			
7	10:46	59.4		U	T			
8	10:47	58.5	1					
9	10:48	56.2						
10	10:49	58.1						
11	10:50	sn.8	ļ					
12	10:21	56.8						
13	10:52	56.1				×	5 . 	
14	10:53	57.5	ļ					
15	10:54	57.6						
16	10:55	40.9	\times					Dog Barking
17	10:56	59.7			1			
18	10:57	58.4						
19	10:58	۱.ها		ŝ				
20	10:59	60.4				, l		4.
21	11:00			ent	marsur	mp 5	pe bit bu	Harking 20gü
22	11:01							2
23	11:02							
24	11:03			¥	. ;;			
25	11:04							
26	11:05	*** · · ·		2		a A		
27	11:06	~						
28	11:07			f - 5	7			
29	11:08	Ŵ				1.		
30	n :09				4			

TOTAL Leq =

SUBSET Leq =

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTL 320-326

JOB NO .: 301940

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MONITORING SITE LOG

NOISE STUDY AREA ID:	NSA-NH	MEASUREMENT SITE NO.:	57-13
ADDRESS:	1853 (oue	ered Bridge Lane	
OWNER:			
DESCRIPTION:	Single Famil	y Home / bachgard	
NOISE SOURCES:	Turnpika		· .
NOISE MONITOR:	LD 810 # 5	S/N:	
MICROPHONE:		S/N:	
CALIBRATOR:		S/N:	
TEMP. RANGE (°F):	30	WEATHER CONDITIONS:	Partly (loudy
• • • • • • • • • • • • • • • • • • •	8 mph from S		•

SITE SKETCH: Show Turnpike, homes, local roads, reference distances, arrows for North & wind direction, where Turnpike is in cut, at grade, elevated, where direct lines of sight exist.

N TURNPIKE LT' - slight down lope to the highway Ð - cars and truck visibility 50° Ron deck on WB size DECK - Half truck uisible on HOME EB side - thre and stad noire aud. blo - Bern embanhment on opport - side of turnpille covered bridge Lane

 PROJECT & SITE NO.:
 PTC 320-326
 ST-13
 PERSONNEL:
 JAC

 LOCATION/ADDRESS:
 1853
 Covered Bridge Lane
 DATE:
 2/1/07

 ______Minute
 Measid
 V
 Medium
 Heavy
 Other Noise
 COMMENTS

#	Period	Leq (dBA)	or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	(Include Calibration Data)
1	11:20	59.8	1	1	1			Pre-121 113.9
2	11: 21	62.4						Portical UB.9
3	11: 22	62.3						
4	11:23	66.0					-	
5	11:34	62.2	ļ					
6	11:25	65.3						
7	11126	63.1	<u> </u>					
8	11:27	61.8						
9	11:28	64.0					` .	
10	11:29	63.0	ļ					
11	11:30	61.7						
12	11:31	67.9	ļ				· · · · ·	
13	11:32	61.2						· ·
14	11:37	63.4						
15	11:34	63.4						· · · · · · · · · · · · · · · · · · ·
16	11:35	60.4					·	
17	11:36	62.7						
18	11:37	64.2				· .		
19	11:38	62.2						
20	11:39	40.7						
21	11:40	61.1						
22	(1:4(63.0						
23	1:42	64.0						
24	11:43	63.5					-	
25	11:44	64.4						
26	11:45	63.7						
27	1:44	63.5					<i>,</i>	
28	1117	65.1	\mathbf{X}					Horn Blowing
29	1:43	63.0						***
30	1:49	63.4						

TOTAL Leq =

SUBSET Leq =

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTC 320-326

JOB NO .: 301940

NOISE STUDY AREA ID:	NSA-S5	MEASUREMENT SITE I	NO.:
ADDRESS:	1213 Eagles	Ruge Dr.	
OWNER:			
DESCRIPTION:	GPS WP 599	N40.01842 W	75,46615
NOISE SOURCES:	•		-
NOISE MONITOR:	LD 8	State of the second	S/N:
MICROPHONE:		• • • • • • • • • • • • • • • • • • •	S/N:
CALIBRATOR:	مبعد شبره . 		5/N:
TEMP. RANGE (°F):		WEATHER CONDITIO	NS: <u>0-/mph from</u> NE
SITE SKETCH: Show Turn wind direction, where Turn	pike, homes, local ro bike is in cut, at grad	oads, reference distances le, elevated, where direct	, arrows for North & lines of sight exist.
	PATA		
	1-61		an a
Row Genee			
	T	A SI	1000 Augo A
No LOS			
Berm	6	2Ft	
A.M.	$\frac{1}{4}$	1/-	arting
Partimy			
	1222 Dm	vie (ground 26tbelow Re	porenent
Parhinez			
Ĩ			
		· · · · · · · · · · · · · · · · · · ·	

TURN-PIKE

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MEASUREMENT DATA SHEET

	OJECT & S CATION/AI	SITE NO.: DDRESS:	PTC 12.13	320-32 3 Eaglé	s Ridge	Dr.	STI4 PEF	RSONNEL: ADD/D/EB DATE: 02/0//0
#	 Minute Period Starting 	Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
1	10:39	650				·		Pre-Cal 1/4-0
2	10:40	631						
3	10:4-1	67.3					· · ·	·
4	10:4-2	66.4						
5	10:43	65.6						
6	10:44	07.5						
7	10:45	66.0						
8	10:46	<u>68.7</u>				· ·	···	
9	10:47	64.7					ł	
10	10:48	65.8						
11	10:49	66 -9						
12	10:50	66.8						· ·
13	10.51	65.3	· .					
14	10:52	65.5						
15	10:53	64.5						
16	10:54	66.7		· .				
17	10:55	67.2						
18	10:56	68.4			· · · · · · · · · · · · · · · · · · ·			·
19	10:57	67.1						
20 1	10:55	66.6	·	· _			. •	
21	10:59	66.5						
22	rea ilioo	63.7					· .	· · · · · · · · · · · · · · · · · · ·
23	11:01	66.4		· · · · · · · · · · · · · · · · · · ·				
24 1	1:02	63-9						
25	1:03	68:2						
26	11:04	69.0						
27	11:05	67.0						
28	11:06	64.5						
29	11:07	67.1						
30	11:08	66.1						PostCal 114.0
	llea =			SI	IBSET Leo	1		

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTC 320-326

JOB NO .: 301940

NOISE STUDY AREA ID: ADDRESS: OWNER: DESCRIPTION: NOISE SOURCES:	NSA-S6 N 307 Apple how GPS WP 598 PA TAL	NEASUREMENT SITE Se pond Dr NGO 7952	E NO.: _	STIS
MICROPHONE:	<u>LDO</u>		S/N: _	
CALIBRATOR:			S/N:	
TEMP. RANGE (°F):	31°	WEATHER CONDITI	ONS: 4	ight soon, caln
SITE SKETCH: Show Turnpi wind direction, where Turnpil	ike, homes, local roa ke is in cut, at grade,	ds, reference distance elevated, where direc	es, arrov ct lines c	vs for North & of sight exist.
	PATPh			
VV	VSG	ep slope		V
ROW Ferre	XA3		A	Flat
V YV	306	Slopear	No.	V
	Sty Access	Rd	.' waxayaan waxaa w	
	lott Inic	VV	Step	Short Slope
Top	nexterpath			
		1		

PR	DJECT & S	SITE NO.:	Pto	c 320-7	326	ST	75 PEF	RSONNEL: ADD/DE
		T	<u>507</u>	Applehou	ve pond		T	DATE:02/01/07
#	Minute Period Starting	Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
	a:49	66.5				T		Diver- Cal III-
2	9:50	69.8						10000
3	9:51	66.5						· · · · · · · · · · · · · · · · · · ·
4	9:52	68.1		1				·
5	9.53	67.5					duraft	
6	9:54	68.4						
7	9.55	65.2					-10 14	
8	9:56	66.6						
9	9:57	69.9				· · ·		ber.
10	9:58	67.6						₹
11	9:59	67.3						
12	<u>10:00</u>	71.5	<u> </u>	(Juck	Joming.	<u>(5)</u>	Norsy tru	ch, awardt
13	10:01	69.0	·			1	U v	
14	10:02	6/10						
15	10:05	63.6		····				· · · · · ·
16	10:04	69.5						
17	10:04	68.4						
18	10.06	671						
19	6.00	0176 (his						
20	inna	69.R						
27	10.01	66.8						Dolt (1 111 D
23					····		· · · · · · · · · · · · · · · · · · ·	PORCA 1140
24	· · · · · · · · · · · · · · · · · · ·							
25						i		
26								
27								
28								
29		· ·						
30								
			I	SU	IBSET Leo		1	

 $\sqrt{1}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTC 320-326

JOB NO .: 301940

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MONITORING SITE LOG

NOISE STUDY AREA ID:	NSA-N5	MEASUREMENT SITE NO .:	<u>ST 16</u>
ADDRESS:	Lafayettes	howse	
OWNER:			
DESCRIPTION:	G-PS WA 597	N40108042 W 751	+5/44°
NOISE SOURCES:	PA TPh		
NOISE MONITOR:	_60s	S/N:	· · · · · · · · · · · · · · · · · · ·
MICROPHONE:		S/N:	
CALIBRATOR:		S/N:	
TEMP. RANGE (°F):	31	WEATHER CONDITIONS:	hight Seven

SITE SKETCH: Show Turnpike, homes, local roads, reference distances, arrows for North & wind direction, where Turnpike is in cut, at grade, elevated, where direct lines of sight exist.

	Laborette?	
	155F	
	Store	2 VP
Rowforce	497	SEt infor then Mic
ilpe	zrade Po Tula	connot sections at any part of road

PRO	OJECT & S CATION/A	SITE NO.: DDRESS:	PTC	c 320-	-326 House	STIG	PEF	RSONNEL: ADD/DEB DATE: 02/0//0
#	Minute Period Starting	Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
1	09:08	66.1						Cal change
2	09:09	6418						Col . Och 1140
3	09:10	63.9					airdalt	
4	09:11	63.3	<u> </u>	· · · · · · · · · · · · · · · · · · ·			avorable	
5	09:12	659					-	
6	09:13	64.45						
7	09114	653			· · · · · · · · · · · · · · · · · · ·			
8	09415	63:4	 					
9	09:16	65.4					с. 	
10	09:17	651						₩
11	09:18	63.4	-					
12	09:19	64.9						
13	09:20	66.7		· · · · · · · · · · · · · · · · · · ·				
14	09:21	64-5						
15	09:22	6300					anort-	
16	09:23	665						
17	C9:24-	63.6						
18	09:25	66.8						
19	09:26	66-5						
20	C9:27	63.7						Cal Chech 114.0
21								
22								
23								
24					ļ			
25								
26								
27								
28								
29								
30								
OTA	L Leg =			SI	JBSET Lea	==		

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PENNA / TURN-PIKE

the

PROJECT: pTC 320-326

JOB NO .: 301940

NOISE STUDY AREA ID:	NSA-57 MEA	SUREMENT SITE NO .:	STI7
ADDRESS:	14-65 Anthony	- Vayne Dr	
OWNER:		¥	
DESCRIPTION:	WP596 N 40002 2	26° W75.4	3866°
NOISE SOURCES:	PATPL, Service	: area (Truchestal	ling)
NOISE MONITOR:	LD8	S/N:	
MICROPHONE:		S/N:	
CALIBRATOR:		S/N:	
TEMP. RANGE (°F):	<u>29°F</u> WE	ATHER CONDITIONS:	Calm
SITE SKETCH: Show Turn	للار wike, homes, local roads, r	Yo Mumply reference distances are	ows for North &
wind direction, where Turnp	pike is in cut, at grade, elev	vated, where direct lines	s of sight exist.
Parted Touchy	, genrichard Ro	wtence anha	onh went (kt)
	Tookull acce &	Cannot	Seetph
	170	Wolt	el l
	\bigtriangledown		
	R		
	3000		
	V Force	2	
	(1£65 L		

PR	OJECT & S CATION/AI	SITE NO.: DDRESS:	·P1 1463	TC 320 Anthon	-326 y Vager	s Dr.	FIZ PEF	RSONNEL: ADD/DE
#	Minute Period Starting	Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
1	18.03	53.9						PreCal 114.1
2	18:04	545						
3	18:05	54.0						
4	18:06	52.6						
5	15:07	53.6					chiston tak	
6	18:08	52.6						
7	18:09	53.2						
8	18:10	54-1	L				detant all bore	ly audible)
9	1g:11	54.3				· · · ·	c.	
10	ig :n	55:4						T
11	lg:13	56.2						
12	18:14	56.3			-			· .
13	18:15	55.4	*					
14	18:16	53.9	-					
15	18:17	54.9						· · · · · · · · · · · · · · · · · · ·
16	18:18	54.8				· · ·		
17	18:19	552		1				
18	18:20	64.0						
19	18:21	54.6						
20	18:22-	54.6						By-cal 114-1
21								N P
22								
23								
24							· · · ·	
25								
26								
27								
28								
29								
30								
	VI lea =					<u>η</u>		

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTC 320-326

JOB NO .: 301940

NOISE STUDY AREA ID:	NSA-S7	MEASUREME	ENT SITE NO .:	5718	
ADDRESS:	1497 Lexin	ston La			-
OWNER:	· · · ·				
DESCRIPTION: 645	WP 595	NHO-08533°	W75.430	150°	
NOISE SOURCES:	PATON, or	colornal alc	······································	-	
NOISE MONITOR:	408	. · ·	S/N:		
MICROPHONE:			S/N:		
CALIBRATOR:			S/N:		-
TEMP. RANGE (°F):	30'F	WEATHER (CONDITIONS:	vind 3- Guyh Fr	m N
SITE SKETCH: Show Turnp wind direction, where Turnp	ike, homes, loca ike is in cut, at gr	367 I roads, reference ade, elevated, wh	e distances, arro nere direct lines	ws for North & of sight exist.	
n and a second		24 2 4	ĸĸŦĸĸĊĸĸŢĸĸĸĸĸĸĸŢĸġĊſĊſĊſĸĊĸĸŊĊĊŎŔĸĊġĊĸĸĸĬĸĊţŎĸĸĸĬĸĊĸŎĬĊĊŔĬŎĬĸŎĸĊĸŢ		rowner:
ROV Fine		TEB A	Ne Martin - Se	10.00000000000000000000000000000000000	22288888877988888799(r)
	shart 156	pe down	to highly	ay	
Attist	Flat	1606t Tog	s of the cars	encin	U
× ; Fern	10 25A 2014	× T	Toes	\times	
				1497	
PENNA TURN-PIKE

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MEASUREMENT DATA SHEET

PR	OJECT & S	SITE NO.:	PTC	- 320-3	26	STI	g PEF	RSONNEL: 01/31/6;
			479 1	CXUMUN	lane.			DATE: AND/DEB
#	Minute Period Starting	Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
1	17:01	60.1						fre Ca) 114.1
2	17:02	59.7						
3	17:03	62.7				·		
4	17:04	62.7						
5	17:05	62.0					avaatt	
6	17:06	64.6					Hetrophi (bond)	
7	17:07	62.0					Crunching lear	ej
8	17:08	61-9						
9	17:09	60.8					٤	
10	17:10	60.8						*
11	17:11	59·1						
12	17:12	60.6						· .
13	17:13	61.5	·.				alc	
14	17:14	63.0						
15	17:15	61.7						
16	17:16	64.1						
17	17:17	62.3						
18	17:16	61.6						
19	17:11	61.2						
20	7:20	61.4	-				.*	Post (al 114.1
21								
22							· .	
23								
24								
25								
26								
27								
28								
29								
30	-							
	VI Lea =			SU	IBSET Leo) <u> </u>		

TOTAL Leq =SUBSET Leq = $\sqrt{}$ = Other sources contributed to LeqX = Exclude period - contaminated by non-characteristic sources

>> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTC 320-326

JOB NO .: 301940

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MONITORING SITE LOG

NOISE STUDY AREA ID:	NSA-NG	MEASUREMENT SITE NO .: ST19
ADDRESS:	1503 steve	rs g.
OWNER:		
DESCRIPTION:	GPS WPS92	N40.08871 W075.42780°
NOISE SOURCES:	PA Toh, loc	al road
NOISE MONITOR:	LOS	S/N:
MICROPHONE:	······································	S/N:
CALIBRATOR:	· ·	S/N:
TEMP. RANGE (°F):	31°F	WEATHER CONDITIONS: Calm, clear slig
SITE SKETCH: Show Turn wind direction, where Turn	pike, homes, local oike is in cut, at gra	roads, reference distances, arrows for North & de, elevated, where direct lines of sight exist.
	\frown	
590	Ton	578
	A	
	4-86	E Staphens
	(X)	
		Steff
1503 stephens	\backslash	
D(

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MEASUREMENT DATA SHEET

PROJE	ECT & S	SITE NO.:	PTC	320-32	26	ST	19 PEF	RSONNEL: AOD
	ION/A	DDRESS:	60.	s siev	ers ur			DATE:01/31/
	_ Minute	Meas'd		beal	Medium	LSMPA	Other Noise	COMMENTS
#	Period	Leq	or	Autos	Trucks	Trucks	Sources	(Include Calibration
	Starting	(dBA)	X					Data)
1 13	1:03	58.2		11/			aircraft, bird	4
2 13	104	55.5		1/			/	
3 13	:05	<u>65.3</u>						
4 13	:06	57.8						
5 13	:07	55.8]]				
6 13.	08	<u>\$6.3</u>						
7 13	:09	58.2		!//				· · ·
8 13:	10	56.2		1			**	
9 13:		55.3						
10 13:	.12	54.7						₩
11 13:	:13	59.5						
12 13:	14-	56.1		1	·			
13 13:	15	54-1	15. C			·	aircraft hitest	· ·
14 13:	16	56.5) · · · · ·				
15 13.	17	S6.8	1					
6 13:	18	56.2			-			
7 13:	19	55·7						
8 13.	20	55.6		· ·			aircraft diffeat	
9 13:	21	57.2	1	1				
0 13:	22	60.1			1	E	local Augertrach	·
1 13:	23	SS-8	1					
2 17:	24	55.9						
3 13:	25	58.2	1					······································
4 13.	26	56.6	1					
5 17 :	27	54.9	1					
6 12 :	28 9	58.0	- İI	1				
7 3:	29	56.3					· · · · · · · · · · · · · · · · · · ·	
8 12.	30	57.3	11				fictant all	· · · · · · · · · · · · · · · · · · ·
<u> </u>	$\frac{1}{1}$	55.9				·····	CV-2 CV-2 CV-2	
	27	56.8		<u> </u>				
<u>/ / ^ </u> \T /	<u>, ~ _</u>	70 V						

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

HARRIS MILLER MILLER & HANSON INC.

PENNA

TURN-PIKE

PROJECT: 301940

JOB NO .: PTC 320-326

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MONITORING SITE LOG

NOISE STUDY AREA ID:	NSA-S7	MEASUREMENT SITE NO	: <u>ST20</u>
ADDRESS:	587 Park	Ridge Dr	
OWNER:)	
DESCRIPTION:	GPSWP N40	108683° W75.42	577°
NOISE SOURCES:	PATPR		•
NOISE MONITOR:	LDS		
MICROPHONE:	3674		:
CALIBRATOR:	<u>k</u>	S/N	327913006
TEMP. RANGE (°F):	35	WEATHER CONDITIONS	:
SITE SKETCH: Show Turn wind direction, where Turn ONLY TRUCKS VISIB	ian 3m/h Gam pike, homes, local pike is in cut, at gr LE WB - WB	SW 36% humby I roads, reference distances, an ade, elevated, where direct line EB-D ALL B TRAFFIC VIG	rows for North & es of sight exist.
Right of vars force	111 SLOPE	= LP ~ 10-15' ABOVE MIC	THEREGUARORAIL
A Long Long Long Long Long Long Long Long	Am Swimm	15 ft By the By the By the By the	TRUCTED N SIBLACKED RAIN
	587 Par	hridge dr.	

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MEASUREMENT DATA SHEET

PF LO	OJECT & CATION/A	SITE NO.: DDRESS:	587	Park Ri	dge Dr.	STZ	O PEF	RSONNEL: ADD/DE! DATE: OV31/07
#	<u>I</u> Minute Period Starting	e Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
1	15:33	65.8						Pre-Cal 114.1
2	15:34	66.3	ļļ					
3	15:35	67.3	<u> </u>					s.
4	15:36	64.6	\downarrow					
5	15:37	66.5						
6	15:38	65.7				· ·		
7	15:39	64.7					- MG	
8	15:40	64.4						
9	15:41	65. 9					*****	
10	15:42	64.7						▼
11	15:43	64.9						
12	15:44	68.3						· .
13	15:45	63.0	•					
14	15:46	66.			· · · · · · · · · · · · · · · · · · ·			
15	15.47	65.0						
16	15:48	65.6					word chines (fo	ja J
17	15:49	64.3						
18	15:50	65.5						- -
19	15:51	66.7						
20	15:52	65.6					. •	
21	15:53	65.1			· ·			Post Cal 114.1
22							· .	
23								
24								
25				·				
26								
27								
28								
29								
30								
						l	<u></u>	

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

HARRIS MILLER MILLER & HANSON INC.

PENNA

TURN PIKE

PROJECT: PTC 320-326

JOB NO .: 301940

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MONITORING SITE LOG

NOISE STUDY AREA ID:	NSA-57	MEASUREMENT S	SITE NO .: 57 21
ADDRESS:	591 Cd	Dewees pr.	
OWNER:			
DESCRIPTION:	GPS WP 594	N40.08553°	W7542509
NOISE SOURCES:	PA Tph, cond	truction 1 block over,	wild like (birds, dog 5)
NOISE MONITOR:	108	•	S/N:
MICROPHONE:	******		S/N:
CALIBRATOR:			S/N:
TEMP. RANGE (°F):	34	WEATHER COND	DITIONS: Word (3mph N
SITE SKETCH: Show Turn wind direction, where Turn	pike, homes, local hike is in cut, at gra	roads, reference dista de, elevated, where d	nces, arrows for North & irect lines of sight exist.
A unger hul	1 Ag	radual slope up	Cateross Pass-by
	Ditch		
			Flarge tree
	Mic	$\mathbf{\Lambda}$	
		SOF	
	9	large tree	
	591 Den	els	

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MEASUREMENT DATA SHEET

	PR(OJECT & S	SITE NO.: DDRESS:	ра Т 59	pk 1. Col	Dewees	sT	21 PE	RSONNEL: A00/DEB
y MY	#	1 Minute Period Starting	Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
Ē	1	16:16	57·2						Pre Cal 114.1
	2	16:17	56.8					awcraft (quit)	
	3	16:18	56.8					Rechanical poile by	on house (weit)
	4	16:19	54.5					Grinding netal	next St, a/C flyonav
	5	16:20	54.4					7	load bird, day trade
L	6	16:21	55.6				•	build	
	7	6:22	56.5					hird	
	8	16:23	56.3					· · · · · ·	
	9	16:24	55.3					4	-
	10	16:25	55·7					averaft	
	11	16:26	56·7					avait	
	12	16:27	56.3						
L	13	16:28	56.8	1.					
	14	16:29	56.1		· ·		*		
	15	16:30	55·5					Sarving next	1072
•	16	16:31	55.8						
	17	16:32	56.1					Dogs bar hing	
	18	16:33	57.2					Don's bashin	
	19	16:34	64.7						
2	20	16:35	55·1			·		· · ·	Post cal 114.1
2	21								
2	22								
2	23								
2	4								
2	5								
2	6								
2	7				·				
	8							·····	
	9							· · · ·	
10									

 $\sqrt{1}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

HARRIS MILLER MILLER & HANSON INC.

PENNA

TURN PIKE

PROJECT: PTC 320-326

JOB NO .: 301940

1 Tph ~ 30 200FF?

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MONITORING SITE LOG

NOISE STUDY AREA ID:	NSA-NG	MEASUREMENT SITE NO .:	22
ADDRESS:	780		
OWNER:		· · · · · · · · · · · · · · · · · · ·	
DESCRIPTION:	GPS S91	N40.08973 WO-	75.41930°
NOISE SOURCES:	PA TPR	· · · · · · · · · · · · · · · · · · ·	-
NOISE MONITOR:	L08	S/N:	· · · · · · · · · · · · · · · · · · ·
MICROPHONE:	3674	S/N:	
CALIBRATOR:	-	S/N:	
TEMP. RANGE (°F):	27	WEATHER CONDITIONS:	3-Suphwind
SITE SKETCH: Show Turn wind direction, where Turn	pike, homes, local r pike is in cut, at gra	oads, reference distances, arr de, elevated, where direct line:	Clear Sky ows for North & s of sight exist.
Parking		780	
*** * * *	i h		
×	4-28		

Tiel

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MEASUREMENT DATA SHEET

<u>I</u> Minute Period Starting <u>12:04</u> <u>12:05</u> [2:06	Meas'd Leq (dBA) 65.9	√ or X	Autos	Medium	Heavy	Other Maler	COMMENTS
12:04 12:05 12:06	65.9			I FUCKS	Trucks	Sources	(Include Calibration Data)
12:05	65-1					T	
12:00	14.						
	67.0						
12:07	68.3	V				light a/c	· .
12:08	68.5						
12:09	66.8						
12:10	68.7				· · · · ·	стир трад.	
12:11	69.1						
12:12	67.9						····
12:15	65.8						
12:14	64.4						
12:15	66.4		1.2				·
12.16	69.1						· ·
2:17	66.2				· .		
12:18	66-3						
12:19	66·X						
12:20	67.4				· · · ·		
12:21	69.5						· ·
2:22	667						
2:43	66.7						
2:24	64-2						
2:25	66.1					· .	
2:26	67.7	\checkmark				light all	
2:27	65.8						
2:28	686			•			
2:29	64.1					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
2:30	70.0		-				
2:31	67.1						
2:32	66.8						
2:33	67.8						
	$\frac{12:09}{12:10}$ $\frac{12:10}{12:11}$ $\frac{12:17}{12:17}$ $\frac{12:13}{12:14}$ $\frac{12:15}{12:6}$ $\frac{12:16}{12:20}$ $\frac{12:20}{12:21}$ $\frac{12:20}{2:27}$ $\frac{12:24}{2:25}$ $\frac{2:26}{2:26}$ $\frac{2:29}{2:28}$ $\frac{2:30}{2:30}$ $\frac{12:31}{2:37}$ $\frac{12:37}{2:37}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:09 66.8 $12:10$ 68.7 $12:10$ 68.7 $12:12$ 67.9 $12:13$ 65.8 $12:13$ 65.8 $12:13$ 65.8 $12:13$ 65.8 $12:13$ 65.8 $12:13$ 65.8 $12:14$ 61.44 $12:15$ 66.44 $12:16$ 69.1 $12:17$ 66.2 $12:18$ 66.7 $12:18$ 66.7 $12:18$ 66.7 $12:18$ 66.7 $12:18$ 66.7 $12:20$ 67.44 $12:20$ 67.44 $12:21$ 66.7 $2:22$ 66.7 $2:25$ 66.1 $2:25$ 66.1 $2:29$ 64.1 $2:30$ 70.0 $2:30$ 70.0 $2:31$ 67.8 $1:33$ 67.8	$12:00$ $66 \cdot 8$ $12:10$ $68 \cdot 7$ $12:11$ $69:1$ $12:12$ 67.9 $12:13$ $65 \cdot 8$ $12:13$ $66 \cdot 4$ $12:15$ $66 \cdot 4$ $12:16$ $69 \cdot 1$ $12:17$ $66 \cdot 2$ $12:18$ $66 \cdot 2$ $12:18$ $66 \cdot 2$ $12:19$ $66 \cdot 8$ $12:20$ 67.4 $12:21$ $66 \cdot 7$ $12:22$ $66 \cdot 7$ $12:23$ $66 \cdot 7$ $12:24$ $64 \cdot 2$ $2:25$ $66 \cdot 1$ $2:26$ 67.7 $2:27$ 65.8 $2:29$ $64 \cdot 1$ $2:30$ 70.0 $2:30$ 70.0 $2:37$ $66 \cdot 8$ $1:37$ $67 \cdot 8$	$12:04$ $66\cdot8$	$12:04$ $66\cdot8$

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

HARRIS MILLER MILLER & HANSON INC.

PENNA

rurn Pike

PROJECT: PTC 320-326 JOB NO .: 301940

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MONITORING SITE LOG

NOISE STUDY AREA ID:	NSA-NG 799 G	MEASUREMENT SITE NO .:	STZ3
DESCRIPTION:	GPS WP60	NL009109° W7	5.416.16
NOISE SOURCES:	Tih /427	2	<u> </u>
NOISE MONITOR	LDS	S/N [.]	
		S/N:	
CALIBRATOR	********	S/N:	
TEMP BANGE (°E)	22	WEATHER CONDITIONS:	N-Znaph wind
	<u>}`````````````````````````````````</u>	66% jum	
SITE SKETCH: Show Turn	pike, homes, local	roads, reference distances, arrow	ws for North &
wind direction, where Turn	Dike is in cut, at gra	And A canded	or signt exist.
	PA TU		Tersex bar Aut
	- In pr		
AU	1 6 110	Grada	
Star Briter	~ ~	c. and	
A ANY /			
CANY /			
	tour		
$\langle \gamma \rangle \langle \gamma $			
$\langle \mathbf{x}' \rangle / \mathcal{R}$		774	permanent and an antimeter and an antimeter of the second s
301			yan anala (yan Guunan a sunaya). A su
		IN A LOAD	ail
175	Vause	F House gava	
		Elevated	IT.I.
		is vel with	raused IPM
	Burger Hoo		
	а 		

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MEASUREMENT DATA SHEET

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PRO	DJECT &	SITE NO.: DDRESS:	РТС 799	- 320-3	zc n R2	ST	23 PEF	RSONNEL: ADD /DET DATE: 02/01/07
1 $15/05$ $68/5$ $4dded$ (14-1) 2 $15/06$ $68/5$ $68/6$ 3 $15/07$ $68/4$ $68/7$ 4 $15/08$ $68/7$ $68/7$ 5 $15/07$ $68/7$ $68/7$ 6 $15/10$ $67/4$ $74/7$ 7 $15/11$ $68/6$ $74/7$ 8 $15/12$ $68/7$ $74/7$ 9 $15/13$ $68/7$ $74/7$ 10 $15/17$ $68/6$ $74/7$ 11 $15/18$ $68/7$ $74/7$ 12 $16/7/4$ $68/7$ $74/7$ 13 $15/17$ $68/6$ $74/7$ 14 $15/16$ $68/7$ $74/7$ 14 $15/16$ $68/7$ $74/7$ 15 $15/17$ $68/6$ $74/7$ 15 $15/17$ $68/7$ $74/7$ 14 $15/20/68/7$ $74/7$ $74/7$ 18 $15/22/68/7$ $74/7$ $74/7$ 19 $16/23/68/$	#	/ Minute Period Starting	e Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
2 15:00 65:5 3 15:07 63:4 4 15:03 63:8 5 15:04 63:1 6 15:10 67:4 7 15:11 63:6 8 15:12 64:9 9 15:13 63:9 10 15:14 69:0 11 15:15 63:8 12 14:15 63:9 13 15:17 63:6 14 15:18 63:4 15 15:17 63:6 14 15:18 63:4 15 15:19 63:4 15 15:19 63:4 16 15:20 63:5 17 15:21 63:7 18 15:22 63:4 19 16:23 63:0 21 15:24 63:4 21 15:24 63:4 21 15:25 63:7 22 15:26 63:2 23 15:27 63:4	1	15:05	68.5						Geldreet 14.1
3 $15; 07 68; 4$ 6 4 $15; 08 63; 8$ 6 5 $16; 04 6; 7; 4$ 6 6 $15; 10 67; 4$ 7 7 $15; 11 63; 6$ 7 8 $15; 12, 64; 9$ 7 9 $15; 12, 64; 9$ 7 10 $15; 12, 64; 9$ 7 11 $5; 13, 65; 9$ 7 12 $16; 14; 64; 9$ 7 13 $15; 17, 65; 6$ 7 14 $15; 18; 65; 4$ 7 15 $15; 12; 16; 65; 6$ 7 16 $15; 20; 68; 4$ 7 17 $15; 21; 65; 7$ 7 18 $15; 22; 68; 4$ 7 19 $16; 23; 68; 0$ 7 21 $15; 25; 63; 7$ 7 22 $15; 24; 68; 2$ 7 23 $15; 27; 68; 5$ 7 24 $15; 25; 64; 7$ 7 25 $15; 24; 64; 7$ 7 26 $15; 24; 64; 7$ 7 26 $15; 24; 64; 7$ 7	2	15:06	68.5	· ·					
4 $15:03 63'8$	3	15:07	68:4						
5 15:09 6774 7 15:11 636 8 15:12 6974 9 15:13 6374 10 15:14 6970 11 15:15 63.6 12 16:17 63.6 13 15:17 63.6 14 15:18 63.4 15 15:19 63.6 14 15:18 63.4 15 15:19 63.6 16 15:20 63.5 17 15:21 63.7 18 15:2.2 68.4 19 $16.23.63.0$ 63.0 20 15:24 68.7 21 15:25 69.7 21 15:25 69.7 22 15:24 68.7 23 15:27 68.5 24 15:25 69.2 25 15:24 69.2 26 15:23 68.4 27 15:31 67.1 28	4	15:08	6818						
6 $15:10$ $6/4$	5	15:09	68.1						·
7 15:11 6.86 - 8 15:12 $6.9.9$ - - 9 15:13 $6.9.9$ - - - 10 15:14 $6.9.0$ - - - - 11 15:15 $6.9.8$ - - - - - 12 16:76 $6.9.0$ - -	6	15:10	6/4						
8 $15:12$ $65:9$	7	<u>15:11-</u>	6.8%			· · · · · · · · · · · · · · · · · · ·			
9 $15:13:6:5^{14}$ $69:0$	8	<u>15112</u>	69.4					٤	-
10 $15 \cdot 14$ $61 \cdot 0$	9	17:15	6317						
11 15.12 63.8	10	15.14 15.14	610						
12 16,17 63.6 1 1 13 15,17 68.6 1 1 14 15.18 69.4 1 1 15 15.19 68.6 1 1 16 15.20 68.6 1 1 18 15.22 68.4 1 1 19 16.23 68.0 1 1 19 16.23 68.0 1 1 20 15.24 68.2 1 1 21 15.25 68.7 1 1 22 15.27 69.0 1 1 23 15.27 69.0 1 1 24 15.28 69.2 1 1 25 15.29 69.2 1 1 26 15.30 67.8 1 1 27 15.31 61.1 1 1 28 15.32 68.4 1 1 29 15.33 63.5 1 1 <t< td=""><td></td><td><u>5.17</u></td><td>65.8</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		<u>5.17</u>	65.8						
13 13:17 0.30 0 0 0 14 15:18 $63:4$ 0 0 0 15 15:19 $63:4$ 0 0 0 16 $15:20$ $63:4$ 0 0 0 17 $15:20$ $63:4$ 0 0 0 18 $15:22$ $63:4$ 0 0 0 19 $16:23$ $63:0$ 0 0 0 20 $15:24$ $63:4$ 0 0 0 21 $15:25$ $63:7$ 0 0 0 22 $15:26$ $63:0$ 0 0 0 23 $15:27$ $63:5$ 0 0 0 24 $15:28$ $69:2$ 0 0 0 25 $15:24$ $69:8$ 0 0 0 26 $15:30$ $67:8$ 0 0 0 28 $15:32$ $68:4$ 0 0 0 29 $15:34$ </td <td>12</td> <td>16.10</td> <td>68.6</td> <td></td> <td></td> <td></td> <td>· · · · ·</td> <td></td> <td></td>	12	16.10	68.6				· · · · ·		
14 $(5,1)$ $(5,2)$	10	15:12	62.4						· · · · · · · · · · · · · · · · · · ·
10 $15 \cdot 20$ $68 \cdot 5$	15	15:19	629				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
17 $15:21$ $68:1$	16	15:20	68-5			÷			
18 $15:2.2$ $68:4$ 19 $16:2.3$ $68:0$ 20 $15:2.4$ $68:2$ 21 $15:2.5$ $68:7$ 22 $15:2.6$ $68:0$ 23 $15:2.7$ $68:0$ 23 $15:2.7$ $68:0$ 24 $15:2.8$ $69:2$ 25 $15:2.9$ $69:2$ 25 $15:3.0$ $67:8$ 26 $15:3.0$ $67:8$ 28 $15:3.2$ $68:4$ <	17	16:21	6819		····				
19 $16:23$ 68.0	18	15:22	68.4						
20 $15:24$ $68:2$	19	16:23	68-0				-		
21 $15:25$ 68.7	20	15:24	68-2				·······		
22 $15:26$ $68:0$ a a a 23 $15:27$ $68:5$ a a a 24 $15:28$ $69:2$ a a a 25 $15:29$ $69:2$ a a a 25 $15:29$ $69:2$ a a a 26 $15:30$ $67:8$ a a a 27 $15:31$ $69:1$ a a a 28 $15:32$ $68:4$ a a a 29 $15:33$ $68:5$ a a a 30 $15:34$ $70:1$ a a a	21	15:25	68.7				· ·		
23 $15:27$ $68:5$	22	15:26	6810						
24 $15:28$ $69:2$	23	15:27	68.5						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	15:28	69.2					-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	15:29	69.8						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	15:30	67.8						
28 15:32 68.4	27	15:31	69.1						
29 15:33 68.5 30 15:34 701 Calched 114:0	28	15:32	68.4						
30 15:34 701 Cal Chech 114:0	29	15:33	68.5						
	30	15:34	701						Cal Check 114:0

TOTAL Leq =

SUBSET Leq =

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PROJECT: PTC 320-326

JOB NO .: 301940

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MONITORING SITE LOG

NOISE STUDY AREA ID:	NSA-S8	MEASUREMENT SITE NO .: 5T-24
ADDRESS:	Glenhardic	Condos (Georg. Warkyte)
OWNER:		
DESCRIPTION:	Condo comple	Υ <u></u>
NOISE SOURCES:	Turnpike	1422
NOISE MONITOR:	16870 #5	S/N:
MICROPHONE:		S/N:
CALIBRATOR:		S/N:
TEMP. RANGE (°F):	30	WEATHER CONDITIONS: Overcast
SITE SKETCH: Show Turn wind direction, where Turn	pike, homes, local rc pike is in cut, at grad	bads, reference distances, arrows for North & e, elevated, where direct lines of sight exist.
N		
	TURNPIKE	
	2	Phistory NI Darrier
	BLOT	~~ \ \ a \ \ 7
Tur	npiko vaise~	15° about
8	reasurement sil	
	ard glong ed	so it parement
- T.	des visible	in WB directus.
	a stately and	He FR
- (a)	2 to 1 to Carl 2003	

PENNSYLVANIA TURNPIKE MILEPOST 320-326 SHORT-TERM NOISE MEASUREMENT DATA SHEET

PROJECT & SITE NO.: PTC- 320-326 ST-24 PERSONNEL: JAC LOCATION/ADDRESS: Glenhardie Condons (George Warhunke) DATE: 2/1/07

<u> </u>	Meas'd Leq (dBA)	√ or X	Autos	Medium Trucks	Heavy Trucks	Other Noise Sources	COMMENTS (Include Calibration Data)
15:13	62.7						Drc-ca 114.0
15:14	63.4						Dost-ral 113.8
15:15	61.8					· · ·	
15:14	67.0						
15:17	62.3						
15:18	64.8						Jake Brake (loud)
151 19	63.6					· · · · · · · · · · · · · · · · · · ·	
15:20	62.2						
15:21	61.2					٤	же.
15:22	61.4						π.
15:23	61.6						aver Aight
15:24	61.7						• •
15:25	62.8	·.				19 - C.	
15:26	60.0	·	· .				
15:27	63.0						
15:28	62.7						
15:29	63.6					·	
15:30	45.1		· .				Jak Brake
15:31	63.0		÷				
15:32	60.7					.*.	
						· .	
				· ·			
						-	
	: :						
	$\begin{tabular}{ c c c c } \hline Minute Period Starting \\ \hline Period Starting \\ \hline Start$			$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

TOTAL Leq =

SUBSET Leq =

 $\sqrt{}$ = Other sources contributed to Leq X = Exclude period - contaminated by non-characteristic sources >> ADD SKETCH AND WEATHER CONDITIONS TO REVERSE OR OTHER SHEET <<

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	NSA-SI	START TIME:	10:00an
MEASUREMENT SITE NO.	: ST-1	END TIME:	10:30ac
ADDRESS/DESCRIPTION:	Just west of Nowell'S Rd.	DATE:	1131/07
	nn westbaundside	PERSONNEL:	BC
	Mananda ana ang kananda kata kata kata kata kata kata kata ka		
Roadway		w્યદ્ધ DIRECTION 1	East DIRECTION 2
First Sample (<u>5</u> minutes)			
10:00am	Automobiles	71	
	Medium Trucks (6 Tires)	3	
	Heavy Trucks (>6 Tires)	17	
Poodwov			
Second Sample (<u>5</u> minutes) Start Time:			
0:02	Automobiles	****	65
	Medium Trucks (6 Tires)		2
	Heavy Trucks (>6 Tires)		12
Roadway: Third Sample (<u>5</u> minutes) Start Time:			
10:20	Automobiles	65	
	Medium Trucks (6 Tires)	6	
``	Heavy Trucks (>6 Tires)	16	
Roadway: Fourth Sample (<u>5</u> minutes) Start Time:			
10:25	Automobiles	and the second se	67
, *	Medium Trucks (6 Tires)		6
	Heavy Trucks (>6 Tires)		16

Notes: Traffic free flowing

	\sim \sim	
	PROJEC JOB NO.:	T:
PENNSYLVANIA TU TRAFFIC S	RNPIKE MILEPOST PEED DATA SHEET	320-326 Г
ASSESSMENT AREA ID: NSA	SI DATE	1/31/07
MEASUREMENT SITE NO .: ST-	PERSONNEL	38
	Time OR	Speed
First Sample	EASTBOUND	WESTBOUND
Roadway: 76	1. 5.21	1. 5,99
Start Time: 10110am	2 6.24	2. 5.40
End Time: $10^{2}20\alpha \pi$	3. 6.35	3. 6.33
· · · · · · · · · · · · · · · · · · ·	4. 5.79	4. 5.42
If "Time," provide distance OR measurement endpoints: いいがかつ のか	5.	5. 5.54
heidro abo Havells Rol to mile	£	6 5.77
make an participation in the	7	7 513
The TO SAU THEY OF DICK	/'	5.92
		- <u> </u>
	J.	- <u> </u>
	10.	_ 10
Second Sample	EASTBOUND	WESTBOUND
Roadway:	1	1
Start Time:	2	2
End Time:		3
	4	4
measurement endpoints:	5.	5
	6.	6.
	7	7.
	8.	8.
	9	9
		10
	·····	

......

HARRIS MILLER MILLER & HANSON INC.

1

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	NISA-M	START TIME:	11:03 cm
MEASUREMENT SITE NO .:	ST-2	END TIME:	11:3 3am
ADDRESS/DESCRIPTION:	At ST-2 locotion	DATE:	1/31/07
		PERSONNEL:	BC
	<u>در الم</u>	-	
Roadway		DIRECTION 1	EAST DIRECTION 2
First Sample (<u>5</u> minutes)			
Start Hine. 11:03am	Automobiles	69	-
	Medium Trucks (6 Tires)	6	
	Heavy Trucks (>6 Tires)	23	
Roadway: Second Sample (<u>S</u> minutes) Start Time: ((:0) ao			
	Automobiles		65
	Medium Trucks (6 Tires)		6
	Heavy Trucks (>6 Tires)		15
Roadway: Third Sample (<u>20</u> minutes) Start Time:			
	Automobiles	SP 232	
	Medium Trucks (6 Tires)	26	
	Heavy Trucks (>6 Tires)	104	
Roadway: Fourth Sample (<u>M</u> minutes) Start Time:			
CP:11	Automobiles		183
	Medium Trucks (6 Tires)		8
	Heavy Trucks (>6 Tires)		35

Notes: Traffic Free flowing

(3

PROJECT: <u><u><u>P</u>TC 320-326</u> JOB NO.:</u>

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	NISA-SI	START TIME:	11:53
MEASUREMENT SITE NO .:	ST-3	END TIME:	12:23
ADDRESS/DESCRIPTION:	AL ST-2 Site	DATE:	1/31/07
	<u>- Eilijakan Tanén dén - 48 - 6 Anno - 1999</u>	PERSONNEL:	BC
	<u></u>		
Roadway:		DIRECTION 1	DIRECTION 2
First Sample (<u></u> minutes)			
Start 11110. 11:53 am	Automobiles	qq	
	Medium Trucks (6 Tires)	9	
	Heavy Trucks (>6 Tires)	37	
Roadway: Second Sample (minutes)			
12:00 pm	Automobiles		93
	Medium Trucks (6 Tires)		a
	Heavy Trucks (>6 Tires)		21
Roadway: Third Sample (<u></u> minutes) Start Time:			
12:07 pm	Automobiles	92	
٩	Medium Trucks (6 Tires)	8	
	Heavy Trucks (>6 Tires)	39	
Roadway: Fourth Sample (<u>S</u> minutes) Start Time:	·		
12.15 pm	Automobiles		100
v	Medium Trucks (6 Tires)	· · · · · · · · · · · · · · · · · · ·	3
	Heavy Trucks (>6 Tires)		15

Notes: Traffic free-flowing

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	NISA-N2	START TIME:	3:52
MEASUREMENT SITE NO .:	ST-4	END TIME:	4:22
ADDRESS/DESCRIPTION:	White Dor Treil	DATE:	1/31/07
		PERSONNEL:	RC
	••••••••••••••••••••••••••••••••••••••		
Roadway:		Wes DIRECTION 1	east DIRECTION 2
First Sample (<u>*</u> minutes)			
3:52 pm	Automobiles	172	
	Medium Trucks (6 Tires)	4	
	Heavy Trucks (>6 Tires)	33	
Roadway: Second Sample (minutes)		2.	
Sisypm	Automobiles		146
	Medium Trucks (6 Tires)		8
	Heavy Trucks (>6 Tires)		15
Destudy			
Third Sample (minutes)			
4:06 pm	Automobiles	202	
	Medium Trucks (6 Tires)	8	
	Heavy Trucks (>6 Tires)	24	
			······································
Roadway: Fourth Sample (minutes)			
4:14 pm	Automobiles		159
ų	Medium Trucks (6 Tires)	· · · · · · · · · · · · · · · · · · ·	7
	Heavy Trucks (>6 Tires)		29

Notes: Traffic Ana-Flauing

6

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	NISA-N2	START TIME:	2:590m
MEASUREMENT SITE NO.:	ST-5	END TIME:	3:2900
ADDRESS/DESCRIPTION:	White Deer Trail	DATE:	1/31/07
		PERSONNEL:	BC
	••••••••••••••••••••••••••••••••••••••		
Roadway:		West DIRECTION 1	east DIRECTION 2
First Sample (<u>+</u> minutes)			
257pm	Automobiles	121	
	Medium Trucks (6 Tires)	6	
	Heavy Trucks (>6 Tires)	27	
· 			
Roadway: Second Sample (<u>T</u> minutes)			
3:06 pm	Automobiles		106
	Medium Trucks (6 Tires)		10
	Heavy Trucks (>6 Tires)		22
Roadway:			
Start Time:			
3:13pm	Automobiles	167	
	Medium Trucks (6 Tires)	7	
	Heavy Trucks (>6 Tires)	31	
Deedword			
Fourth Sample (<u>8</u> minutes) Start Time: 7 c At			
sidlpm	Automobiles		162
	Medium Trucks (6 Tires)		6
	Heavy Trucks (>6 Tires)		22

Notes: Traffic free-flowing

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	NSA-SI	START TIME:	2:09pm
MEASUREMENT SITE NO .:	ST-6	END TIME:	2:39pm
ADDRESS/DESCRIPTION:	White Door Frith	DATE:	1/31/07
		PERSONNEL:	BE
Deadwov		DIRECTION 1	east- DIRECTION 2
First Sample (<u>7</u> minutes) Start Time: <u>2:09</u>		<i>~0</i>	
	Automobiles	99	
	Medium Trucks (6 Tires)	5	
	Heavy Trucks (>6 Tires)	_28	
Roadway: Second Sample (<u>1</u> minutes)			
2:16pm	Automobiles		108
·	Medium Trucks (6 Tires)	••••••••••••••••••••••••••••••••••••••	8
	Heavy Trucks (>6 Tires)		20
Roadway: Third Sample (minutes)			
2:23 m	Automobiles	118	
	Medium Trucks (6 Tires)	5	
	Heavy Trucks (>6 Tires)	45	
Roadway:			
Fourth Sample (<u>></u> minutes) Start Time: 2:31em			
	Automobiles		
	Medium Trucks (6 Tires)		7
	Heavy Trucks (>6 Tires)		30

Notes: Traffic free flowing

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	NSA-52	START TIME:	8:57 cm
MEASUREMENT SITE NO .:	ST-7	END TIME:	9:27 am
ADDRESS/DESCRIPTION:	White Dear Trail	DATE:	2/1/07
		PERSONNEL:	20
Roadway.		DIRECTION 1	DIRECTION 2
First Sample (<u>5</u> minutes) Start Time: 8:570m			
	Automobiles	100	
	Medium Trucks (6 Tires)	7	······
	Heavy Trucks (>6 Tires)	17	
Roadway: Second Sample (<u>5</u> minutes) Start Time: Start			
1.02am	Automobiles		115
	Medium Trucks (6 Tires)		3
	Heavy Trucks (>6 Tires)		22
Destaura			
Third Sample (5 minutes) Start Time: $0/7$			
111700	Automobiles	75	
	Medium Trucks (6 Tires)	5	
	Heavy Trucks (>6 Tires)	27	
Deedway			
Fourth Sample (5 minutes) Start Time: 9:12am			
	Automobiles		94
	Medium Trucks (6 Tires)		9
	Heavy Trucks (>6 Tires)		28

	PROJECT: JOB NO.:	PTC 320-326
PENNSYLVANIA TURNPIKE TRAFFIC SPEED D	MILEPOST 32 ATA SHEET	20-326
ASSESSMENT AREA ID: <u>NSA-52</u>	DATE: _	2/1/07
MEASUREMENT SITE NO.:ST-7	PERSONNEL: _	BC
Coost.	Time OR	Speed
First Sample	EASTBOUND	WESTBOUND
Roadway:76 1	3.50	1. 3.10
Start Time: 9:08 40 2.	3.69	23.\$90
End Time: $9i\mu am$ 3.	2.94	3. 3.81
- diamondside 4.	3.28	4. 206
If "Time," provide distance OR on about " measurement endpoints: <u>Call box About U</u> , 5.	3,50	5. 3.50
Valley Rd. underpass to 2001 house west of 6.	3.50	6. 3, 88
bridge on the south side of 76. 7.	3.50	7. 3.47
	3,10	8. 3.53
9	3.54	9. 3.38
10	3.66	10. 3.25
Second Sample	EASTBOUND	WESTBOUND
Roadway: 76 1.	3.28	1. 3.50
Start Time: 9/146m - 2.	3.72	2. 3,29
End Time: 9:17a.m. 3.	2.62	3. 3.28
4	3.60	4. 4.00
If "Time," provide distance OR measurement endpoints: Same as a boby 6.	3.87	5. 3,75
6.		6.
7.		7.
8		8.
	1	
9		9

2

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	NSA-N3	START TIME:	9:48am
MEASUREMENT SITE NO .:	ST-8	END TIME:	10:180m
ADDRESS/DESCRIPTION:	White Deer Trail	DATE:	21107
and the second	· · · · · · · · · · · · · · · · · · ·	PERSONNEL:	BC
Roadway:	anna ann an Anna ann ann ann ann ann ann	DIRECTION 1	DIRECTION 2
First Sample (<u>5</u> minutes)			
7:48am	Automobiles	51	
	Medium Trucks (6 Tires)	2	
	Heavy Trucks (>6 Tires)	13	
Roadway:			
Second Sample (<u>5</u> minutes) Start Time:			
9.53am	Automobiles		73
1.58	Medium Trucks (6 Tires)		7
	Heavy Trucks (>6 Tires)		16
Roadway:			
Third Sample (<u>5</u> minutes)			
10:08am	Automobiles	71	
	Medium Trucks (6 Tires)	6	
	Heavy Trucks (>6 Tires)	20	
Poodwov			
Fourth Sample (<u>5</u> minutes) Start Time: (<u>13</u> cm			
10 H261	Automobiles		52
	Medium Trucks (6 Tires)		
	Heavy Trucks (>6 Tires)		25

t00 🕅

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	N3A-N3	START TIME:	2:210m
MEASUREMENT SITE NO .:	ST-9	END TIME:	2:41000
ADDRESS/DESCRIPTION:	Miller, orenasi	DATE:	2/1/07
	facing west	PERSONNEL:	BC
			<u></u>
Roadway:		DIRECTION 1	Cas J DIRECTION 2
First Sample (<u></u> minutes)			
2:21pm	Automobiles	58	
v	Medium Trucks (6 Tires)	3	
	Heavy Trucks (>6 Tires)	20	
Roadway: Second Sample (5 minutes) Start Time:			
2.20pm	Automobiles		77
8	Medium Trucks (6 Tires)		2.
	Heavy Trucks (>6 Tires)		17-
Roadway: Third Sample (<u>5</u> minutes) Start Time:			
2:31pm	Automobiles	82	
10	Medium Trucks (6 Tires)	8	
	Heavy Trucks (>6 Tires)	26	· · ·
Roadway: Fourth Sample (<u>5</u> minutes)			
2:36pm	Automobiles		76
	Medium Trucks (6 Tires)		2
	Heavy Trucks (>6 Tires)		22
	······································		

				PROJECT JOB NO.:	: <u>P</u>	TC 320-326		
PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC SPEED DATA SHEET								
ASSESSMENT	AREA ID:	NSA-L	13	DATE		2/1/07		
MEASUREMENT	SITE NO.:	<u>st-9</u>		PERSONNEL		BC		
		99 (19) (19) (19) (19) (19) (19) (19) (1	Ń	Time OR		Speed		
First Sample		<i>.</i>		EASTBOUND		WESTBOUND		
	Roadway:		1		_ 1.			
• ·	Start Time:		2		2.			
	End Time:		3.		3.			
			4.					
If "Time," provide d measurement	istance OR : endpoints:		5.					
	1- 11	po speed	6.		- 6.	<u></u>		
fac	ST-10			<u> </u>	- ··· 7.1			
			8.		—, , 8			
			 9	••••••••••••••••••••••••••••••••••••••	- °' 9			
			~ - 10	7	- ^{0.}			
х.	,		ιų. 	<u></u>		······································		
Second Sample		· . ·	•	EASTBOUND		WESTBOUND		
	Roadway:		1		1.			
	Start Time:		2		2.			
	End Time:		3	······	3.			
			4	2001 - J. J. J. J. J. M. A. J. J. 2101 - J	4.	-		
neasurement	endpoints:		5		5.			
			6.		6.			
	- Country for a front for the former of the former of the		7.		- 7.	·		
			8.		- 8.			
			9.					
					- ⁰¹ 10	·····		
•					······································			

i. Co

 (\cdot)

PROJECT: <u>PTC 320-326</u> JOB NO.:

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	NSA-53	START TIME:	1:37pm
MEASUREMENT SITE NO .:	st-10	END TIME:	2103pm
ADDRESS/DESCRIPTION:	MillRd. overpass	DATE:	2/1/07
	Facine west	PERSONNEL:	RC
	J	-	
Roadway:		Uest DIRECTION 1	DIRECTION 2
First Sample (minutes)			
1:33pm	Automobiles	86	
	Medium Trucks (6 Tires)	3	
	Heavy Trucks (>6 Tires)	22	
Roadway:			
Second Sample (<u></u> minutes) Start Time:			
1:38pm	Automobiles	******	72
	Medium Trucks (6 Tires)		7
	Heavy Trucks (>6 Tires)		21
Roadway:			
Third Sample (<u>7</u> minutes) Start Time:			
1:53pm	Automobiles	83	
	Medium Trucks (6 Tires)	4	
	Heavy Trucks (>6 Tires)	25	
Roadway: Fourth Sample (minutes) Start Time:			
1:58pm	Automobiles		52
	Medium Trucks (6 Tires)		2
	Heavy Trucks (>6 Tires)		18

TURN- PIKE	n an	PROJECT JOB NO.:	: <u>PTC 320-326</u>					
PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC SPEED DATA SHEET								
ASSESSMENT AREA ID: MEASUREMENT SITE NO.:	NSA-53 ST-10	DATE:	<u>2/1/07</u> 					
an a		Time OR	Speed					
First Sample		EASTBOUND	WESTBOUND					
Roadway:	76	1. 9.72	1. 10.84					
Start Time:	1:93 pm	2. 9.78	2. 9.22					
End Time:	1:53 pm	3. 9.84	3. 11.10					
		4. 8.97	4. 10.57					
If "Time," provide distance OR measurement endpoints: <u>p</u>	meas SF-12	5. 9.69	5. 9,29					
		6. <u>10,16</u>	6. 10.35					
	·	7. 9.34	7. 9.41					
		8. 10.06	8 10.53					
· · · · · · · · · · · · · · · · · · ·		9. 8.56	9. 9.94					
	,	10. 9.40	10. 9.69					
Second Sample		EASTBOUND	WESTBOUND					
Roadway:		1	1					
Start Time:		2						
End Time:		3	3.					
If "Time," provide distance OR		4.	4.					
measurement endpoints:	· · · · · · · · · · · · · · · · · · ·	5	5					
		6	6					
		7.	7.					
		8	8					
		9.	9					
		10.	10.					

PROJECT: MC 320 326 JOB NO.:

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID: MEASUREMENT SITE NO.: ADDRESS/DESCRIPTION:	N5A-53 ST-11	START TIME: END TIME: DATE: PERSONNEL:	11:36 21:58 21107 SCISES
Roadway: <u>5-14</u> First Sample (<u>5</u> minutes) Start Time: 11.3 (6	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)	DIRECTION 1	DIRECTION 2
Roadway: Second Sample (<u>5</u> minutes) Start Time:	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		52
Roadway: Third Sample (Start Time:	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)	70 3 32	
Roadway: Fourth Sample (<u>5</u> minutes) Start Time: 1153	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		764

PROJECT: JOB NO.:	PTC 300326
IKE MILEPOST 3 D DATA SHEET DATE: PERSONNEL:	20-326 2/1/07 SC/SES
Time OR	Speed
EASTBOUND $ $	WESTBOUND 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
EASTBOUND 1. 2. 3. 4. 5. 6. 7. 8. 9. 10	$\frac{\text{WESTBOUND}}{1. 4.9}$ 1. 4.9 2. 3.72 3. 3.96 5. 3.66 6. 4.0 7. 4.40 7. 4.40 8. 2.58 9. 4.62 10. 3.09
	PROJECT: JOB NO.: KE MILEPOST 3 DATE : PERSONNEL: Time OR <u>EASTBOUND</u> 1 3 4 5 6 7 8 9 10.

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	NSA-14	START TIME:	10:40cm
MEASUREMENT SITE NO .:	ST-12	END TIME:	11:10 gm
ADDRESS/DESCRIPTION:	on mill Rol overbass	DATE:	2/1/07
	facing west	PERSONNEL:	BC
Roadway:		west DIRECTION 1	رمی)۔ DIRECTION 2
First Sample (<u>5</u> minutes) Start Time: 10:4000		~	
	Automobiles	57	
	Medium Trucks (6 Tires)	4	
	Heavy Trucks (>6 Tires)	26	
Roadway: Second Sample (<u>5</u> minutes) Start Time: 10'45			
14.70	Automobiles		57
	Medium Trucks (6 Tires)	· .	4
	Heavy Trucks (>6 Tires)		22
Roadway: Third Sample (minutes)			
11:00am	Automobiles	52	
	Medium Trucks (6 Tires)	3	
	Heavy Trucks (>6 Tires)	36	
Roadway: Fourth Sample (<u></u> minutes) Start Time:			
11:05 417	Automobiles		72
	Medium Trucks (6 Tires)		9
	Heavy Trucks (>6 Tires)		21

TURN- PIKE		PROJECT JOB NO.:	: PTC 320-326
PENNSYLV	ANIA TURNPI AFFIC SPEEI	KE MILEPOST D DATA SHEET	320-326
ASSESSMENT AREA ID:	NSA-NY	DATE	:
MEASUREMENT SITE NO .:	57-12	PERSONNEL	: <u>BC</u>
· · · · · · · · · · · · · · · · · · ·			
	. [Time OR	Speed
First Sample		EASTBOUND	WESTBOUND
Roadway		1. 10.88	1. 9.78
Start Time:	10:50am	2 10.25	2 9.75
End Time:	11:0000	3 9.78	3 10.68
		4 10.10	4. 9.38
If "Time," provide distance OR	upstom tide	5 9,10	5 9.72
al measurement enopointe.	all offame.	6 903	6 10.04
OF MINER DRAF TO BIOSE	min of the	7 937	7 8.94
TRAC (ACCES) NO UN LOOP O	WO SHOW DA TO	e 11.19	8 10.81
		· 10.78	0 10 03
		10 10.71	10 11.44
		$10 - \frac{10 \cdot 51}{10 \cdot 51}$	11
6		EASTBOUND	WESTBOUND
Second Sample			4
Roadway:	wasaning	1.	
Start Time:		Z	Z
End Time:		3	
If "Time," provide distance OR		4.	4
measurement endpoints:		5	5
		6	6.
		7	7
		8	8
		9	9
		10	10

 $\cdot \gamma$

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	NSA-NY	START TIME:	11:19am
MEASUREMENT SITE NO .:	PT-13	END TIME:	11:49am
ADDRESS/DESCRIPTION:	Mill Rd. Overpari	DATE:	2/1/07
	facine west.	PERSONNEL:	BC
	<u> </u>		
		WA	east
Roadway:		DIRECTION 1	DIRECTION 2
First Sample ($\frac{5}{100}$ minutes) Start Time: $\frac{1}{100}$			
11. Cum	Automobiles	65	
	Medium Trucks (6 Tires)	6	
	Heavy Trucks (>6 Tires)	35	
Roadway: Second Sample (<u>5</u> minutes) Start Time: <u>111 2 4</u> 4			
11.2 1.4	Automobiles		66
	Medium Trucks (6 Tires)		6
	Heavy Trucks (>6 Tires)		17
Roadway: Third Sample (minutes) Start Time:			н С
$((\cdot \circ (ur))$	Automobiles	63	
	Medium Trucks (6 Tires)	4	
	Heavy Trucks (>6 Tires)	29	
Roadway: Fourth Sample (<u>5</u> minutes) Start Time: <u>11:444</u> cm			
	Automobiles		73
	Medium Trucks (6 Tires)		
	Heavy Trucks (>6 Tires)		21

PENNSYLVANIA TRAFFI	TURNPIKE C SPEED I	PI JC E MILEI DATA S	ROJECT: DB NO.: POST 3 SHEET	 20-:	TC 320-326
ASSESSMENT AREA ID:	15A-N4_	<u> </u>	DATE:		2/1107
MEASUREMENT SITE NO .:	-13	_ PERS	ONNEL:		BC
	V	Time	OR .		Speed
First Sample		EASTE	BOUND	• .	WESTBOUND
Roadway:	1.	10.1	59	1	10.88
Start Time:	9600 2.)	2.	10,75
End Time:1123	<u>9am 3.</u>	9.2	<u> </u>	3.	11.69
	4.	10.	18	4	9.88
If "Time," provide distance OR measurement endpoints: <u>Same a</u>	<u>J ST-12</u> 5.	10.0	78	5.	9.88
	6,	9.7	8	6	11.09
	7.	9.4	1	7,	11.00
	. 8.	9.4	0	8	10.56
	9.	10.0	6	9.	10.73
	10.	<u> </u>	73	10.	9,59
Second Sample		EASTE	BOUND		WESTBOUND
Roadway:	1.	·		1	
Start Time:	2.	1		2.	
End Time:	3.			3	
If "Time" provide distance OB	4.			4	
measurement endpoints:				5.	
	6.			6	·····
	7.	L		7	1
	8.		- 18.000-10.000-00-00-00-00-00-00-00-00-00-00-00-0	8	
	. 9.			9.	
	10.			10.	

900 🕅

2

- 7

STRAUGHAN ENVIRONMENTAL

PROJECT: PTC 326 326 JOB NO.:

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	NSA-35	START TIME:	10:380-
MEASUREMENT SITE NO .:	58-19	END TIME:	11:01
ADDRESS/DESCRIPTION:		DATE:	2/1/07
	Parter 1971	PERSONNEL:	Sc/SES
			ž
~ ~11		DIRECTION 1	DIRECTION 2
Roadway: First Sample (minutes)		KAB -	V.S
Start Time:		11 (13)	
10"3 0 cm	Automobiles		
	Medium Trucks (6 Tires)	<u> </u>	
	Heavy Trucks (>6 Tires)		
Roadway: 5 Second Sample (<u>5</u> minutes) Start Time:			
10194	Automobiles		63
	Medium Trucks (6 Tires)		
	Heavy Trucks (>6 Tires)		22
	·····,		
Roadway: Third Sample (minutes)	••••••••••••••••••••••••••••••••••••••		1902
0190	Automobiles	and the second	
19 	Medium Trucks (6 Tires)		
	Heavy Trucks (>6 Tires)	17	
Roadway:			
Start Time:			
10,56	Automobiles		46
3, 99	Medium Trucks (6 Tires)		6
	Heavy Trucks (>6 Tires)		26
	- /		

PENNA TURN- PIKE			PROJEC JOB NO.:	Г: <u>р</u>	6300 326
PENNSY	LVANIA TURN TRAFFIC SPE	PIKE ED D	MILEPOST ATA SHEET	320-	326
ASSESSMENT AREA MEASUREMENT SITE N	ND: <u>NSA-55</u> NO.: <u>57-14</u>		DATE PERSONNEL	:	11/07 c/SES
	алынан талан аланды шаларын талар таларын талар та	X	Time OR		Speed
First Sample			EASTBOUND		WESTBOUND
Roadv	vay: 5-76	1.	3,50	1.	
Start Ti	me: \\.3		3.49	- 2.	*****
End Ti	me:	3	3.84	3.	
If "Time" provide distance		4	<u> </u>	4.	
measurement endpoi	nts:	5	4.33	5.	
There is a mark a first	1 Stry Yr cont. Cla	<u>~</u>	2.43	6.	
to the the day of	en (gewin 5-16)	<u>(5)</u> 7	<u> </u>	7.	1775-111-1177-117-1177-1177-1177-1177-1
	~	^{8.} _	4.44	<mark> 8</mark>	
	95 82	9	4,07	9.	
	(5)	10		10	
Second Sample			EASTBOUND		WESTBOUND
Roadw	/ay:	1		1.	4.70
Start Tir	ne:	2		_ 2.	4.13
End Tir	me:	3		3.	<u> </u>
If "Time " provide distance	OR	4		⁴	
measurement endpoir	nts:	5		5	4.91
		6		6.	- <u>(</u> %))
		7		7	4.0
		8		8	<u>4:00</u>
		9		9.	1.613
		10		10	

PROJECT: <u>PFE320326</u> JOB NO.:

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID: MEASUREMENT SITE NO.: ADDRESS/DESCRIPTION:	<u>NSA-56</u> 57-15	START TIME: END TIME: DATE: PERSONNEL:	9:48 a # 19:14 21107 50/5ES
Roadway: <u>1-16</u> First Sample (minutes) Start Time: 9:46	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)	DIRECTION 1	DIRECTION 2
Roadway: Second Sample (<u>5</u> minutes) Start Time:	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		163 3 35
Roadway: Third Sample (<u>5</u> minutes) Start Time: 	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		
Roadway: Fourth Sample (<u>5</u> minutes) Start Time: 10106 m	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		70 9 19

TI	RAFFIC SPE	ED D	ATA SH	EET		. 1
ASSESSMENT AREA ID:	NSA-56			DATE:	-21	11/07
MEASUREMENT SITE NO.:	272		PERSO	NNEL:	<u>SC</u>	<u>/585</u>
		\boxtimes	Time	OR		Speed
First Sample			EASTBO	UND		WEST
Roadway:	5-76	1	5.2	7	1.	
Start Time:	10:130.0	2	U 9.(2.	
End Time:	BUS	3	Q 9		3.	
If "Time," provide distance OR		4	38		4	
measurement endpoints:	9	^{5.}	<u> </u>		^{5.} -	
	W	^{6,}	* * * * *	- -	^{6.} -	
		' 8		-7	۲. <u>-</u> 8	
		9. –	- <u>A</u> . A.		9. –	
	810	10.		à A	10.	
Second Sample			EASTBO	UND		WEST
Roadway:		1			1	San A
Start Time:	10:19	2			2.	
End Time:	10/83	3			3	U.
If "Time" provide distance OP		4			4	and the second se
measurement endpoints:		5			^{5.} _	<u> </u>
		6			6	
		7			7	
		8			^{8.} _	
		9.			9.	4

PROJECT: <u>PTC320-326</u> JOB NO.:

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID: MEASUREMENT SITE NO.: ADDRESS/DESCRIPTION:	NSA - NS 57-16	START TIME: END TIME: DATE: PERSONNEL:	108 130 21107 5015ES
Roadway: <u>J-76</u> First Sample (<u>5</u> minutes) Start Time:	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)	DIRECTION 1 EB	DIRECTION 2
Roadway: Second Sample (<u>5</u> minutes) Start Time: <i>MM</i>	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		81 AS
Third Sample (<u>5</u> minutes) Start Time:	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)	105 3 AG	
Roadway: Fourth Sample (<u>5</u> minutes) Start Time: <i>Q125</i>	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		87 4 22

TURN- PIKE	PROJECT: JOB NO.:	PTC 320 326
PENNSYLVANIA TURN TRAFFIC SPE	PIKE MILEPOST 3 ED DATA SHEET	20-326
ASSESSMENT AREA ID: N5A-N5 MEASUREMENT SITE NO.: 57-10	DATE: PERSONNEL:	2/1/07 50/57 5
	Time OR	Speed
First Sample Roadway:		WESTBOUND 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
Second Sample	EASTBOUND	WESTBOUND
Roadway:	1	1
Start Time:	2	2.
End Time:	3	3
If "Time," provide distance OR	4	4
measurement endpoints:	5	5.
	6	6.
	7	7
	8	8
	9	9
	10	10

PROJECT: <u>PTC-370-376</u> JOB NO.:

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

IVO CI	ngestion		
ASSESSMENT AREA ID: MEASUREMENT SITE NO.: ADDRESS/DESCRIPTION:	NSA-57 57-17	START TIME: END TIME: DATE: PERSONNEL:	1/31/07 50/SES
Roadway: J-76 First Sample (<u>5</u> minutes) Start Time: 5/03 PM	Automobiles	DIRECTION 1	DIRECTION 2 FB
Roadway:	Heavy Trucks (>6 Tires)	18	
Start Time: 5108	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		
Roadway: Third Sample (<u>5</u> minutes) Start Time: <u>5</u> 114	Automobiles Medium Trucks (6 Tires)	J beef bauf	
Roadway: Fourth Sample (<u>5</u> minutes)	Heavy Trucks (>6 Tires)		
5;20	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		105 13 13
Notes:	Mithaess-national and the detection of the and the providence of the second second second second second second		9019620491009910204910990062094920920920920920942094209420942094209

site for Alex & Stelle on the 31st	. · ·	
	PROJECT: JOB NO.:	
PENNSYLVANIA TURN	NPIKE MILEPOST 320-326	
TRAFFIC SPE	EED DATA SHEET	
ASSESSMENT AREA ID:	DATE: <i>1/31/07</i>	; ;
MEASUREMENT SITE NO .:	ST-17 PERSONNEL: BC	
	Time OR Speed	
Eirot Sampla	EASTBOUND WESTBOUND	
$\frac{1}{1} \frac{1}{2}$	1 5.21 , 00000055	-4
Start Time: 5.10 a.	2 5.56 , 5.91	4 L
End Time: 5:18 pm	3. 5,35 3. 5,63	
	4 5.77 4 5.44	
If "Time," provide distance OR measurement endpoints: East end of	5 5.42 5 6.15	
motoresche blacktop to westerd of	e. <u>4.42</u> e. <u>6. 37</u>	
sunaro gas station roof.	7. 5.22 7. 6.7.7	
of the other make and one in from my ulker point	nivert 8.5,37 (000) 8 5,64	
	$\begin{array}{c} 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	
	$10. \bigcirc , 07 10. \bigcirc , 7 \\ \frown $	
Second Sample	EASTBOUND WESTBOUND	
Roadway:	. 1 1.	
Start Time:	2 2.	
End Time:	3 3 3	
If "Time " provide distance OR	4 4	
measurement endpoints:	5 5	
	6 6	
۰ 	77.	
	8 B	
	9 9	
	10 10	

PROJECT: <u>PTC-320-326</u> JOB NO.:

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESS	MENT AREA ID:	NSA-57	START TIME:	4:00
MEASUR	EMENT SITE NO .:	ST- K	END TIME:	4123
ADDRES	S/DESCRIPTION:		DATE:	1/31/07
			PERSONNEL:	52/55
	5110		DIRECTION 1	DIRECTION 2
Roadway: First Samp	le (5 minutes)		WB	t <u>e</u> br
Start Time:	, <u>,</u> , , , , , , , , , , , , , , , , ,		DL	
	N' M	Automobiles	13-1	
		Medium Trucks (6 Tires)	5	
		Heavy Trucks (>6 Tires)	1/	
	<i>"</i>			
Roadway: Second Sar Start Time:	mple (minutes)			
	4:00	Automobiles		105
	N	Medium Trucks (6 Tires)	 	<u> </u>
		Heavy Trucks (>6 Tires)		
Roadway:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Third Samp	le (minutes)		A	
Start Time:	412	Automobiles	141	
	& · ·	Medium Trucks (6 Tires)		
		Heavy Trucks (>6 Tires)	-19	······
	free.		·	
Roadway:	nle (⁵ minutes) ·			
Start Time:	pie (initiated)			1 0.01
	HUK	Automobiles		103
	ş	Medium Trucks (6 Tires)		4
		Heavy Trucks (>6 Tires)		and the second second
				1845

PENNA TURN-	PROJECT: JOB NO.:	PTC-320-326
PENNSYLVANIA TURN TRAFFIC SPE ASSESSMENT AREA ID: N5A-57 MEASUREMENT SITE NO.: 57-18	PIKE MILEPOST 3 ED DATA SHEET DATE: PERSONNEL:	20-326 1/31/07 3c/SES
	Time OR	Speed
First Sample	EASTBOUND	WESTBOUND
Roadway:	1	1. <u>3.72</u>
Start Time: <u></u>	2	2
End Time:	3	3. <u></u>
If "Time," provide distance OR	4	4. <u></u>
Bry y Parmeter U.B. (Mille (1))	5	5. <u> </u>
The Marsh. Stan	7	7 3,85
Weider Con	8.	8. 383
	9	9. 4.68 en slowed whi
3778	10	10
Second Sample	EASTBOUND	WESTBOUND
Roadway:	1	1
Start Time:	2	2
End Time: 4.36	3. 2.35	3
If "Time," provide distance OR	4	4
measurement endpoints:	<u> </u>	5
	- 6. <u>X(1)</u> 7 2 3 9	б
	- (8 339	۲ ۶
	9 <u>397</u>	99
	10. 3.94	10.
	10.	

PROJECT: <u>AC-320326</u> JOB NO.:

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	NSA-NG	START TIME:	12:05pm
MEASUREMENT SITE NO .:	55-19	END TIME:	12:42 pm
ADDRESS/DESCRIPTION:		DATE:	1/31/07
		PERSONNEL:	SUSES
			n de fanne fanne en anter an a
1 7/2		DIRECTION 1	DIRECTION 2
Roadway: J-JC/ First Sample (5 minutes)		WIS	B
Start Time:		Brance o	
14.0.26	Automobiles	<u> </u>	
	Medium Trucks (6 Tires)	5	
	Heavy Trucks (>6 Tires)	29	
	<i>Γ</i> ² ₂	0	
Roadway: Second Sample (<u>5</u> minutes) Start Time:		WB	
	Automobiles	53	
10 pm	Medium Trucks (6 Tires)	5	
8	Heavy Trucks (>6 Tires)	31	
	• • • •	••••••••••••••••••••••••••••••••••••••	
Roadway: Third Sample (5 minutes)			EB
1232	Automobiles		66
· · ·5%	Medium Trucks (6 Tires)		2
	Heavy Trucks (>6 Tires)		18
	heavy hucks (>0 hics)		
Roadway: Fourth Sample (<u>5</u> minutes)			EB
10177	Automobiloo		58
1 ** + _ } /	Automobiles		¥
	neavy Trucks (>6 TIRES)		<u> </u>
			ju 202

PENNA TURN- PIKE	PROJECT: JOB NO.:	PTC 370-376
PENNSYLVANIA TURNP TRAFFIC SPEE	IKE MILEPOST 320 ED DATA SHEET	0-326
ASSESSMENT AREA ID: <u>N 3A-N6</u> MEASUREMENT SITE NO.: <u>ST-19</u>	DATE: PERSONNEL:	13/07 SC/SES
	Time OR	Speed
First Sample	EASTBOUND	WESTBOUND
Roadway: 576	1. 980	I
Start Time: 0120 pM	2. 7.35	2
End Time: 13.36 pm	3. 8.27	3
)	4. 7.27	I
measurement endpoints:	5	5
els of 252 bridge to pud of motorcycle	66)
Walkhop Near Service Paza	7. 7.56	7
(also & third light pole for bridge) . FB	8. <u>5.69</u> 8	3
On South side - where the	9. <u>5.15</u>	9
Service Clower	10. 827 10)
CC CC		·
Second Sample	EASTBOUND	WESTBOUND
Roadway:	_ 1 <i>·</i>	5.81
Start Time: 12:20	2 2	2 7.80
End Time:2131	3 3	9.00
If "Time " provide distance OR	4	5.20
measurement endpoints:	5 8	5. 5.73
	6 6	5.50
7	7 7	· <u> </u>
	8 8	37.00
	9	. <u>Bisl</u>
	10 10)

PROJECT: <u>PTC 320 326</u> JOB NO.:

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID: MEASUREMENT SITE NO.: ADDRESS/DESCRIPTION:	NSA-57 57-20.	START TIME: END TIME: DATE: PERSONNEL:	2:52pm 2:55pm 1/31/87 SC/SES
Roadway: First Sample (Start Time: 0130		DIRECTION 1	DIRECTION 2
RIJd	Automobiles	61	
	Medium Trucks (6 Tires)		
	Heavy Trucks (>6 Tires)	21	
Roadway: <u>5</u> minutes) Start Time: 2:37	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		77 5 70
Roadway: <u>5</u> minutes) Start Time:		WB	
243	Automobiles		
Er z war	Medium Trucks (6 Tires)	0	
	Heavy Trucks (>6 Tires)	<i>Va</i>	
Roadway: <u>5</u> minutes) Start Time: 2150	Automobiles Medium Trucks (6 Tires)		EB 78 3
	Heavy Trucks (>6 Tires)		10

PENNA TURN- PIKE		PROJECT JOB NO.:	PTC-320-326
PENNSYLVANIA TUR TRAFFIC SI	RNPIKE PEED D	MILEPOST 3 ATA SHEET	320-326
ASSESSMENT AREA ID: N54-5 MEASUREMENT SITE NO.: 51-20	<u>}</u>	DATE: PERSONNEL:	1/3/107 SC/SES
·	X	Time OR	Speed
First Sample		EASTBOUND	WESTBOUND
Roadway:70	1.		1
Start Time: 3.02pm	2.		2. 3.47
End Time:3',64';30	<u> </u>		3. <u>3,</u> 36
If "Time " provide distance OR	4. <u>-</u>		4. 3.76
measurement endpoints: From break	5		<u>5</u>
perement on WBL Month side to sign	6		6. 3.41
Cossing Rd (49) brity)	7		<u>3,25</u>
	8.		_ 8. <u></u> 8.
	^{9.} _		9. <u>3. 42</u>
	10.		10. 3.46
Second Sample		EASTBOUND	WESTBOUND
Roadway:	1	4.34	1
Start Time: <u>3:05</u>	<u> </u>	3.64	2
End Time: 3:0 9 5	<u>M3</u>	2.99	3
If "Time" provide distance OP	4	3.24	4
measurement endpoints:	5	3.00	5
۳۵ 	6	2.99	6
	7	4.12 CrowN	7
	8	2.99	8
	9	3.46	9
	10.	4124	10

PROJECT: <u>PTC-370-376</u> JOB NO.:

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID: MEASUREMENT SITE NO.: ADDRESS/DESCRIPTION:	N5A-57 5T-21	START TIME: END TIME: DATE: PERSONNEL:	3 116 3139 1/31/07 52/5ES
Roadway: 116 First Sample (<u>5</u> minutes) Start Time: 311/	-	DIRECTION 1	DIRECTION 2
	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)	110	
Roadway: Second Sample (<u>5</u> minutes) Start Time: 3; 22	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		
Roadway: Third Sample (<u>5</u> minutes) Start Time: 3.2.6	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)	WB 117 21 21	
Roadway: Fourth Sample (<u>5</u> minutes) Start Time: 3374	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		FB 71 16

PENNA TURN- PIKE		PROJE JOB NO	CT:	PTC320-326
PENNSYLVANIA TURNF TRAFFIC SPE	PIKE ED D	MILEPOS ATA SHEE	T 320 ET	-326
ASSESSMENT AREA ID: NSA-57		DA	TE:	1/31/07
MEASUREMENT SITE NO .: 51-21		PERSONN	EL:	sel se s
Troffic perky up, but no corner	1500			
			r	-
	X	Time OR		Speed
First Sample		EASTBOUN	D	WESTBOUND
Roadway:	1		1.	2.95
Start Time:	2.		2.	3.62
End Time: 346	3.		3.	2,80
	 4.	<u></u>	4.	0 6.5
If "Time," provide distance OR measurement endpoints:	5		5	4.20
Right in personal Chridge WBCnorthside	<u> </u>		0. 	4.01
An rad leadersha stress	^{0.} 7	· · · · · · · · · · · · · · · · · · ·	0.	3.71
	- ′· -		/.	210
	°		0.	2.60
31	9. –		9. 	200
	10	- <u></u>	10.	
		EASTBOUN	D	WESTBOUND
Second Sample		067		
Roadway:	_ 1	<u> </u>	1.	
Start Time:	2	<u>N. TT</u>	2.	
	3	<u>311</u>	3.	
If "Time " provide distance OR	4	3.10	4.	
measurement endpoints:	5	3.46	5.	
<u>N</u>	6.	380	6.	
	7.	4.09	7.	
	8.	4.80	8.	
	9.	362	<u>9</u> .	
	10.	4.30		

PROJECT: <u>PTC320-326</u> JOB NO.:

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID: MEASUREMENT SITE NO.: ADDRESS/DESCRIPTION:	Nokeshay bar NSA-NG 500 5T-22	START TIME: END TIME: DATE: PERSONNEL:	11:04 11:43 1/31/07 50/5E5
(H) 5minute Samples Roadway: J-75 First Sample (<u>5</u> minutes) Start Time:	Automobiles Medium Trucks (6 Tires)	DIRECTION 1 WB	DIRECTION 2 日日
Roadway: <i>T-76</i> <u>5</u> minutes) Second Sample (<u>5</u> minutes) Start Time:	Heavy Trucks (>6 Tires) Automobiles Medium Trucks (6 Tires)	<u> </u>	EB 62 3
Speed Menurements Roadway: I-76 Third Sample (<u>5</u> minutes) Start Time: 1132	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)	WB 65 8 3	
Roadway: J-76 Fourth Sample (<u>5</u> minutes) Start Time:	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		EB 72 4 24 1 Bus

PENNA TURN- PIKE	PROJECT: <u>PTC 370-376</u> JOB NO.:
PENNSYLVANIA TUI TRAFFIC S	RNPIKE MILEPOST 320-326 PEED DATA SHEET
ASSESSMENT AREA ID: NANG MEASUREMENT SITE NO.: 57-22	DATE: 1/3//07 PERSONNEL: <u>SC/SES</u>
	Time OR Speed
First Sample	EASTBOUND WESTBOUND
Roadway: T-76	1. 1. 65
Start Time:)): 19	2. 2. <i>5</i> 2
End Time: 11: 22	33
	4 458
It "Time," provide distance OR measurement endpoints:	5 5
	6 6
	7 7 7
	8 8
	9 960
	10 1056
	EASTBOUND WESTBOUND
Second Sample	
Start Time: 11/22	1. <u></u> 1
End Time: 11.32	2 2
	3 3
If "Time," provide distance OR measurement endpoints:	5 0 7 5
	6 6
	7. (03 7.
	8. 54 8.
	9. 66 9.
	10 10

PROJECT: <u>PTC 320.326</u> JOB NO.:

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID: MEASUREMENT SITE NO.: ADDRESS/DESCRIPTION:	NSA-N6 37-23	START TIME: END TIME: DATE: PERSONNEL:	309m 211105 56/525
Roadway: <i>THE</i> First Sample (<u></u> minutes) Start Time:		DIRECTION 1	DIRECTION 2
3.05	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)	115 5 3	
Roadway: <u>Second Sample (minutes)</u> Start Time: 3.1	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		93 3 19
Roadway: Third Sample (<u>5</u> minutes) Start Time: 37.16	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)	9 <u>2</u> 9 20	
Roadway: 5 Fourth Sample (5 Start Time: 3 [2]	Automobiles Medium Trucks (6 Tires) Heavy Trucks (>6 Tires)		-71

PROJECT: <u>PTC 370-326</u> JOB NO.: <u>301940</u>

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	\$ NSA-NG	START TIME:	15:06
MEASUREMENT SITE NO .:	5T-23	END TIME:	16:29
ADDRESS/DESCRIPTION:	799 GULPH BD	DATE:	2/1/1
		PERSONNEL:	OLER/AD
		-	
Roadway: First Sample (5 minutes)	5R422-5B	DIRECTION 1	DIRECTION 2
Start Time:	15:06	- ,	11-2
	Automobiles		
	Medium Trucks (6 Tires)		
	Heavy Trucks (>6 Tires)		
Roadway:	SR4ZZNB		
Start Time:	5112		
	Automobiles	231	
	Medium Trucks (6 Tires)	8	
	Heavy Trucks (>6 Tires)	16	
Roadway:	5R482.5B		
Third Sample (<u>)</u> minutes) Start Time:	15:18		
	Automobiles		242
	Medium Trucks (6 Tires)		6
	Heavy Trucks (>6 Tires)		
Roadway:	SR 427 MB		•
Start Time:	15:24		
	Automobiles	276	
	Medium Trucks (6 Tires)	8	
	Heavy Trucks (>6 Tires)	12	
Notes: Trashic Shady	Slaung bally direc	strans. Bit spe	ed 55-65 mph

PENNSYLVANIA TURNPIKE MILEPO TRAFFIC SPEED DATA SH	OST 320-326
	1EET date: 2/1/07
MEASUREMENT SITE NO.: <u>ST-23</u> PERSO	NNEL: JC/SES
Time	OR Speed
First Sample EASTBC	UND WESTBOUND
Roadway:1	1. 4.16
Start Time: <u>3:30,000</u> 2.	2. 2.70
End Time: 3	3. 3.27
4	4. 3,57
If "Time," provide distance OR	5. 3.50
Bred uportion to onerhanding STAN 6.	6. 3.64
CUBIFIC (effort bridge) 7.	7. 296
8.	8. 3.10
9	9.
10.	10. 3.08
Second Sample EASTBC	UND WESTBOUND
Roadway: 1. 3.5	9
Start Time: 534 2. 380	
End Time: 338 3 39	3.
(, (, ,(, , ,(, ,(, ,(, , ,(, ,(, , ,(, , ,(, , ,(, , ,(, , ,(, , , ,	
If "Time," provide distance OR measurement endpoints:	33 5
6 34	<u> </u>
7	वम् ,
g	8
o	~ ·

PROJECT: ______ JOB NO.:

PENNSYLVANIA TURNPIKE MILEPOST 320-326 TRAFFIC VOLUME COUNT DATA SHEET

ASSESSMENT AREA ID:	NSA-S8	START TIME:	3!15 nm
MEASUREMENT SITE NO.:	ST-24	END TIME:	2:35 m
ADDRESS/DESCRIPTION:	(Henhardie Rd.	DATE:	211/07
	OUPPASS	PERSONNEL:	BC
	****	west	east
Poodway		DIRECTION 1	DIRECTION 2
First Sample (minutes)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Start Time: 3150m		0-	
	Automobiles		
	Medium Trucks (6 Tires)		
	Heavy Trucks (>6 Tires)		
Deedway			
Second Sample (<u>S</u> minutes)			
3.20pm	Automobiles		77
	Medium Trucks (6 Tires)		5
	Heavy Trucks (>6 Tires)		12
Roadway: Third Sample (minutes)			
3:25	Automobiles		
	Medium Trucks (6 Tires)	<u> </u>	Ben frank for the Benn Williamson (an annun an annun agus an an agus an Angas an Angas an Angas an Angas an Ang
	Heavy Trucks (56 Tires)	10	
	Heavy Hucks (>0 Hies)		-
Roadway:			
Fourth Sample (U minutes) Start Time:			
> 150 pm	Automobiles		<u> </u>
~	Medium Trucks (6 Tires)		4
	Heavy Trucks (>6 Tires)		<u> </u>

APPENDIX E. PRELIMINARY NOISE BARRIER PERFORMANCE DATA

The following sections contain noise barrier performance tables for the preliminary barrier designs for all NSAs. The tables provide acoustical and cost data for each constant-height noise barrier design, ranging from 10 to 20 feet in height.

The first, second and third columns of each table indicate the receiver's name, number of represented receptor units, and approximate building row location that the receiver represents. The fourth column provides the Design Year no-barrier noise level and the fifth column indicates the number of receptor units exposed to noise impact. All of the following columns are grouped by barrier height, and provide the with-barrier sound level, insertion loss, and the number of units receiving 3 dB and 5 dB of noise reduction.

A summary, providing insertion loss average, maximum insertion loss, number of benefited units, and cost data is given for each constant-height barrier configuration at the bottom of the table.

(This page intentionally left blank.)

Pennsylvania Turnpike MP 320-326 Reconstruction PTC Ref. 05-045-RD4C, HMMH Job No. 301940 Date and Initials 5/17/2007 ADD Revised 7/16/2007 JAC

	No. of		No Barrier		10-foot Barrier		12-foot Barrier				14-foot Barrier			16-foot Barrier				18-foot Barrier				20-foot Barrier						
Receiver	Dwelling Units	Description	Leg(dBA)	No. of DUs 66+ dBA	Leg(dBA)	II (dB)	II 3+ (dB) II	5+ (dB)	lea(dBA)	II (dB)	II 3+ (dB)	II 5+ (dB)	Leg(dBA)	II (dB)	II_3+(dB)	II 5+ (dB)	Leg(dBA)	IL (dB)	II_3+ (dB)	II 5+ (dB)	Leg(dBA)	ll (dB)	II_3+ (dB)	II 5+ (dB)	Leg(dBA)	II (dB)	II 3+ (dB)	II 5+ (dB)
N1_01	1	Decemption	73.1	1	66.7	6.4	1	1	64.8	8.3	1	1	65.3	7.8	1	1	68.6	4.5	1	1	68.6	4.5	1	1	68.5	4.6	1	1
N1_02 N1_03	2		74.1 73.3	2	69.0 68.7	5.1 4.6	2	2	68.6 67.8	5.5 5.5	2	2	66.6 67.3	7.5 6.0	2	2	67.3 68.8	6.8 4.5	2	2	67.0 68.5	7.1 4.8	2	2	66.8 68.4	7.3 4 9	2	2
N1_04_ST2	1		70.9	1	68.9	2.0	0	0	68.5	2.4	0	0	69.5	1.4	0	0	69.9	1.0	0	0	69.7	1.2	0	0	69.6	1.3	0	0
N1_05	1		66.4	1	65.1	1.3	0	0	64.8	1.6	0	0	65.6	0.8	0	0	65.5	0.9	0	0	65.3	1.1	0	0	65.1	1.3	0	0
N1_00 N1_07	1		66.2	1	63.5	2.7	1	0	63.1	3.1	1	0	62.6	3.6	1	0	62.9	3.3	1	0	62.6	3.6	1	0	62.5	3.7	1	0
N1_08	1		66.0	1	64.3	1.7	0	0	63.5	2.5	1	0	63.1	2.9	1	0	63.4	2.6	1	0	63.2	2.8	1	0	62.8	3.2	1	0
-																												
	:	# of impacted E)Us:	9	Avg. Insertion Max. Insertion	Loss: Loss:	3.6 dB 6.4 dB		Avg. Insertion L Max. Insertion L	oss: oss:	4.3 8.3	dB dB	Avg. Insertion Max. Insertion	Loss: Loss:	4.7 7 8	dB dB	Avg. Insertion Max. Insertion	Loss: Loss:	3.9 6 8	dB dB	Avg. Insertion Max. Insertion	Loss: Loss:	4.1 c 7.1 c	1B 1B	Avg. Insertion I Max. Insertion I	LOSS: LOSS:	4.3 c 7.3 c	ıВ 1B
	1	Impacted recep	otors w/ min. 3	dB IL:	[1] Impctd w/ 3	3 dB IL:	6 DL	s	[1] Impctd w/ 3 of	dB IL:	7	DUs	[1] Impctd w/	3 dB IL:	7.0	DUs	[1] Impctd w/ 3	dB IL:	7	DUs	[1] Impctd w/ 3	dB IL:	7 [DUs	[1] Impctd w/ 3	dB IL:	7 [JUs
					Impetd w/ 5 dl	BIL:	4 DL	s	Impetd w/ 5 dB I	IL:	4	DUs	Impctd w/ 5 d	BIL:	5	DUs	Impetd w/ 5 dB	IL:	5	DUs	Impetd w/ 5 dB	IL:	5 [DUs	Impetd w/ 5 dB	IL:	5 [JUs
	1	Benefited (non-	-impacted) rece	eptors:	% Impetd DUs [2] Non-impete	sw/5dBIL: dw/5dBIL:	44.4% 0 DL	s	% Impetd DUs v [2] Non-impetd v	w/5 dBIL: w/5 dBIL:	44.4% 0	DUs	% Impetd DU [2] Non-impet	sw/5dBIL: dw/5dBIL∷	55.6% 0	DUs	% Impetd DUs [2] Non-impetd	w/5 dB IL: w/5 dB IL:	55.6% 0	DUs	% Impetd DUs [2] Non-impetd	w/ 5 dB IL: w/ 5 dB IL:	55.6% 0 I	DUs	% Impetd DUs [2] Non-impetd	w/5 dB IL: w/5 dB IL:	55.6% 0 [JUs
		Total DUs for c	ost reasonable	eness:	Total [1]+[2] fo	or cost:	6 DL	s	Total [1]+[2] for	cost:	7	DUs	Total [1]+[2] f	or cost:	7	DUs	Total [1]+[2] fo	r cost:	7	DUs	Total [1]+[2] fo	r cost:	7 [DUs	Total [1]+[2] for	cost:	7 [JUs
					Approx. Cost: Approx Cost p	er DU:	\$773,451 \$128,909		Approx. Cost: Approx Cost per	. DU:	\$928,142 \$132,592		Approx. Cost: Approx Cost r	er DU:	\$405,895 \$57,985		Approx. Cost:	er DUI:	\$325,479 \$46,497		Approx. Cost: Approx Cost pr	ar DH-	\$366,164 \$52,309		Approx. Cost:	er DH :	\$773,451 \$110,493	

Pennsylvania Turnpike MP 320-326 Reconstruction PTC Ref. 05-045-RD4C, HMMH Job No. 301940 Date and Initials 5/21/2007 JAC

	No. of		No Ba	rrier		10-foot	Barrier		12-foot	Barrier			14-foot	Barrier		16-foot	Barrier		1	8-foot Ba	rrier		20-foot Bar	rier	
Receiver	Dwelling Units	Description	Leg(dBA)	No. of DUs 66+ dBA	Leg(dBA)	IL (dB)	IL 3+ (dB) IL 5+ (dB) Leg(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leg(dBA)	IL (dB)	IL 3+ (dB) IL 5+ (dB	Leg(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leg(dBA) IL	(dB) IL	3+ (dB) IL 5+ (dB)	Leg(dBA)	IL (dB) IL	3+ (dB) II	L 5+ (dB)
N2_1	1	Decemption	72.8	1	69.5	3.3	1 0	68.5	4.3	1	0	67.3	5.5	1 1	66.0	6.8	1	1	64.6	8.2	1 1	63.2	9.6	1	1
N2_2 N2_3_ST5	1		66.6 68.4	1	64.1 64.5	2.5 3.9	1 0	63.6 63.2	3.0 5.2	1	0	63.0 61.8	3.6 6.6	1 0 1 1	62.2 60.9	4.4 7.5	1	0	61.3 60.0	5.3 8.4	1 1	60.6 59.3	6.0 9.1	1	1
N2_4	1		69.8	1	67.8	2.0	0 0	67.2	2.6	1	0	66.4	3.4	1 0	65.5	4.3	1	0	64.6	5.2	1 1	63.7	6.1	1	1
N2_5	1		69.4	1	68.1	1.3	0 0	67.9	1.5	0	0	67.6	1.8	0 0	67.4	2.0	0	0	67.0	2.4	0 0	66.9	2.5	1	0
N2_6_514 N2_7	1		59.1 59.9	0	59.1 59.4	0.0	0 0	59.1	0.0	0	0	59.0 59.0	0.1	0 0	59.0 58.7	1.2	0	0	58.3	1.6	0 0	58.9 58.1	1.8	0	0
N2_8	1		56.1	0	55.7	0.4	0 0	55.6	0.5	0	0	55.5	0.6	0 0	55.4	0.7	0	0	55.3	0.8	0 0	55.2	0.9	0	0
N2_9 N2_10	4		59.5 65.5	1	58.7 64.8	0.8	0 0	58.3 64.6	1.2 0.9	0	0	58.0 64.3	1.5	0 0	64.0	1.8	0	0	63.7	2.1	0 0	57.1 63.3	2.4	0	0
 N2_11	1		62.8	0	62.7	0.1	0 0	62.6	0.2	0	0	62.6	0.2	0 0	62.5	0.3	0	0	62.5	0.3	0 0	62.4	0.4	0	0
								- -														-			
	#	of impacted D)Us:	6	Avg. Insertion Max. Insertion	n Loss: n Loss:	1.3 dB 3.9 dB	Avg. Insertion Max. Insertion	Loss: Loss:	1.7 5.2	dB dB	Avg. Insertion L Max. Insertion L	LOSS: LOSS:	2.1 dB 6.6 dB	Avg. Insertion Max. Insertion	Loss: Loss:	2.6 7.5	dB dB	Avg. Insertion Loss Max. Insertion Loss	12 12	3.0 dB 8.4 dB	Avg. Insertion L Max. Insertion L	.0SS: _0SS:	3.5 dB 9.6 dB	٤
	I	mpacted recep	tors w/ min. 3	dB IL:	[1] Impctd w/	3 dB IL:	3 DUs	[1] Impctd w/	3 dB IL:	4	DUs	[1] Impctd w/ 3	dB IL:	4 DUs	[1] Impctd w/ 3	B dB IL:	4	DUs	[1] Impctd w/ 3 dB I	IL:	4 DUs	[1] Impctd w/ 3	dB IL:	5 DL	Js
					Impetd w/ 5 dl	BIL:	0 DUs	Impetd w/ 5 di	BIL:	16 79	DUs	Impetd w/ 5 dB	IL: w/ EdB II :	2 DUs	Impetd w/ 5 dB	3 IL:	2	DUs	Impetd w/ 5 dB IL:	dDII	4 DUs	Impetd w/ 5 dB	IL: w/ 5 dB !! :	4 DL	Js
	E	Benefited (non-	-impacted) rece	eptors:	70 Impeta DUS [2] Non-impeta	sw/50BIL: dw/5dBIL:	0.0% 0 DUs	76 Impeta DUS [2] Non-impeta	dw/5dBIL:	10.7%	DUs	[2] Non-impctd	w/sonbil: w/5dBlL:	33.3% 0 DUs	[2] Non-impetd	w/5 dBIL:	33.3% 0	DUs	[2] Non-impetd w/ 5	idBIL:	0 DUs	[2] Non-impetd	w 5 dBiL: w/5 dBiL:	00.7% 0 Dl	Js
	T	otal DUs for c	ost reasonable	eness:	Total [1]+[2] fo	or cost:	3 DUs	Total [1]+[2] fo	or cost:	4	DUs	Total [1]+[2] for	cost:	4 DUs	Total [1]+[2] fo	r cost:	4	DUs	Total [1]+[2] for cos	st:	4 DUs	Total [1]+[2] for	cost:	5 DI	Js
					Approx. Cost: Approx Cost p	per DU:	\$843,427 \$281 142	Approx. Cost: Approx Cost p	er DU:	\$1,012,113 \$253,028		Approx. Cost:	r DU:	\$1,180,798 \$295,200	Approx. Cost:	er DU:	\$1,349,483 \$337 371		Approx. Cost: Approx Cost per DI	\$ I·	1,518,169 \$379 542	Approx. Cost:	\$1 ۲ DUI	,686,855 \$337 371	

Pennsylvania Turnpike MP 320-326 Reconstruction PTC Ref. 05-045-RD4C, HMMH Job No. 301940 Date and Initials 4/20/2007 JAC

	No. of	. of No Barrier		rrier	10-foot Barrier				12-foot Barrier				14-foot Barrier			16-foot Barrier				18-foot Barrier				20-foot Barrier			
Receiver	Dwelling Units	Description	Leg(dBA)	No. of DUs 66+ dBA	Leg(dBA)	II (dB)	II 3+ (dB) II 5+ (1B) Leg(dBA)	II (dB)	II 3+ (dB)	II 5+ (dB)	Leg(dBA)	II (dB)	II 3+ (dB) II 5+ (dB)	Leg(dBA)	II (dB)	II 3+ (dB)	II 5+ (dB)	Leg(dBA)	II (dB)	II 3+ (dB) II 5+ (d	B) Leg(dBA)	II (dB)	II 3+ (dB)	II 5+ (dB)		
N3_01	1	Description	72.8	1	65.8	7.0	1	1 63.4	9.4	1	1	62.4	10.4	1 1	61.8	11.0	1	1	61.3	11.5	1	1 60.8	12.0	1	1		
N3_02	1		72.6	1	67.1	5.5	1	1 63.3	9.3	1	1	61.9	10.7	1 1	60.9	11.7	1	1	60.0	12.6	1	1 59.3	13.3	1	1		
N3_03_S18 N3_04	1		73.8 68.5	1	70.2 65.8	3.6 2.7	1	0 68.4	5.4 3.8	1	1	65.9 63.6	6.9 4.9	1 1	65.6	8.2 5.9	1	1	62.8 61.6	11.0 6.9	1	1 61.6 1 60.9	12.2 7.6	1	1		
N3_11	2		65.0	0	62.1	2.9	2	0 61.6	3.4	2	0	60.8	4.2	2 0	59.9	5.1	2	2	58.6	6.4	2	2 57.2	7.8	2	2		
N3_05	1		64.8	0	62.6	2.2	0	0 61.6	3.2	1	0	60.9	3.9	1 0	60.3	4.5	1	1	59.5	5.3	1	1 58.9	5.9	1	1		
N3_00 N3_07	1		65.3	0	62.7	2.9	1	0 61.9	3.3	1	0	60.8	4.0	1 1	59.4	5.9	1	1	58.1	7.2	1	1 57.4	7.9	1	1		
N3_08	1		66.2	1	64.5	1.7	0	0 63.6	2.6	1	0	62.8	3.4	1 0	62.0	4.2	1	0	60.9	5.3	1	1 60.1	6.1	1	1		
N3_12 N3_10	2		62.5 66.4	0	59.9 64.2	2.6	2	0 59.4	3.1	2	0	58.8 63.0	3.7	2 0	58.2 62.5	4.3	2	0	57.5 61.9	5.0 4.5	2	2 56.7	5.8	2	2		
N3_09	1		62.6	0	60.1	2.5	1	0 59.8	2.8	1	0	59.0	3.6	1 0	58.1	4.5	1	1	57.6	5.0	1	1 57.3	5.3	1	1		
																						_					
																						_					
																						_					
	ź	# of impacted D)Us:	7	Ava. Insertio	n Loss:	3.1 dB	Ava, Insertio	on Loss:	4 2	dB	Ava. Insertion	Loss:	5.1 dB	Av.a. Insertion	Loss:	59	dB	Ava. Insertion	Loss:	7.0 dB	Ava. Insertio	Loss:	7.7 0	B		
		- or impuotou D			Max. Insertion	n Loss:	7.0 dB	Max. Insertie	on Loss:	9.4	dB	Max. Insertion	Loss:	10.7 dB	Max. Insertion	Loss:	11.7	dB	Max. Insertion	Loss:	12.6 dB	Max. Insertio	Loss:	13.3 c	JВ		
	I	mpacted recep	tors w/ min. 3	dB IL:	[1] Impctd w/	3 dB IL:	5 DUs	[1] Impctd w	/ 3 dB IL:	7	DUs	[1] Impctd w/	3 dB IL:	7 DUs	[1] Impctd w/	3 dB IL:	7	DUs	[1] Impctd w/ 3	dB IL:	7 DUs	[1] Impctd w/	3 dB IL:	7 [JUs		
					mpctd w/ 5 d	bl IL: Jsw/5dR II·	2 DUs 28.6%	Impetd w/ 5 % Impetd D	dBIL: Jsw/5dBII∙	3 42 9%	DUS	Impetd w/ 5 de	sıL: sw/5 dBlI∙	4 DUs 57.1%	mpctd w/ 5 dE	siL: sw/5.dRII∙	5 71 4%	DUS	Impetd w/ 5 dB % Impetd DUs	IL: w/5dBⅡ·	7 DUs 100.0%	Impetd w/ 5 o	BIL: sw/5dBlI∙	7 [100 0%	JUS		
	E	Benefited (non-	impacted) rece	eptors:	[2] Non-impot	td w/ 5 dB IL:	0 DUs	[2] Non-imp	ctd w/ 5 dB IL:		DUs	[2] Non-impeter	d w/ 5 dB IL:	1 DUs	[2] Non-impete	i w/ 5 dB IL:	5	DUs	[2] Non-impetd	w/ 5 dB IL:	7 DUs	[2] Non-impo	d w/ 5 dB IL:	7 [JUs		
	٦	Total DUs for c	ost reasonable	eness:	Total [1]+[2] f	for cost:	5 DUs	Total [1]+[2]	for cost:	7	DUs	Total [1]+[2] fo	or cost:	8 DUs	Total [1]+[2] f c	or cost:	12	DUs	Total [1]+[2] for	r cost:	14 DUs	Total [1]+[2] 1	or cost:	14 [JUs		
					Approx. Cost	ner DII:	\$1,315,096 \$263,019	Approx. Cost	t: por DUI:	\$1,578,116		Approx. Cost:	or DUI:	\$1,841,135 \$220,142	Approx. Cost:	or DUI:	\$2,104,154		Approx. Cost:		\$2,367,174	Approx. Cost	or DU:	\$2,630,194			

Pennsylvania Turnpike MP 320-326 Reconstruction PTC Ref. 05-045-RD4C, HMMH Job No. 301940 Date and Initials ADD 5/17/2007

	No. of No Barrier		rrier	10-foot Barrier				12-foot Barrier				14-foot Barrier			16-foot Barrier				18-foot Barrier					20-foot Barrier				
Receiver	Dwelling Units	Description	Leg(dBA)	No. of DUs 66+ dBA	Leg(dBA)	IL (dB)	IL 3+ (dB) IL	5+ (dB)	Lea(dBA) I	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leg(dBA)	IL (dB)	IL 3+ (dB) IL	5+ (dB)	Leg(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leg(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leg(dBA)	IL (dB)	L 3+ (dB)	IL 5+ (dB)
N4_01	1	Decemption	71.7	1	66.5	5.2	1	1	65.8	5.9	1	1	63.6	8.1	1	1	62.4	9.3	1	1	61.7	10.0	1	1	61.2	10.5	1	1
N4_02	1		72.1	1	67.6	4.5	1	1	67.0	5.1	1	1	65.6	6.5	1	1	62.7	9.4	1	1	61.7	10.4	1	1	60.8	11.3	1	1
N4_03_L12 N4_04	1		71.0 73.9	1	66.2	4.8 6.7	1	1 1	65.1 66.0	5.9 7.9	1	1	62.3 64.7	8.7 9.2	1	1	61.3 63.4	9.7 10.5	1	1	60.5 62.6	10.5 11.3	1	1	59.8 61.6	11.2 12.3	1	1
N4_05_ST13	3		67.2	3	63.7	3.5	3	0	63.2	4.0	3	0	62.1	5.1	3	3	60.8	6.4	3	3	60.1	7.1	3	3	59.6	7.6	3	3
N4_06	1		65.0	0	63.5	1.5	0	0	62.8	2.2	0	0	62.3	2.7	1	0	62.0	3.0	1	0	61.7	3.3	1	0	61.4	3.6	1	0
N4_07 N4_08	5		66.0 64.2	5	64.2 62.6	1.8 1.6	0	0	64.0 62.4	2.0	0	0	63.6 62.0	2.4	0	0	63.2 61.7	2.8	5	0	62.8 61.5	3.2	5	0	62.7	3.3 2.8	5	0
N4_09	2		64.9	0	62.2	2.7	2	0	61.6	3.3	2	0	60.9	4.0	2	0	60.0	4.9	2	2	59.4	5.5	2	2	59.0	5.9	2	2
N4_10	2		63.7	0	60.4	3.3	2	0	59.8	3.9	2	0	57.8	5.9	2	2	56.7	7.0	2	2	55.9	7.8	2	2	55.2	8.5	2	2
N4_11 N4_12	2		60.0 58.8	0	58.4 57.9	1.6 0.9	0	0	58.2 57.7	1.8 1.1	0	0	57.9 57.5	2.1 1.3	0	0	57.5 57.4	2.5 1.4	2	0	57.3 57.3	2.7 1.5	2	0	57.0 57.2	3.0 1.6	2	0
N4_13	1		60.8	0	59.9	0.9	0	0	59.8	1.0	0	0	59.7	1.1	0	0	59.5	1.3	0	0	59.3	1.5	0	0	59.2	1.6	0	0
N4_14	1		59.2	0	57.3	1.9	0	0	56.9	2.3	0	0	56.3	2.9	1	0	55.6	3.6	1	0	55.1	4.1	1	0	54.6	4.6	1	1
N4_15_ST12	4		61.6	0	60.1	1.5	0	0	59.9	1.7	0	0	59.6	2.0	0	0	59.1	2.5	4	0	58.8	2.8	4	0	58.7	2.9	4	0
													I															
	1	# of impacted D	Us:	12	Avg. Insertion	n Loss:	2.5 dB		Avg. Insertion Lo	ss:	2.9	dB	Avg. Insertion	Loss:	3.7 dB		Avg. Insertion L	oss:	4.5	dB	Avg. Insertion	Loss:	4.9 d	В	Avg. Insertion L	.oss:	5.3 c	JB
		mpacted recon	tors w/ min ?	dB II ·	Max. Insertion	n Loss: 3 dB II ·	6.7 dB		Max. Insertion Los	SS: BIII:	7.9	dB DHe	Max. Insertion	Loss:	9.2 dB	le	Max. Insertion L	OSS:	10.5	dB	Max. Insertion	Loss: dB II ·	11.3 d	B	Max. Insertion L	dB II ·	12.3 c	iB JUe
		mpacteu recep	tors w/ min. 3	UD IL:	Impetd w/ 5 dl	BIL:	7 DUs 4 DUs		Impete w/ 5 dB IL		4	DUs	Impetd w/ 5 dl	3 IL:	7 DU 7 DU	Js	Impetd w/ 5 dB I	ив пс. IL:	12	DUs	Impete w/ 5 dB	IL:	12 U 7 D	Us	Impete w/ 5 dB	UBIL. IL:	12 L 7 E	JUs
					% Impctd DUs	s w/ 5 dB IL:	33.3%		% Impctd DUs w/	5 dB IL:	33.3%		% Impctd DUs	s w/ 5 dB IL:	58.3%		% Impctd DUs v	w/ 5 dB IL:	58.3%		% Impctd DUs	w/ 5 dB IL:	58.3%		% Impctd DUs	w/ 5 dB IL:	58.3%	
	-	Benefited (non-	impacted) rece	eptors:	[2] Non-impeter	d w/ 5 dB IL:	0 DUs		[2] Non-impetd w/	5 dB IL:	0	DUs	[2] Non-impeter	iw/5dBIL:	2 DL	Js	[2] Non-impetd v	w/5 dB IL:	4	DUs	[2] Non-impetd	w/ 5 dB IL:	4 D	Us	[2] Non-impetd	w/ 5 dB IL:	5 E)Us
		I UCS TOP C	USC TEASONADIO	eness:	Approx. Cost:	or cost:	\$917,147		Approx. Cost:	ບຣເ.	/ \$1,100.577	008	Approx. Cost:	л cost.	9 DU \$1,284.006	61	Approx. Cost:	USI.	\$1,467.436	008	Approx. Cost:	i cust.	\$1,650.865	08	Approx. Cost:	USI.	17 L \$1,834.295	108
					Approx Cost p	per DU:	\$131,021		Approx Cost per I	DU:	\$157,225		Approx Cost p	er DU:	\$142,667		Approx Cost per	DU:	\$91,715		Approx Cost pe	er DU:	\$103,179		Approx Cost pe	r DU:	\$107,900	ł

	No. of No Barrier Dwelling No. of D Units Description Leg(dBA) 66+ dB.			rrier		10-foot	Barrier			12-foot	Barrier			14-foot	Barrier			16-foot	Barrier			18-foot	Barrier			20-foot	Barrier	
Receiver	Dwelling Units	Description	Leg(dBA)	No. of DUs 66+ dBA	Leg(dBA)	ll (dB)	II 3+ (dB) II 5	i+ (dB)	Leg(dBA)	II (dB)	II 3+ (dB)	II 5+ (dB)	Leg(dBA)	IL (dB)	II 3+ (dB)	II 5+ (dB)	Leg(dBA)	II (dB)	II_3+ (dB)	II 5+ (dB)	Leg(dBA)	II (dB)	II 3+ (dB) II 3	5+ (dB)	Leg(dBA)	II (dB)	II_3+(dB)	II 5+ (dB)
N5_01_ST16	0	Decemption	72.7	0	66.6	6.1	0	0	65.9	6.8	0	0	65.4	7.3	0	0	65.0	7.7	0	0	64.8	7.9	0	0	64.5	8.2	0	0
N5_02	0		73.4	0	66.1	7.3	0	0	64.1	9.3	0	0	63.3	10.1	0	0	62.7	10.7	0	0	62.3	11.1	0	0	61.9	11.5	0	0
N5_P1 N5_P2	0		74.6 67.6	0	74.6 67.6	0.0	0	0	74.6 67.6	0.0	0	0	74.6 67.6	0.0	0	0	74.6 67.6	0.0	0	0	74.6 67.6	0.0	0	0	74.6 67.6	0.0	0	0
N5_P3	0		62.2	0	62.1	0.1	0	0	62.1	0.1	0	0	62.1	0.1	0	0	62.1	0.1	0	0	62.0	0.2	0	0	62.0	0.2	0	0
N5_P4	0		70.2	0	70.2	0.0	0	0	70.2	0.0	0	0	70.2	0.0	0	0	70.2	0.0	0	0	70.2	0.0	0	0	70.2	0.0	0	0
N5_P5 N5_P6	0		62.9	0	62.9	0.0	0	0	62.9	0.0	0	0	62.9	0.0	0	0	62.9	0.0	0	0	62.9	0.0	0	0	62.9	0.0	0	0
N5_P7	0		59.4	0	59.2	0.2	0	0	59.2	0.2	0	0	59.2	0.2	0	0	59.2	0.2	0	0	59.1	0.3	0	0	59.1	0.3	0	0
N5_P8	0		59.1	0	59.1	0.0	0	0	59.1	0.0	0	0	59.1	0.0	0	0	59.1	0.0	0	0	59.1	0.0	0	0	59.1	0.0	0	0
																								_				
																								_				
		# of impacted D)Us:	0	Avg. Insertion	n Loss:	dB		Avg. Insertion	Loss:	0.0	dB dB	Av g. Insertion	n Loss:	10.1	dB dB	Avg. Insertion	Loss:	40.7	dB dB	Avg. Insertion	Loss:	dB		Avg. Insertion	Loss:	44.5	dB dB
		Impacted recen	tors w/ min. 3	dB IL:	<pre>iviax. insertion [1] Impctd w/</pre>	3 dB IL:	0 DUs		Iviax. Insertion [1] Importd w/ 3	LUSS: 3 dB IL:	9.3	ub DUs	[1] Impotd w/	3 dB IL:	10.1	ub DUs	[1] Impetd w/ 3	dB IL:	10.7	ub DUs	[1] Impotd w/	3 dB IL:	0 DUs		[1] Impetd w/ 3	dB IL:	11.5 (а DUs
					Impctd w/ 5 d	B IL:	0 DUs		Impctd w/ 5 dE	3 IL:	0	DUs	Impctd w/ 5 d	B IL:	0	DUs	Impctd w/ 5 dB	IL:	0	DUs	Impctd w/ 5 d	B IL:	0 DUs		Impctd w/ 5 dB	IL:	0 1	DUs
		-			% Impetd DU	sw/5dBIL:	0.0%		% Impetd DUs	w/ 5 dB IL:	0.0%		% Impetd DU	s w/ 5 dB IL:	0.0%		% Impetd DUs	w/ 5 dB IL:	0.0%		% Impetd DU	s w/ 5 dB IL:	0.0%		% Impetd DUs	w/ 5 dB IL:	0.0%	
		Benefited (non- Total DUs for c	-impacted) rece ost reasonable	eptors: eness:	[2] Non-Impct Total [1]+[2] f	a w/ 5 dB IL: or cost:	0 DUs 0 DUs		[2] Non-impote Total [1]+[2] fo	rw/5dB1L: brcost:	0	DUs DUs	[2] Non-impct Total [11+[2] f	a w/ 5 dB IL: or cost:	0	DUS DUS	[2] Non-impctd Total [1]+[2] for	w/5dB1L: rcost:	0	DUs DUs	[2] Non-impct Total [1]+[2] f	a w/ 5 dB IL: or cost:	0 DUs 0 DUs		[2] Non-impotd Total [1]+[2] fo	w/5 dB IL: r cost:	01	DUS DUS
					Approx. Cost:		\$357,952		Approx. Cost:		\$429,542		Approx. Cost:		\$501,132		Approx. Cost:		\$572,723		Approx. Cost		\$644,313		Approx. Cost:		\$715,904	
					Approx Cost r	per DU:	NA		Approx Cost p	er DU:	ΝΔ		Approx Cost r	ner DUI:	NΔ		Approx Cost pe	or DII:	ΝΔ		Approx Cost	er DII:	NA		Approx Cost no	or DH-		

Pennsylvania Turnpike MP 320-326 Reconstruction PTC Ref. 05-045-RD4C, HMMH Job No. 301940 Date and Initials 5/16/2007 ADD

barry barry <t< th=""><th></th><th colspan="2">No. of No Barrier Dwelling No. of DU</th><th>rrier</th><th></th><th>10-foot</th><th>Barrier</th><th></th><th></th><th>12-foot</th><th>Barrier</th><th></th><th></th><th>14-foot</th><th>Barrier</th><th></th><th></th><th>16-foot</th><th>Barrier</th><th></th><th></th><th>18-foot</th><th>Barrier</th><th></th><th></th><th>20-foot</th><th>Barrier</th><th></th></t<>		No. of No Barrier Dwelling No. of DU		rrier		10-foot	Barrier			12-foot	Barrier			14-foot	Barrier			16-foot	Barrier			18-foot	Barrier			20-foot	Barrier		
Image Image <th< th=""><th>Bossiver</th><th>Dwelling</th><th>Description</th><th>Log(dRA)</th><th>No. of DUs</th><th>Log(dRA)</th><th></th><th>II 2. (dP)</th><th></th><th>Log(dRA)</th><th></th><th>II. 21 (dP)</th><th></th><th></th><th></th><th>II 2. (dP) II 5. (</th><th></th><th></th><th></th><th></th><th></th><th></th><th>II (dP)</th><th>II 2. (dP)</th><th></th><th>Log(dRA)</th><th>IL (dB)</th><th>II 21 (dP)</th><th></th></th<>	Bossiver	Dwelling	Description	Log(dRA)	No. of DUs	Log(dRA)		II 2. (dP)		Log(dRA)		II. 21 (dP)				II 2. (dP) II 5. (II (dP)	II 2. (dP)		Log(dRA)	IL (dB)	II 21 (dP)	
x i b x i b <th< td=""><td>N6 01</td><td>1</td><td>Description</td><td>65.4</td><td>0</td><td>62.2</td><td>3.2</td><td>1L 3+ (UB)</td><td>п<u>с 5+ (uB)</u> 0</td><td>61.1</td><td>4.3</td><td>1L 3+ (UB)</td><td>пс 3+ (uB) 0</td><td>60.8</td><td>4.6</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>1 1</td><td>60.5</td><td>4.9</td><td>1L 3+ (UB)</td><td>1L 3+ (UB)</td><td>60.3</td><td>5.1</td><td>1L 3+ (UB)</td><td>1L 3+ (UB)</td><td>60.1</td><td>5.3</td><td>1L 3+ (UB)</td><td><u>пс 5+ (uB)</u> 1</td></th<>	N6 01	1	Description	65.4	0	62.2	3.2	1L 3+ (UB)	п <u>с 5+ (uB)</u> 0	61.1	4.3	1L 3+ (UB)	пс 3+ (uB) 0	60.8	4.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	60.5	4.9	1L 3+ (UB)	1L 3+ (UB)	60.3	5.1	1L 3+ (UB)	1L 3+ (UB)	60.1	5.3	1L 3+ (UB)	<u>пс 5+ (uB)</u> 1
NAB N	N6_02	1		72.8	1	65.7	7.1	1	1	63.9	8.9	1	1	63.1	9.7	1	1	62.6	10.2	1	1	62.1	10.7	1	1	61.7	11.1	1	1
MLAL	N6_03	3		70.8	3	65.0	5.8	3	3	62.9	7.9	3	3	62.1	8.7	3	3	61.5	9.3	3	3	60.9	9.9	3	3	60.4	10.4	3	3
Max 3 Dot 4 4 3 0 Max 1 1 Max Max 1 Max Max <td>N6_04_LT4</td> <td>4</td> <td></td> <td>69.7</td> <td>4</td> <td>64.7</td> <td>5.0</td> <td>4</td> <td>4</td> <td>62.4</td> <td>7.3</td> <td>4</td> <td>4</td> <td>61.5</td> <td>8.2</td> <td>4</td> <td>4</td> <td>60.8</td> <td>8.9</td> <td>4</td> <td>4</td> <td>60.1</td> <td>9.6</td> <td>4</td> <td>4</td> <td>59.5</td> <td>10.2</td> <td>4</td> <td>4</td>	N6_04_LT4	4		69.7	4	64.7	5.0	4	4	62.4	7.3	4	4	61.5	8.2	4	4	60.8	8.9	4	4	60.1	9.6	4	4	59.5	10.2	4	4
max p	N6_05	3		67.5	3	62.6	4.9	3	3	60.5	7.0	3	3	59.4	8.1	3	3	58.7	8.8	3	3	58.1	9.4	3	3	57.5	10.0	3	3
Net Not N	N6_07	2		64.7	0	60.0	4.8	2	2	58.4	6.3	2	2	57.6	7.0	2	2	56.9	7.8	2	2	56.4	8.3	2	2	55.8	9.5 8.9	2	2
No.0 1 0.07 1 0.08 0.1 <th0.1< th=""> 0.1</th0.1<>	N6_08	1		70.4	1	63.0	7.4	1	1	62.1	8.3	1	1	61.3	9.1	1	1	60.6	9.8	1	1	60.1	10.3	1	1	59.5	10.9	1	1
Me Mo Me Mo <th< td=""><td>N6_09</td><td>1</td><td></td><td>65.7</td><td>1</td><td>59.9</td><td>5.8</td><td>1</td><td>1</td><td>58.5</td><td>7.2</td><td>1</td><td>1</td><td>57.6</td><td>8.1</td><td>1</td><td>1</td><td>56.9</td><td>8.8</td><td>1</td><td>1</td><td>56.3</td><td>9.4</td><td>1</td><td>1</td><td>55.7</td><td>10.0</td><td>1</td><td>1</td></th<>	N6_09	1		65.7	1	59.9	5.8	1	1	58.5	7.2	1	1	57.6	8.1	1	1	56.9	8.8	1	1	56.3	9.4	1	1	55.7	10.0	1	1
Main	N6_10	1		67.7	1	61.1	6.6	1	1	60.1	7.6	1	1	59.4	8.3	1	1	58.8	8.9	1	1	58.2	9.5	1	1	57.7	10.0	1	1
matrix	N6_11	2		67.9 72.5	2	61.7	6.2	2	2	60.9	7.0	2	2	60.3	7.6	2	2	59.7	8.2	2	2	59.3	8.6	2	2	58.8	9.1	2	2
No. 6 1 1/16 1 1/16 1 <th< td=""><td>N6_12_5122</td><td>3</td><td></td><td>72.5</td><td>3</td><td>64.3</td><td>7.1</td><td>3</td><td>3</td><td>63.3</td><td>9.2</td><td>3</td><td>3</td><td>62.3</td><td>10.2</td><td>3</td><td>3</td><td>61.5 61.6</td><td>11.0</td><td>3</td><td>3</td><td>60.7</td><td>11.8</td><td>3</td><td>3</td><td>60.1</td><td>12.4</td><td>3</td><td>3</td></th<>	N6_12_5122	3		72.5	3	64.3	7.1	3	3	63.3	9.2	3	3	62.3	10.2	3	3	61.5 61.6	11.0	3	3	60.7	11.8	3	3	60.1	12.4	3	3
NB.15.3737 1 08.6 2.8 1 0 0.837 3.4 1 0 0.838 4.1 1 0 0.838 4.1 1 0 0.838 4.1 1 0 0.838 4.3 1 0 0.838 4.3 1 0 0.838 4.3 1 0 0.838 4.3 1 0 0.838 4.3 1 0 0.838 4.3 1 0 0.838 4.3 1 0 0.838 4.3 1 0 0.838 4.3 1 0 0.838 4.3 1 0 0.838 4.3 1 0 0.838 4.3 1 0 0 0 0.33 2 2 0.554 4.4 4 4.4 4 0 0.53 2 2 0.554 4.5 4.4 </td <td>N6_14</td> <td>1</td> <td></td> <td>71.6</td> <td>1</td> <td>65.8</td> <td>5.8</td> <td>1</td> <td>1</td> <td>63.8</td> <td>7.8</td> <td>1</td> <td>1</td> <td>62.9</td> <td>8.7</td> <td>1</td> <td>1</td> <td>62.3</td> <td>9.3</td> <td>1</td> <td>1</td> <td>61.7</td> <td>9.9</td> <td>1</td> <td>1</td> <td>61.2</td> <td>10.4</td> <td>1</td> <td>1</td>	N6_14	1		71.6	1	65.8	5.8	1	1	63.8	7.8	1	1	62.9	8.7	1	1	62.3	9.3	1	1	61.7	9.9	1	1	61.2	10.4	1	1
Na.16 2 10.1 3.2 2 0 0.7.0 4.3 2 0 6.7.7 4.6 2 2 6.7.4 4.6 2 2 6.7.4 7.6 4.7.4 4.7.4 7.6<	N6_15_ST23	1		67.1	1	64.6	2.5	1	0	63.7	3.4	1	0	63.3	3.8	1	0	63.0	4.1	1	0	62.8	4.3	1	0	62.6	4.5	1	1
No. 17 4 65.7 6.1 <th< td=""><td>N6_16</td><td>2</td><td></td><td>61.3</td><td>0</td><td>58.1</td><td>3.2</td><td>2</td><td>0</td><td>57.0</td><td>4.3</td><td>2</td><td>0</td><td>56.7</td><td>4.6</td><td>2</td><td>2</td><td>56.4</td><td>4.9</td><td>2</td><td>2</td><td>56.2</td><td>5.1</td><td>2</td><td>2</td><td>56.0</td><td>5.3</td><td>2</td><td>2</td></th<>	N6_16	2		61.3	0	58.1	3.2	2	0	57.0	4.3	2	0	56.7	4.6	2	2	56.4	4.9	2	2	56.2	5.1	2	2	56.0	5.3	2	2
Ma_18_379 4 Ma_14 Ga_15 4 4 Ga_15 5 4 4 65.3 5.4 4 4 65.3 5.8 4 4 65.3 5.8 4 4 65.3 5.8 5.2 5.2 5.7 2 2 5.6 7.5 2 2 5.6 6.7 2 2 5.6 6.7 2 2 5.6 6.7 2 2 5.6 6.5 6.7 2 2 5.6 6.5 6.7 2 2 5.6 6.5 6.7 2 2 5.6 6.7 5 6.7 6.7 6.7 7 <td>N6_17</td> <td>4</td> <td></td> <td>65.2</td> <td>0</td> <td>61.0</td> <td>4.2</td> <td>4</td> <td>0</td> <td>58.9</td> <td>6.3</td> <td>4</td> <td>4</td> <td>58.3</td> <td>6.9</td> <td>4</td> <td>4</td> <td>57.8</td> <td>7.4</td> <td>4</td> <td>4</td> <td>57.4</td> <td>7.8</td> <td>4</td> <td>4</td> <td>57.1</td> <td>8.1</td> <td>4</td> <td>4</td>	N6_17	4		65.2	0	61.0	4.2	4	0	58.9	6.3	4	4	58.3	6.9	4	4	57.8	7.4	4	4	57.4	7.8	4	4	57.1	8.1	4	4
Na 2 Ci,0 0 0.03 1.0 2 0 Bit 5.7 2 2 6.7 2 2 6.7 2 2 6.7 2 2 6.7 2 2 6.7 2 2 6.7 2 2 6.7 2 2 6.7 2 2 6.7 2 2 6.7 2 2 6.7 8.8 2 2 6.8 2 2 6.8 7.7 2 2 6.8 7.7 2 2 6.8 7.7 2 2 6.8 7.7 2 2 6.8 2 2 6.7 6.7 2 2 6.8 3 3 6.8 6.7 2 2 6.8 3 3 6.8 4.0 3 3 3 6.8 6.7 3 3 6.8 6.7 3 3 6.8 6.7 3 3 6.8 6.7 3 3 6.8 6.7 3 3 6.8 6.7 3 3 6.8 6.7	N6_18_ST19	4		64.1	0	60.6	3.5	4	0	58.0	6.1	4	4	57.0	7.1	4	4	56.2	7.9	4	4	55.7	8.4	4	4	55.3	8.8	4	4
1 2 0 55.0 4.0 2 0 55.0 4.0 2 2 55.6 7.6 2 2 64.0 0 2 2 55.6 6.0 2 2 55.0 6.0 2 2 55.0 6.0 6 50.0 6 6 50.0 6 6 50.0 6 6 50.0 7.2 6 6 53.0 6	N6_19	2		63.9	0	60.9 50.1	3.0	2	0	58.2	5.7	2	2	57.2	6.7	2	2	56.5	7.4	2	2	55.9	8.0	2	2	55.4	8.5	2	2
NO.22 6 663 6 22 6 6 6 6 6 6 6 57.5 5.8 6 6 57.5 5 57.5 5 57.5 5 57.5 5 57.5 5 57.5 5 57.5 2 59.7 57.5 2 57.5 2 57.5 3 55.5 56.7 66.6 3 3 56.5 57.5 2 57.5 57.5 57.5	N6_20	2		62.0	0	58.0	4.0	2	0	56.0	6.0	2	2	55.1	6.9	2	2	54.5	7.5	2	2	54.0	8.0	2	2	53.5	8.5	2	2
N6.24 2 0 6.2 2 2 0 6.7 2 2 0 0.5 2 2 0.6 5 2 2 0.6 5 2 2 0.6 5 2 2 0.6 5 1 1 0 0 0 0 0 5 2 2 0.6 5 1 1 0 0 5 1 1 0	N6_22	6		66.3	6	62.1	4.2	6	0	60.2	6.1	6	6	59.1	7.2	6	6	58.3	8.0	6	6	57.5	8.8	6	6	56.8	9.5	6	6
NB_254 1 0633 1 0 0610 0.7 1 1 077 5.6 1 1 06.0 5.9 1 1 06.0 5.9 1 1 06.0 5.9 1 1 06.0 5.9 1 1 06.0 5.9 1 1 06.0 5.9 1 1 06.0 5.9 1 1 06.0 5.9 1 1 06.0 5.9 1 1 06.0 5.9 1 1 06.0 5.9 1 1 06.0 5.9 1 1 06.0 5.9 1 1 06.0 5.9 1 1 06.0 3 3 56.0 3 3 56.0 3 3 56.0 3 3 56.0 3 3 56.0 3 3 56.0 3 3 56.0 3 3 56.0 3 3 56.0 3 3 56.0 3 3 56.0 3 3 56.0 3 3 56.0 3 3 <th< td=""><td>N6_23</td><td>2</td><td></td><td>65.4</td><td>0</td><td>62.6</td><td>2.8</td><td>2</td><td>0</td><td>61.2</td><td>4.2</td><td>2</td><td>0</td><td>60.7</td><td>4.7</td><td>2</td><td>2</td><td>60.3</td><td>5.1</td><td>2</td><td>2</td><td>59.9</td><td>5.5</td><td>2</td><td>2</td><td>59.7</td><td>5.7</td><td>2</td><td>2</td></th<>	N6_23	2		65.4	0	62.6	2.8	2	0	61.2	4.2	2	0	60.7	4.7	2	2	60.3	5.1	2	2	59.9	5.5	2	2	59.7	5.7	2	2
N6.25 3 0 61.4 3.9 3 0 93.3 0 90.3 60 3 3 95.4 6.6 3 3 95.27 3 0 63.3 3 0 50.3 50.4 3 3 55.5 0.6 3 3 55.5 0.6 3 3 55.5 0.6 3 3 55.5 0.6 3 3 55.4 0.6 3 3 55.4 0.6 3 3 55.4 0.6 3 3 55.4 0.6 3 3 55.4 0.6 3 3 55.4 0.6 3 3 55.4 0.6 3 3 55.4 0.6 3 3 55.4 0.6 3 3 55.4 0.6 3 3 55.4 0.6 3 3 55.4 0.6 3 3 55.4 0.6 3 3 55.4 0.6 3 3 55.4 4 4 65.3 3 3 55.4 4 4 55.3 5.6 4	N6_24	1		66.3	1	63.4	2.9	1	0	62.2	4.1	1	0	61.6	4.7	1	1	61.1	5.2	1	1	60.7	5.6	1	1	60.4	5.9	1	1
N6_26 3 61.7 0 68.4 3.3 3 0 56.3 6.4 3 3 56.1 6.1 3 3 56.4 6.1 3 3 56.4 6.1 3 3 56.4 6.1 3 3 56.4 6.1 3 3 56.4 6.1 3 3 56.4 6.1 3 3 56.4 6.1 3 3 56.4 6.1 3 3 56.4 6.1 3 3 56.4 6.4 56.4 6.4 56.4 6.4 56.4 6.4 56.4 6.4 56.4 6.4 56.3 3 3 56.4 6.4 56.4 6.4 56.3 3 3 56.4 4.4 <	N6_25	3		65.3	0	61.4	3.9	3	0	59.3	6.0	3	3	58.8	6.5	3	3	58.4	6.9	3	3	58.2	7.1	3	3	57.9	7.4	3	3
ma_r s 64,3 0 61,3 3,3 3 0 3,3 3 64,3 3 3 64,3 3 3 64,3 3 3 64,3 3 3 64,3 3 3 64,3 3 3 64,3 3 3 64,3 3 3 64,3 3 3 64,4 4 55,3 5 4 4 5,3 5 4 4 56,3 3 3 65,3 4,4 4 56,3 3 3 56,3 4,4 4 56,3 3 3 56,3 4,4 4 56,3 3 3 56,3 4,4 4 56,3 3 3 56,4 4 4 56,3 3 3 56,4 4 4 56,3 3 3 56,4 4 4 56,3 4 4 56,3 4 66,4 56,4 4 56,4 4 56,4 4 56,4 4 56,4 4 56,4 4 56,4 4 56,4 56,4	N6_26	3		61.7	0	58.4	3.3	3	0	56.3	5.4	3	3	55.6	6.1	3	3	55.1	6.6	3	3	54.7	7.0	3	3	54.8	6.9	3	3
N0.29 3 00.0 0 97.0 3.0 3 0 95.3 4.7 3 3 54.8 5.2 3 3 54.4 5.6 3 3 53.9 6.1 3 3 N0.30 4 0 56.4 4.1 4 0 55.8 4.7 4 4 55.3 5.2 4 4 54.9 5.6 4 4 56.9 3.0 4 0 56.4 4.1 4 0 56.3 5.2 4 4 54.9 5.6 4 4 56.9 3.0 4 0 3 3 56.3 5.2 4 4 6 54.9 56.9 4 4 6 57.3 2.6 4 4 56.9 3.0 4 0 3 3 56.3 5.2 4 4 6 54.9 56.9 3.0 4 0 3 3 3 3 3 56.9 3.0 3 3 3 3 3 3 3 3 3	N6_27	4		64.5 61.8	0	58.2	3.5	3	0	56.5	5.3	3	4	55.3	6.5	3	3	55.5 54.6	9.0	4	4	54.9	9.6	4	3	54.3 53.7	8.1	4	4
N6_30 4 60.5 0 57.5 3.0 4 0 56.8 4.7 4 4 55.3 5.2 4 4 56.8 4 4 56.7 5.8 4 4 N6_31 4 59.9 0 58.3 1.6 0 0 57.7 2.2 0 0 57.5 2.4 0 0 57.0 2.9 4 0 56.9 3.0 4 0 0 1	N6 29	3		60.0	0	57.0	3.0	3	0	56.1	3.9	3	0	55.3	4.7	3	3	54.8	5.2	3	3	54.4	5.6	3	3	53.9	6.1	3	3
N6_31 4 59.9 0 58.3 1.6 0 57.7 2.2 0 0 57.5 2.4 0 0 57.0 2.9 4 0 56.9 3.0 4 0	N6_30	4		60.5	0	57.5	3.0	4	0	56.4	4.1	4	0	55.8	4.7	4	4	55.3	5.2	4	4	54.9	5.6	4	4	54.7	5.8	4	4
Image: Second	N6_31	4		59.9	0	58.3	1.6	0	0	57.7	2.2	0	0	57.5	2.4	0	0	57.3	2.6	4	0	57.0	2.9	4	0	56.9	3.0	4	0
Image: state in the state																													
Image: select																													
				•																									
# of impacted DUs: 32 Avg. Insertion Loss: 4.2 dB Avg. Insertion Loss: 6.0 dB Avg. Insertion Loss: 7.4 dB Avg. Insertion Loss: 7.9 dB Avg. Insertion Loss: 8.3 dB Mov. Issertion Loss: 7.4 dB Mov. Issertion Loss: 7.4 dB Avg. Insertion Loss: 7.4 dB		:	# of impacted D)Us:	32	Avg. Insertion	n Loss:	4.2	dB	Avg. Insertion	Loss:	6.0	dB	Avg. Insertion	n Loss:	6.8 dB	Av g.	. Insertion Los	oss:	7.4	dB dB	Avg. Insertion	Loss:	7.9	9 dB	Avg. Insertion	Loss:	8.3	dB
Max. insertion Loss: 1.4 dB Max. insertion Loss: 9.2 dB Max. insertion Loss: 10.2 dB Max. insertion Loss: 11.0 dB Max. insertion Loss: 11.8 dB Max. insertion Loss: 12.4 dB			Impacted rocas	tore w/min 2	dB II ·	Max. Insertion	a dB II ·	7.4		Max. Insertion	LOSS:	9.2	aB	IVIAX. Insertion	a de ll ·	10.2 dB	Max.	nsertion Los	ISS:	11.0		Max. Insertion	3 dB II ·	11.8	8 0B 2 DHe	Max. Insertion		12.4	aB
In produce receiver winning of the section of a bit of the section		I	ппрастей гесер	1015 W/ IIIII. 3	ud IL:	Importd w/ 5 d	BIL:	32 24	DUs	Impetd w/ 5 df	BIL:	32	DUs	Imported w/ 5 c	BIL:	32 DUS 31 DUS	[1] If	ctd w/5 dBII	L:	31	DUs	Importe w/ 5 dl	BIL:	3. 3.	2 DUS 1 DUS	Impetd w/ 5 dP	SIL:	32	DUs
% Impeted DUs w/ 5 dB IL: 75.0% % Impeted DUs w/ 5 dB IL: 93.8% % Impeted DUs w/ 5 dB IL: 96.9% % % Impeted DUs w/ 5 dB IL: 96.9% % % % Impeted DUs w/ 5 dB IL: 96.9% % % % % % % % % % % % % % % % % % %						% Impetd DU	ls w/ 5 dB IL:	75.0%		% Impetd DUs	sw/5dBIL:	93.8%		% Impeted DU	ls w∕5 dB IL:	96.9%	% In	npctd DUs w/	/ 5 dB IL:	96.9%		% Impeted DUs	sw/5dBIL:	96.9%	6	% Impetd DUs	w/5 dB IL:	100.0%	
Benefited (non-impacted) receptors: [2] Non-impctd w/ 5 dB IL: 2 DUs [2] Non-impctd w/ 5 dB IL: 29 DUs [2] Non-impctd w/ 5 dB IL: 41 DUs [2] Non-impctd w/ 5 dB IL: 41 DUs [2] Non-impctd w/ 5 dB IL: 41 DUs			Benefited (non-	-impacted) rece	eptors:	[2] Non-impct	td w/ 5 dB IL:	2	DUs	[2] Non-impcto	d w/ 5 dB IL:	29	DUs	[2] Non-impct	td w/ 5 dB IL:	41 DUs	[2] N	Non-impctd w/	// 5 dB IL:	41	DUs	[2] Non-impcto	d w/ 5 dB IL:	4	1 DUs	[2] Non-impctd	Iw/5 dB IL:	41	DUs
Total DUs for cost reasonableness: Total [1]+[2] for cost: 34 DUs Total [1]+[2] for cost: 61 DUs Total [1]+[2] for cost: 73 DUs Total [1]+[2] for cost: 73 DUs			Total DUs for c	ost reasonable	eness:	Total [1]+[2] f	or cost:	34	DUs	Total [1]+[2] fo	or cost:	61	DUs	Total [1]+[2] f	or cost:	73 DUs	Total	ll [1]+[2] for c	cost:	73	DUs	Total [1]+[2] fo	or cost:	73	3 DUs	Total [1]+[2] fo	r cost:	73	DUs
Approx. Cost: \$1,428,576 Approx. Cost: \$1,666,673 Approx. Cost: \$1,904,770 Approx. Cost: \$2,142,865 Approx. Cost: \$2,380,961 Approx. Cost per DU: \$35,014 Approx. Cost: \$1,428,576 Approx. Cost: \$1,666,673 Approx. Cost: \$1,904,770 Approx. Cost: \$2,142,865 Approx. Cost: \$2,380,961 Approx. Cost per DU: \$35,014 Approx. Cost per DU: \$32,616 \$32,616 \$32,616 \$32,616						Approx. Cost	: ner DII:	\$1,190,481 \$35,014		Approx. Cost:	er DU:	\$1,428,576 \$23,410		Approx. Cost	: ner DLI:	\$1,666,673 \$22,831	Appr	rox. Cost:	DUI	\$1,904,770 \$26,093		Approx. Cost:	oer DU:	\$2,142,86	5	Approx. Cost p	er DI I	\$2,380,961 \$32,616	

Pennsylvania Turnpike MP 320-326 Reconstruction PTC Ref. 05-045-RD4C, HMMH Job No. 301940 Date and Initials JAC 4/18/2007

No. of No Barrier 10-foot Barrier 12-foot Barrier 14-foot Barrier 16-foot Barrier 18-foot	Barrier	20-foot Barrier
Dwelling No. of DUS Description Log(dRA) for dRA Log(dRA) II (dR) II 5; (dR) (dR) II		
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	2 2	59.0 7.1 2 2
S1_02_ST1 3 67.5 3 62.0 5.5 3 3 61.6 5.9 3 3 61.1 6.4 3 3 60.9 6.6	3 3	60.7 6.8 3 3
\$1_03 6 67.3 6 61.4 5.9 6 60.9 6.4 6 60.6 6.7 6 60.3 7.0 6 60.1 7.2	6 6	59.9 7.4 6 6
S1_04 1 68.0 1 62.9 5.1 1 1 62.5 5.5 1 1 62.2 5.8 1 1 62.0 6.0 1 1 61.8 6.2 0.0 1 1 1 61.8 6.2 0.0 1 1 1 61.8 6.2 0.0 1 1 1 0 61.8 6.2 0.0 1 1 1 0 61.8 6.2 0.0 1 1 1 0 61.8 6.2 0.0 1 1 0 0 61.0 0.0 1 1 0 0 61.0 0.0 1 1 0 0 61.0 0.0 1 1 0 0 61.0 0.0 1 1 0 0 61.0 0.0 1 0 0 61.0 0.0 1 0 0 61.0 0.0 1 0 0 61.0 0.0 1 0 0 61.0 0.0 1 0 0 61.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1	61.7 6.3 1 1 62.0 2.0 1
S1_06 1 68.2 1 63.1 51_1 1 1 62.2 6.0 1 1 66.6 1 1 1 1 1 0 7.5	1 0	60.3 7.9 1 1
51_07_ST3 1 69.7 1 63.8 5.9 1 1 62.7 7.0 1 1 61.9 7.8 1 1 61.3 8.4 1 1 60.8 8.9	1 1	60.3 9.4 1 1
\$1_08 1 65.0 61.2 3.8 1 0 60.7 4.3 1 0 60.3 4.7 1 1 60.1 4.9 1 1 59.9 5.1	1 1	59.7 5.3 1 1
S1_09 1 66.4 1 60.4 6.0 1 1 59.7 6.7 1 1 59.2 7.2 1 1 58.5 7.9	1 1	58.2 8.2 1 1
$S1_{-10}$ 1 67.5 1 61.5 6.0 1 1 60.9 6.6 1 1 60.4 7.1 1 1 60.1 7.4 1 1 59.8 7.7 1 1 51.4 50.8 5.7 1 1 1 60.1 7.4 1 1 59.8 7.7 1 1 60.1 7.5 1 60.1 7.4 1 1 1 50.8 7.7 1 1 60.1 7.5 1 1 60.1 7.4 1 1 1 60.1 7.5 10.1 7.5 10.1 7.5 10.1 7.5 10.1 7.5 10.1 7.5 10.1 7.5 10.1 7.5 10.1 7.5 10.1 7.5 10.1 7.5	1 1	59.5 8.0 1 1 60.6 9.9 1 1
51_{-1} 1 1 7.5 1 0.5 1 0.5 1 1 0.5 1 1 0.5 1.1 1 0.5 0.5 1 1 0.5 0.5 1 1 0.5 0.5 1 1 0.5 0.5 0.5 1 1 0.5	4 4	60.2 8.4 4 4
<u>51</u> 3 1 68.8 1 63.2 5.6 1 1 62.0 6.8 1 1 61.2 7.6 1 1 60.6 8.2 1 1 60.0 8.8	1 1	59.6 9.2 1 1
S1_14 1 67.1 1 60.7 6.4 1 1 59.8 7.3 1 1 59.2 7.9 1 1 58.7 8.4 1 1 58.2 8.9	1 1	57.9 9.2 1 1
S1_15_LT1 3 66.4 3 60.5 5.9 3 3 58.8 7.6 3 3 58.3 8.1 3 3 57.8 8.6 0 10 15 10	3 3	57.4 9.0 3 3
51_10 5 56,9 0 59,5 4,4 5 0 50,5 5 50,6 5,3 5 57,1 10,8 5 50,7 7,2 \$17.7 1 691 1 623 68 1 1 616 7,5 1 1 610 81 1 1 602 89	5 5 1 1	56.3 7.6 5 5 59.7 9.4 1 1
S_{1-1} , S_{2-1} , S_{2	1 1	50.3 8.9 1 1
\$1_19 2 69.1 2 67.4 1.7 0 0 67.3 1.8 0 0 67.2 1.9 0 0 67.2 1.9 0 0 67.2 1.9	0 0	67.1 2.0 0 0
\$1_20 4 63.4 0 60.2 3.2 4 0 59.7 3.7 4 0 59.4 4.0 4 0 59.2 4.2 4 0 59.1 4.3	4 0	58.9 4.5 4 4
$S_{1,2}^{-1}$ 2 65.0 0 63.5 1.5 0 0 63.3 1.7 0 0 63.2 1.8 0 0 63.1 1.9 0 0 63.0 2.0 51.2 1 0 50.4 2.1	0 0	63.0 2.0 0 0 50.2 2.2 1 0
51_{22} 1 56.8 1 64.7 2.1 0 0 64.5 2.3 0 0 64.4 2.4 0 0 64.3 2.5 1 0 64.3 2.5 1 0 64.3 2.5	1 0	64.2 2.6 1 0
<u>5</u> _24 1 66.9 1 64.2 2.7 1 0 63.9 3.0 1 0 63.8 3.1 1 0 63.7 3.2 1 0 63.6 3.3	1 0	63.5 3.4 1 0
S1_25 2 65.4 0 61.9 3.5 2 0 61.2 4.2 2 0 61.1 4.3 2 0 60.9 4.5	2 2	60.8 4.6 2 2
S1_26 2 64.6 0 62.0 2.6 2 0 61.4 3.2 2 0 61.3 3.3 2 0 61.2 3.4 0	2 0	61.1 3.5 2 0
$S_{1,2}^{-2}$ 1 $S_{1,2}^{-2}$ 1 $S_{1,3}^{-2}$ $S_{1,3}^{-1}$ $S_{1,3}^{-1}$ $S_{1,4}^{-1}$	1 0	53.8 7.8 2 2
51_29 2 63.4 0 61.0 2.4 0 0 60.8 2.6 2 0 60.6 2.8 2 0 60.5 2.9 2 0 60.4 3.0	2 0	60.3 3.1 2 0
\$1_30 2 59.7 0 54.1 5.6 2 2 52.6 7.1 2 2 52.3 7.4 2 2 51.9 7.8	2 2	51.8 7.9 2 2
S1_31 1 60.7 0 56.6 4.1 1 0 55.9 4.8 1 1 55.5 5.2 1 1 55.0 5.7	1 1	54.9 5.8 1 1
$S1_{32}$ S1 5 60.8 0 58.7 2.1 0 0 58.4 2.4 0 0 58.3 2.5 5 0 58.2 2.6 5 0 58.1 2.7 51 3 51 3 51 3 51 3 51 3 51 3 51 3 51	5 0	58.0 2.8 5 0 59.9 4.4 1 0
51_{-50} 1 00.5 00.5 1 0 00.4 0.5 1 0 00.2 1 1 0 00.1 1.2 1 0 0.1 1 0 0 0.1 1 0 0 0 0.1 1 0 0 0 0 0 0 0 0 0 0	2 2	52.2 8.5 2 2
<u>51_35</u> 1 <u>59.7</u> 0 <u>54.5</u> 5.2 1 1 <u>53.6</u> 6.1 1 1 <u>53.1</u> 6.6 1 1 <u>52.7</u> 7.0 1 1 <u>52.4</u> 7.3	1 1	52.2 7.5 1 1
\$1_36 2 60.5 0 56.7 3.8 2 0 54.0 6.5 2 2 53.2 7.3 2 2 52.6 7.9 2 2 52.1 8.4	2 2	51.7 8.8 2 2
S1_37 2 58.5 0 53.1 5.4 2 2 51.6 6.9 2 2 50.9 7.6 2 2 50.5 8.0 2 2 50.1 8.4 51 51 51 51 51 51 51 51 51 51 51 51 51	2 2	40.0 0.0 0
	6 6	49.9 8.6 2 2
5139 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3	6 6 1 1	49.9 8.6 2 2 52.5 5.3 6 6 54.4 6.4 1 1
S1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3	6 6 1 1	49.9 8.6 2 2 52.5 5.3 6 6 54.4 6.4 1 1
S1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3	6 6 1 1	49.9 8.6 2 2 52.5 5.3 6 6 54.4 6.4 1 1
S1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3	6 6 1 1	49.9 8.6 2 2 52.5 5.3 6 6 54.4 6.4 1 1
S1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3	6 6 1 1	49.9 8.6 2 2 52.5 5.3 6 6 54.4 6.4 1 1
S1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3	6 6 1 1	49.9 8.6 2 2 52.5 5.3 6 6 54.4 6.4 1 1
S1_39 1 60.8 0 56.0 4.8 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3 S1_39 I <th>6 6 1 1</th> <th>49.9 8.6 2 2 52.5 5.3 6 6 54.4 6.4 1 1</th>	6 6 1 1	49.9 8.6 2 2 52.5 5.3 6 6 54.4 6.4 1 1
S1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3 S1_39 I <th>6 6 1 1</th> <th>49.9 8.6 2 2 52.5 5.3 6 6 54.4 6.4 1 1</th>	6 6 1 1	49.9 8.6 2 2 52.5 5.3 6 6 54.4 6.4 1 1
S1_39 1 60.8 0 56.0 4.8 1 55.3 5.5 1 1 56.0 58.1 1 54.7 6.1 1 1 54.5 6.3 S1_39 I <th>6 6 1 1</th> <th>49.9 8.6 2 2 52.5 5.3 6 6 54.4 6.4 1 1</th>	6 6 1 1	49.9 8.6 2 2 52.5 5.3 6 6 54.4 6.4 1 1
S1_39 1 60.8 0 56.0 4.8 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3 S1_39 1 1 1 1 1 1 1 1 54.5 1 1 1 54.5 6.3 S1_39 1 1 1 1 1 1 55.3 5.5 1 1 1 54.5 6.3 S1_39 1 1 1 1 1 55.3 5.5 1 1 1 54.5 6.3 1 1 1 1 1 1 1 55.3 1	6 6 1 1	49.9 8.6 2 2 52.5 5.3 6 6 54.4 6.4 1 1
S1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 54.7 6.1 1 1 54.5 6.3 S1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 54.7 6.1 1 1 54.5 6.3 S1_39 1 56.0 4.8 1 1 55.3 5.5 1 1 54.7 6.1 1 1 54.5 6.3 Image: S1_10 Image: S1_10 <th>6 6 1 1</th> <th>Avg. Insertion Loss: 6.3 dB</th>	6 6 1 1	Avg. Insertion Loss: 6.3 dB
S1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3 S1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 54.7 6.1 1 1 54.5 6.3 S1_39 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.5 6.3 Image: S1_30 Image: S1_30 <td< th=""><th>6 6 1 1</th><th>Avg. Insertion Loss: 6.3 dB Max. Insertion Loss: 9.9 dB</th></td<>	6 6 1 1	Avg. Insertion Loss: 6.3 dB Max. Insertion Loss: 9.9 dB
S1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3 S1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3 S1_39 1 1 55.0 5.5 1 1 55.0 5.8 1 1 1 54.5 6.3 S1_39 1 1 55.0 5.5 1 1 1 54.5 6.3 1 1 1 55.3 5.5 1 1 1 54.5 6.3 1	6 6 1 1 	49.9 6.0 2 2 52.5 5.3 6 6 54.4 6.4 1 1 Av g. Insertion Loss: 6.3 dB Max. Insertion Loss: 9.9 dB [1] Impetid w/ 3 dB IL: 30 DUs Impediate W 5 dB IL: 30 DUs
S1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3 S1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3 S1_39 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3 Impacted DUs: 1 1 1 55.0 5.1 1 1 54.7 6.1 1 1 54.5 6.3 Impacted DUs: 24 Avg. Insertion Loss: 4.2 Avg. Insertion Loss: 5.1 Avg. Insertion Loss: 5.4 B Avg. Insertion Loss: 6.9 Max. Insertion Loss: 8.5 Max. Insertion Loss: 8.5 Max. Insertion Loss: 8.5 Max. Insertion Loss: 8.5 Max. Insertion Loss: 8.6	6 6 1 1 	Av.g. Insertion Loss: 6.3 dB Max. Insertion Loss: 9.9 dB [1] Impetd w/ 3 dB IL: 30 DUs Impetd w/ 5 dB IL: 27 DUs [w] Impetd JUS w/ 5 dB IL: 84.4%
\$1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 56.7 6.1 1 1 54.5 6.3 \$1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 54.7 6.1 1 1 54.5 6.3 \$100 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.7 6.1 1 1 54.5 6.3 \$100 1 1 55.3 5.5 1 1 1 54.5 6.3 1 1 54.5 6.3 1 1 54.5 6.3 1 1 54.5 6.3 1 1 54.5 6.3 1 1 1 54.5 6.3 1 1 1 54.5 6.3 1 1 1 54.5 6.3 1 1 1 54.5 6.3 1 1 1 54.5 6.3 1 1 1 1 <td>6 6 1 1 </td> <td>49.9 6.0 2 2 52.5 5.3 6 6 54.4 6.4 1 1 Avg. Insertion Loss: 6.3 dB Max. Insertion Loss: 9.9 dB [1] Impetd w/ 3 dB IL: 30 DUs Impetd W/ 3 dB IL: 27 DUs % Impetd DUS w/ 5 dB IL: 27 DUs % Impetd DUS w/ 5 dB IL: 32 DUs</td>	6 6 1 1 	49.9 6.0 2 2 52.5 5.3 6 6 54.4 6.4 1 1 Avg. Insertion Loss: 6.3 dB Max. Insertion Loss: 9.9 dB [1] Impetd w/ 3 dB IL: 30 DUs Impetd W/ 3 dB IL: 27 DUs % Impetd DUS w/ 5 dB IL: 27 DUs % Impetd DUS w/ 5 dB IL: 32 DUs
\$1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 56.0 6.8 1 1 54.7 6.1 1 1 54.5 6.3 \$1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 54.7 6.1 1 1 54.5 6.3 \$1_39 1 60.8 0 56.0 4.8 1 1 55.3 5.5 1 1 54.7 6.1 1 1 54.5 6.3 \$1_10 1 1 55.3 5.5 1 1 55.0 5.8 1 1 54.5 6.3	6 6 1 1 	49.9 6.0 2 2 52.5 5.3 6 6 54.4 6.4 1 1 Avg. Insertion Loss: 6.3 dB Max. Insertion Loss: 9.9 dB [1] Impetd w/ 3 dB IL: 30 DUs Impetd w/ 3 dB IL: 30 DUs % Impetd DUS w/ 5 dB IL: 27 DUs % Impetd DUS w/ 5 dB IL: 20 Us Total [1]+[2] for cost: 62 DUs

Pennsylvania Turnpike MP 320-326 Reconstruction PTC Ref. 05-045-RD4C, HMMH Job No. 301940 Date and Initials JAC 4/20/2007 Revised 8/10/2007 JAC

	No. of		No Bai	rrier		10-foot	Barrier		12-foot	Barrier			14-foot	Barrier		16-fc	ot Barrier			18-foot E	Barrier		20-foot B	arrier	
Receiver	Dwelling Units	Description	Leg(dBA)	No. of DUs 66+ dBA	leg(dBA)	II (dB)	II 3+ (dB) II 5+ (dB)	Leg(dBA)	II (dB)	II_3+(dB)	II 5+ (dB)	Leg(dBA)	II (dB)	II 3+ (dB) II 5+	(dB)	Leg(dBA) II (dB	II 3+ (dB)	II 5+ (dB)	Leg(dBA)	II (dB)	II 3+ (dB) II 5+ (dB)	Leg(dBA)	II (dB)	II 3+ (dB) I	L 5+ (dB)
S2_01	1	Description	67.1	1	59.9	7.2	1 1	59.1	8.0	1	1	58.5	8.6	1	1	58.1 9.) 1	1	57.7	9.4	1 1	57.3	9.8	1	1 1
S2_02_ST7 S2_03	0		70.3	0	63.3 61.5	7.0	0 0	62.0 60.2	8.3	0	0	61.1 59.2	9.2	0	0	60.4 9. 58.3 8	9 0	0	59.7 57.8	10.6	0 0	59.2	11.1	0	0
S2_03	1		63.4	0	57.5	5.9	1 1	56.8	6.6	1	1	56.3	7.9	1	1	56.0 7.	s 0 1 1	1	55.7	9.3 7.7	1 1	55.4	9.9 8.0	1	1
S2_05	1		61.5	0	56.0	5.5	1 1	55.2	6.3	1	1	54.7	6.8	1	1	54.4 7.	1 1	1	54.1	7.4	1 1	53.9	7.6	1	1
S2_06 S2_07	1		58.1 56.8	0	55.8 54.5	2.3 2.3	0 0	53.8 52.2	4.3 4.6	1	0	53.0 51.5	5.1 5.3	1 3	1 3	52.5 5. 51.0 5.	5 1 3 3	1	52.0 50.7	6.1 6.1	1 1 3 3	51.7 50.3	6.4 6.5	1 3	1
S2_08	1		54.7	0	52.5	2.2	0 0	51.1	3.6	1	0	50.5	4.2	1	0	50.1 4.	6 1	1	49.7	5.0	1 1	49.4	5.3	1	1
S2_09	0		58.6	0	54.7	3.9	0 0	53.0	5.6	0	0	52.5	6.1	0	0	52.2 6.	4 O	0	51.9	6.7	0 0	51.7	6.9	0	0
02_10	0		02.5	0	50.5	5.4	0 0	30.5	0.0	0	0	55.5	0.0	0	0	54.5 7.	* 0	0	54.4	1.5	0 0	34.0	0.5	0	0
																									_
		of impacted D) s·		Ava Insertion	1.055.	3.8 dB	Ava Insertion	Loss:	5.3	dB	Ava Insertion I	055.	6.0. dB		Ava Insertion Loss:	6.4	dB	Avg. Insertion I	055.	6.7. dB	Avg Insertion	088.	71 d	3
	#	or impacted D		'	Max. Insertion	Loss:	7.2 dB	Max. Insertion	Loss:	5.3 8.3	dB	Max. Insertion L	_055:	9.2 dB		Max. Insertion Loss:	9.9	dB	Max. Insertion L	.055:	10.6 dB	Max. Insertion	Loss:	11.1 di	3
	li li	mpacted recept	tors w/ min. 3	dB IL:	[1] Impetd w/ 3	3 dB IL:	1 DUs	[1] Impetd w/	3 dB IL:	1	DUs	[1] Impetd w/ 3	dB IL:	1 DUs		[1] Impetd w/ 3 dB IL:	1	DUs	[1] Impetd w/ 3	dB IL:	1 DUs	[1] Impetd w/ 3	dB IL:	1 D	Js
					mpcta w 5 dt % Impctd DUs	вı∟: sw/5dBlL:	1 DUS 100.0%	mpcta w/ 5 dl % Impctd DUs	sı∟: sw/5dBlL:	1 100.0%	DUS	mpcta w/ 5 dB % Impctd DUs	ı∟: w/5 dB IL:	1 DUs 100.0%		mpctd w/ 5 dB IL: % Impctd DUs w/ 5 dB	1 L: 100.0%	DUS	% Impeted W 5 dB	ı∟: w/5 dB IL:	1 DUS 100.0%	mpctd w/ 5 dB % Impctd DUs	⊪L: w/ 5 dB IL:	1 D 100.0%	JS
	E	enefited (non-	impacted) rece	eptors:	[2] Non-impcto	d w/ 5 dB IL:	2 DUs	[2] Non-impcto	d w/ 5 dB IL:	5	DUs	[2] Non-impctd	w/ 5 dB IL:	6 DUs		[2] Non-impctd w/ 5 dB	L: 7	DUs	[2] Non-impctd	w/ 5 dB IL:	7 DUs	[2] Non-impctd	w/ 5 dB IL:	7 D	Us
	т	otal DUs for co	ost reasonable	eness:	Total [1]+[2] fo	or cost:	3 DUs	Total [1]+[2] fo	or cost:	6	DUs	Total [1]+[2] for	cost:	7 DUs		Total [1]+[2] for cost:	8	DUs	Total [1]+[2] for	cost:	8 DUs	Total [1]+[2] for	r cost:	8 D	Js
					Approx. Cost: Approx Cost p	per DU:	\$549,878 \$183,293	Approx. Cost: Approx Cost p	er DU:	\$659,853 \$109,976		Approx. Cost: Approx Cost pe	r DU:	\$769,829 \$109,976		Approx. Cost: Approx Cost per DU:	\$879,804		Approx. Cost: Approx. Cost. per	r DU:	3989,780 \$123,723	Approx. Cost:	ar DH:	\$1,099,755 \$137.469	

Pennsylvania Turnpike MP 320-326 Reconstruction PTC Ref. 05-045-RD4C, HMMH Job No. 301940 Date and Initials JAC 5/16/2007

	No. of		No Bai	rier		10-foot	Barrier		12-foot	Barrier			14-foot	Barrier			16-foot	Barrier			18-foot	Barrier		20-foot	Barrier	
Receiver	Dwelling Units	Description	Leg(dBA)	No. of DUs 66+ dBA	Leg(dBA)	II (dB)	II 3+ (dB) II 5+ (dB)	Leg(dBA)	II (dB)	II_3∓(dB)	II 5+ (dB)	Leg(dBA)	II (dB)	II 3∓(dB)	II 5+ (dB)	Leg(dBA)	IL (dB)	II 3∓ (dB)	II 5+ (dB)	Leg(dBA)	IL (dB)	II 3+ (dB) II 5+ (dB	Leg(dBA)	IL (dB)	II 3± (dB)	II 5+ (dB)
S3_01	1	Description	65.3	0	62.3	3.0	1 0	61.8	3.5	1 1 1 1 1 1	0	61.1	4.2	1 1	0	60.5	4.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	60.0	5.3	1 1	59.6	5.7	1 1	1 1
S3_02_ST9	2		68.6	2	64.7	3.9	2 0	63.4	5.2	2	2	61.9	6.7	2	2	60.7	7.9	2	2	59.8	8.8	2 2	59.0	9.6	2	2
\$3_03 \$3_04	2		70.0 69.1	2	65.4 64.0	4.6 5.1	2 2	64.2 60.4	5.8 8.7	2	2	60.8 59.0	9.2 10.1	2	2	59.7 58.0	10.3 11 1	2	2	58.7 57.2	11.3 11.9	2 2	58.0 56.4	12.0 12.7	2	2
S3_05	1		68.8	1	62.7	6.1	1 1	61.3	7.5	1	1	60.4	8.4	1	1	59.6	9.2	1	1	58.9	9.9	1 1	58.3	10.5	1	1
S3_06	4		64.2	0	60.5	3.7	4 0	59.5	4.7	4	4	58.8	5.4	4	4	57.9	6.3	4	4	57.1	7.1	4 4	56.4	7.8	4	4
S3_07 S3_08_ST10	1		63.6 68.2	0	59.5 63.3	4.1 4.9	1 0	56.4 60.1	7.2 8.1	1	1	55.4 59.0	8.2 9.2	1	1	54.8 58.2	8.8 10.0	1	1	54.2 57.4	9.4 10.8	1 1	53.6	10.0 11.4	1	1
S3_09	2		74.5	2	67.5	7.0	2 2	64.0	10.5	2	2	62.6	11.9	2	2	61.7	12.8	2	2	60.8	13.7	2 2	60.1	14.4	2	2
S3_10	2		60.7	0	59.3	1.4	0 0	59.0	1.7	0	0	58.5	2.2	0	0	58.2	2.5	2	0	58.0	2.7	2 0	57.9	2.8	2	0
S3_11 S3_12	1		64.3 64.8	0	61.5 60.8	2.8 4.0	1 0 3 0	60.8 60.4	3.5 4.4	1	0	58.1 56.9	6.2 7.9	1	1	57.0 56.0	7.3 8.8	1	1	56.2 55.5	8.1 9.3	1 1	55.5 54.9	8.8 9.9	1	1
S3_13	3		63.1	0	60.3	2.8	3 0	57.7	5.4	3	3	56.7	6.4	3	3	56.0	7.1	3	3	55.2	7.9	3 3	54.6	8.5	3	3
S3_14	3		61.3	0	58.5	2.8	3 0	55.4	5.9	3	3	54.4	6.9	3	3	53.7	7.6	3	3	53.1	8.2	3 3	52.5	8.8	3	3
S3_15 S3_16	2		63.9	0	63.1	3.6	2 0	62.6	6.2 4.4	2	2	61.2	7.4 5.8	2	2	55.7 60.8	6.2	2	2	55.0 60.4	8.9 6.6	2 2	54.4 60.2	9.5	2	2
S3_17	3		59.2	0	56.5	2.7	3 0	56.4	2.8	3	0	54.6	4.6	3	3	54.4	4.8	3	3	54.1	5.1	3 3	53.8	5.4	3	3
S3_18	2		63.3	0	59.4	3.9	2 0	59.1	4.2	2	0	56.0	7.3	2	2	55.2	8.1	2	2	54.7	8.6	2 2	54.3	9.0	2	2
S3_19 S3_20	2		57.4	0	54.2	3.2	2 0	51.2	6.2	2	2	50.1	7.3	2	2	49.6	7.8	2	2	49.3	8.1	2 2	49.1	8.3	2	2
S3_21	3		56.9	0	54.0	2.9	3 0	51.3	5.6	3	3	50.4	6.5	3	3	49.8	7.1	3	3	49.2	7.7	3 3	48.9	8.0	3	3
S3_22 S3_23	3		61.6 62.1	0	58.2 59.9	3.4	3 0	56.1 59.5	5.5	3	3	55.0 58.9	6.6 3.2	3	3	54.4 58.7	7.2	3	3	53.8 58.5	7.8	3 3	53.4 58.4	8.2 3.7	3	3
S3_24	5		55.9	0	53.9	2.0	0 0	52.7	3.2	5	0	52.3	3.6	5	0	51.9	4.0	5	0	51.6	4.3	5 0	51.3	4.6	5	5
																	_						_	_		
																							_			
	#	# of impacted D	Us:	10	Avg. Insertion Max. Insertion	Loss:	3.5 dB 7.0 dB	Avg. Insertion Max. Insertion	Loss: Loss:	5.2 10.5	dB dB	Avg. Insertion Max. Insertion	n Loss: n Loss:	6.6 11.9	dB dB	Avg. Insertion Max. Insertion	Loss: Loss:	7.3 12.8	dB dB	Avg. Insertion Max. Insertion	Loss:	7.9 dB 13.7 dB	Avg. Insertion Max. Insertion	Loss: Loss:	8.4 (14.4 (iB iB
	I	Impacted recept	tors w/ min. 3	dB IL:	[1] Impctd w/	3 dB IL:	10 DUs	[1] Impctd w/	3 dB IL:	10	DUs	[1] Impctd w/	3 dB IL:	10	DUs	[1] Impctd w/ 3	dB IL:	10	DUs	[1] Impctd w/	3 dB IL:	10 DUs	[1] Impctd w/	3 dB IL:	10 1	DUs
					Impetd w/ 5 d	BIL:	7 DUs	Impetd w/ 5 dl	BIL:	9	DUs	Impetd w/ 5 d	BIL:	100.000	DUs	Impetd w/ 5 dB	IL:	100.08/	DUs	Impetd w/ 5 d	BIL:	10 DUs	Impetd w/ 5 dl	BIL:	10 I	DUs
		Benefited (non-	impacted) rece	ptors:	70 Impeta DU [2] Non-impeta	sw/50BIL: dw/5dBIL:	0 DUs	76 Impeta DUS [2] Non-impeta	d w/5 dB IL:	90.0% 25	DUs	[2] Non-impct	sw/50BIL: dw/5dBIL:	34	DUs	[2] Non-impetd	w/5 dB IL: w/5 dB IL:	100.0%	DUs	70 Impeta DU [2] Non-impeta	sw/50BIL: dw/5dBIL:	35 DUs	[2] Non-impeter	sw/5 dBIL: dw/5 dBIL:	100.0% 40 I	DUs
	٦	Total DUs for co	ost reasonable	ness:	Total [1]+[2] f	or cost:	10 DUs	Total [1]+[2] fo	or cost:	35	DUs	Total [1]+[2] f	or cost:	44	DUs	Total [1]+[2] fo	r cost:	45	DUs	Total [1]+[2] f	or cost:	45 DUs	Total [1]+[2] fo	or cost:	50 I	DUs
					Approx. Cost: Approx Cost p	per DU:	\$608,426 \$60,843	Approx. Cost: Approx Cost p	er DU:	\$730,111 \$20,860		Approx. Cost: Approx Cost p	per DU:	\$851,796 \$19,359		Approx. Cost: Approx Cost pe	er DU:	\$973,481 \$21,633		Approx. Cost: Approx Cost p	er DU:	\$1,095,166 \$24,337	Approx. Cost: Approx Cost p	er DU:	\$1,216,852 \$24,337	

Pennsylvania Turnpike MP 320-326 Reconstruction PTC Ref. 05-045-RD4C, HMMH Job No. 301940 Date and Initials JAC 4/13/2007

	No. of No Barrier Dwelling No. of DUs ver Units Description Leg(dBA) 66+dBA			10-foot	Barrier			12-foot	Barrier			14-foot	Barrier			16-foot	Barrier			18-foot	Barrier			20-foot	Barrier			
Receiver	Dwelling Units	Description	Leg(dBA)	No. of DUs 66+ dBA	Lea(dBA)	IL (dB)	IL 3+ (dB) I	5+ (dB)	Leg(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leg(dBA)	IL (dB)	IL 3+ (dB) IL 5-	+ (dB)	Leg(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leg(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leg(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)
S4_1	2	Decemption	75.6	2	67.6	8.0	2	2	65.4	10.2	2	2	64.1	11.5	2	2	63.1	12.5	2	2	62.3	13.3	2	2	61.5	14.1	2	2
S4_2	2		73.0	2	65.4	7.6	2	2	63.3	9.7	2	2	62.3	10.7	2	2	61.4	11.6	2	2	60.7	12.3	2	2	60.1	12.9	2	2
S4_3 S4_4	3		74.9	3	69.6	6.9	3	3	65.9	10.6	3	3	64.3	12.0	3	3	63.2	13.0	3	3	62.2	13.9	3	3	60.4	14.5	3	3
S4_5_ST11	10		70.3	10	64.1	6.2	10	10	62.3	8.0	10	10	61.1	9.2	10	10	60.2	10.1	10	10	59.4	10.9	10	10	58.6	11.7	10	10
S4_6	6		76.7	6	68.5	8.2	6	6	65.0	11.7	6	6	63.7	13.0	6	6	62.8	13.9	6	6	61.9	14.8	6	6	61.2	15.5	6	6
S4_7 S4_8	2		65.3	2	62.3	3.0	2	0	61.9	3.4	2	2	61.6	3.7	2	2	61.3	4.0	2	2	61.2	4.1	2	2	61.0	4.3	2	2
S4_9	1		67.8	1	61.7	6.1	1	1	60.9	6.9	1	1	59.2	8.6	1	1	58.3	9.5	1	1	57.6	10.2	1	1	57.0	10.8	1	1
S4_10	2		69.6 70.7	2	64.3 65.9	5.3	2	2	60.5 62.0	9.1	2	2	58.9	10.7	2	2	57.8 59.3	11.8	2	2	56.9 58.3	12.7	2	2	56.1 57.5	13.5	2	2
S4_11 S4_12	14		66.2	14	61.8	4.4	14	0	58.4	7.8	14	14	57.1	9.1	14	14	56.2	10.0	14	14	55.5	10.7	14	14	54.9	11.3	14	14
S4_13	6		63.8	0	57.8	6.0	6	6	56.1	7.7	6	6	55.4	8.4	6	6	54.9	8.9	6	6	54.2	9.6	6	6	53.8	10.0	6	6
S4_14 S4_15	2		59.1 61.7	0	55.6	3.5	3	0	54.2 57.3	4.9	2	3	53.3 54.7	5.8	3	3	52.7 54.3	6.4 7.4	2	3	52.3	6.8 7.8	2	3	52.1 53.7	7.0	2	3
S4_16	6		63.4	0	59.5	3.9	6	0	56.3	7.1	6	6	55.1	8.3	6	6	54.4	9.0	6	6	53.7	9.7	6	6	53.2	10.2	6	6
S4_17	6		61.2	0	58.1	3.1	6	0	56.1	5.1	6	6	55.0	6.2	6	6	54.3	6.9	6	6	53.6	7.6	6	6	53.1	8.1	6	6
S4_18 S4_19	3		55.2 60.3	0	52.7 56.3	2.5 4.0	3	0	52.6 55.9	2.6 4.4	3	0	51.6 52.4	3.6 7.9	3	0 4	51.6 51.7	3.6 8.6	3	0 4	51.4 51.3	3.8 9.0	3	0 4	51.1 50.9	4.1 9.4	3	0
S4_20	11		66.5	11	61.5	5.0	11	11	61.3	5.2	11	11	56.3	10.2	11	11	55.3	11.2	11	11	54.7	11.8	11	11	54.4	12.1	11	11
S4_21	13		62.2	0	56.9	5.3	13	13	53.8	8.4	13	13	53.0	9.2	13	13	52.5	9.7	13	13	52.2	10.0	13	13	52.0	10.2	13	13
S4_22 S4_23	9		60.0	0	55.5	5.2 4.5	9	9	55.4	6.2 4.6	9	9	54.6	9.2	9	5 9	54.0	9.0 8.8	9	5	53.6 51.0	9.0	9	9	53.3	9.3	9	5 9
S4_24	6		60.4	0	55.5	4.9	6	6	55.5	4.9	6	6	52.1	8.3	6	6	51.7	8.7	6	6	51.4	9.0	6	6	51.2	9.2	6	6
S4_25	6		62.5	0	57.3	5.2	6	6	57.1	5.4	6	6	54.0	8.5	6	6	53.5	9.0	6	6	53.1	9.4	6	6	52.9	9.6	6	6
																												ľ
	;	# of impacted D	Us:	60	Avg. Insertion	Loss:	5.1 dE		Avg. Insertion	Loss:	7.1	dB	Avg. Insertior	n Loss:	9.0 dB		Avg. Insertion	Loss:	9.7	dB	Avg. Insertior	Loss:	10.3 c	B	Avg. Insertion	Loss:	10.8	dB
		Impacted record	tore w/min 2		Max. Insertion	Loss:	8.2 dE		Max. Insertion	Loss:	11.7	dB	Max. Insertion	Loss:	13.0 dB		Max. Insertion	Loss:	13.9	dB	Max. Insertion	Loss:	14.8 c	B	Max. Insertion	Loss:	15.5	dB DUIc
	I	ппрастей тесер	tors w/ IIIII. 3	ud IL.	Impetd w/ 5 dl	B IL:	46 D	Js	Impetd w/ 5 dE	3 IL:	60 60	DUs	Impetd w/ 5 d	B IL:	60 DUs		Impetd w/ 5 dE	3 IL:	60 60	DUs	Impetd w/ 5 d	B IL:	60 L 60 L)Us	Impetd w/ 5 dE	3 IL:	60 60	DUs
					% Impctd DU	sw/5dBIL:	76.7%		% Impctd DUs	w/ 5 dB IL:	100.0%		% Impctd DU	sw/5dBIL:	100.0%		% Impetd DUs	w/ 5 dB IL:	100.0%		% Impctd DU	sw/5dBIL:	100.0%		% Impetd DUs	w/ 5 dB IL:	100.0%	
	-	Benefited (non- Total DUs for c	impacted) rece	eptors: ness:	[2] Non-impcto Total [1]+[2] for	d w/5 dBIL: or cost:	45 D	Js Js	[2] Non-impeter Total [1]+[2] for	w/5dBIL:	60 120	DUs DUs	[2] Non-impct Total [1]+[2] f	d w/ 5 dB IL: or cost:	66 DUs 126 DUs		[2] Non-impeter	iw/5dBIL: prcost:	66 126	DUs DUs	[2] Non-impct Total [1]+[2] f	d w/ 5 dB IL: or cost:	66 E 126 F)Us)Us	[2] Non-impeter	iw/5dBIL: prcost:	66 126	JUs DUs
					Approx. Cost:		\$482,517		Approx. Cost:		\$579,020		Approx. Cost:		\$675,523		Approx. Cost:		\$772,026		Approx. Cost:		\$868,530		Approx. Cost:		\$965,033	
					Approx Cost r	per DU:	\$4 595		Approx Cost p	er DII:	\$4 925		Approx Cost r	ner DII:	\$5.361		Approx Cost p	or DUI:	\$6 127		Approx Cost	oor DUI:	\$6,803		Approx Cost p	or DUI:	\$7,650	

No.	. of	No Barrier		10-foot B	arrier		12-foot Barr	rier		14-foot	Barrier		16-foot	Barrier		18-foot Barrie	ər	:	20-foot Barrier	
Dwel Receiver Uni	lling its Description	No. of DUs Leq(dBA) 66+ dBA	Leq(dBA)	IL(dB)	IL3+(dB) IL5+(dB)	Leq(dBA)	IL(dB) IL3	+ (dB) IL 5+ (dB)	Leq(dBA)	IL(dB)	IL3+(dB) IL5+(dl	B) Leq(dBA)	IL(dB)	IL 3+ (dB) IL 5+ (dB)	Leq(dBA) I	_(dB) IL3+((dB) IL 5+ (dB)	Leq(dBA) IL	.(dB) IL 3+ (dB	3) IL5+(dB)
S5_1-1 S5_1-2	2	70.6 2	64.9	5.7	2 2	63.7 66.3	6.9 8.5	2 2	63.1 65.6	7.5	2	2 62.8	7.8	2 2	62.4 64.9	82	2 2	62.2 64.6	8.4 10.2	2 2 2 2 2
S5_2-1	2	73.1 2	64.8	8.3	2 2	62.6	10.5	2 2	61.6	11.5	2	2 60.9	12.2	2 2	60.4	12.7	2 2	59.9	13.2	2 2
S5_2-2 S5_3-1	2	75.2 2 72.6 2	69.4 66.3	5.8 6.3	2 2 2 2 2	67.0 63.9	8.2 8.7	2 2 2 2	65.7	9.5 9.6	2	2 65.1 2 62.3	10.1	2 2 2 2 2	64.6	10.6	2 2 2 2	64.2 61.3	11.0	2 2 2 2
S5_3-2 S5_3-3	2	74.9 2 75.8 2	68.7 72.1	6.2 3.7	2 2 2 0	67.6 70.8	7.3 5.0	2 2	65.8 68.7	9.1 7.1	2	2 64.7 2 66.8	10.2 9.0	2 2 2 2	63.9 65.6	11.0 10.2	2 2 2 2	63.4 64.4	11.5 11.4	2 2 2 2
S5_4-1	2	71.1 2	64.9	6.2	2 2	63.8	7.3	2 2	62.6	8.5	2	2 62.0	9.1	2 2	61.4	9.7	2 2	60.8	10.3	2 2
S5_4-2 S5_5-1	2	74.5 2 65.5 2	68.0 61.0	6.5 4.5	2 2 2 2 2	66.7 59.6	7.8	2 2 2 2	65.3 58.8	9.2	2	2 64.2 2 58.2	10.3	2 2 2 2 2	63.1 57.6	7.9	2 2 2 2	62.5 57.1	8.4	2 2 2 2
\$5_5-2 \$5_6-1	2	69.2 2 72.0 2	63.5	5.7	2 2	62.7 62.6	6.5 9.4	2 2	60.8 61.4	8.4 10.6	2	2 60.1	9.1 11.5	2 2	59.5 59.8	9.7 12.2	2 2	59.0 59.1	10.2	2 2 2 2
S5_6-2	2	73.7 2	67.5	6.2	2 2	66.5	7.2	2 2	63.6	10.1	2	2 62.4	11.3	2 2	61.6	12.1	2 2	60.8	12.9	2 2
S5_7-1 S5_7-2	5	69.3 5 73.9 5	63.8	5.5 6.5	5 5	60.2 63.3	9.1	5 5	61.8	10.2	5	5 58.3 5 60.9	11.0	5 5	60.1	11.6 13.8	5 5 5 5	57.1 59.3	12.2	5 5
S5_8-1 S5 8-2	5	72.3 5 74.0 5	66.2 68.2	6.1 5.8	5 5 5 5	62.0 67.8	10.3 6.2	5 5	60.6 63.8	11.7 10.2	5	5 59.6 5 62.6	12.7 11.4	5 5 5 5	58.8 61.5	13.5 12.5	5 5 5 5	58.1 60.6	14.2 13.4	5 5 5 5
S5_9-1	4	72.3 4	64.3	8.0	4 4	63.0	9.3	4 4	61.9	10.4	4	4 61.1	11.2	4 4	60.5	11.8	4 4	59.9	12.4	4 4
S5_9-2 S5_10-1	5	76.1 4	63.8	7.2	4 4 5 5	64.8	8.4	4 4 5 5	63.3	9.4	5	4 62.1 5 60.6	14.0	4 4 5 5	61.3	14.8	4 4 5 5	60.5 59.4	15.6	4 4 5 5
S5_10-2 S5_11-1	5 6	75.4 5	67.2 64.1	8.2 5.0	5 5	64.1 61.2	11.3 7.9	5 5 6 6	62.8 60.2	12.6 8.9	5	5 62.0 6 59.6	13.4 9.5	5 5 6 6	61.1 59.1	14.3 10.0	5 5 6 6	60.4 58.7	15.0 10.4	5 5 6 6
S5_11-2	6	73.0 6	66.0	7.0	6 6	62.7	10.3	6 6	61.5	11.5	6	6 60.8	12.2	6 6	60.2	12.8	6 6	59.8	13.2	6 6
S5_12-1 S5_12-2	2	65.4 0 70.0 2	63.0	2.4 4.6	2 2	61.6	3.8	2 0	61.2	4.2	2	2 63.3	4.5	2 2 2 2	63.1	6.9	2 2 2 2	60.6	4.8	2 2 2 2
S5_13-1 S5_13-2	2	66.2 2 72.1 2	62.4 66.7	3.8 5.4	2 0	60.0 64.5	6.2 7.6	2 2	59.2 63.8	7.0 8.3	2	2 58.7 2 63.4	7.5 8.7	2 2 2 2	58.2 63.1	8.0 9.0	2 2 2 2	57.8 62.9	8.4 9.2	2 2 2 2
S5_14-1	2	61.1 0	58.9	2.2	0 0	57.8	3.3	2 0	57.2	3.9	2	0 56.8	4.3	2 0	56.4	4.7	2 2	56.1	5.0	2 2
S5_14-2 S5_14-3	2	65.4 0 69.8 2	61.8	3.6	2 0	60.2	6.1	2 2 2	61.9	7.9	2	2 59.1	6.3	2 2 2 2	60.8	9.0	2 2 2 2	60.5	9.3	2 2 2 2
S5_15-1 S5_15-2	2	64.1 0 68.2 2	59.8 62.8	4.3 5.4	2 0	58.0 62.3	6.1 5.9	2 2	57.2 59.8	6.9 8.4	2	2 56.6 2 59.0	7.5 9.2	2 2 2 2	56.1 58.5	8.0 9.7	2 2 2 2	55.7 58.0	8.4 10.2	2 2 2 2
S5_15-3	2	70.3 2	65.1	5.2	2 2	64.3	6.0	2 2	62.8	7.5	2	2 61.7	8.6	2 2	61.2	9.1	2 2	60.7	9.6	2 2
S5_16-1 S5_16-2	2	62.2 0	61.2	3.8	2 0	60.1	5.9	2 2 2	56.0	6.2	2	2 55.4	6.8	2 2 2 2	54.9	9.0	2 2 2 2	56.6	9.4	2 2 2 2
S5_17-1 S5_17-2	2	68.7 2 70.7 2	63.0 64.7	5.7 6.0	2 2 2 2	60.1 64.2	8.6 6.5	2 2	58.9 60.6	9.8 10.1	2	2 58.1 2 59.6	10.6 11.1	2 2 2 2	57.4 58.9	11.3 11.8	2 2 2 2	56.9 58.2	11.8 12.5	2 2 2 2
S5_18-1	5	67.3 5	63.4	3.9	5 0	59.4	7.9	5 5	58.3	9.0	5	5 57.5	9.8	5 5	56.8	10.5	5 5	56.2	11.1	5 5
S5_18-2 S5_19-1	6	68.4 6	65.8	4.5	6 6	61.5 59.6	10.8	6 6	60.1 58.2	12.2	6	6 57.2	13.1	6 6	56.4	13.8	6 6	58.0	14.3	6 6
S5_19-2 S5_20-1	6	71.8 6 67.9 5	65.5 63.1	6.3 4.8	6 6 5 5	61.4 59.5	10.4 8.4	6 6 5 5	59.9 58.3	11.9 9.6	6 5	6 59.0 5 57.4	12.8 10.5	6 6 5 5	58.2 56.6	13.6 11.3	6 6 5 5	57.6 56.1	14.2 11.8	6 6 5 5
S5_20-2	5	72.4 5	65.4	7.0	5 5	61.4	11.0	5 5	60.0	12.4	5	5 59.0	13.4	5 5	58.1	14.3	5 5	57.4	15.0	5 5
S5_21-1 S5_21-2	5	60.6 0 69.6 5	62.4	4.4	5 0 5 5	53.7 57.3	6.9 12.3	5 5	52.9 56.2	7.7	5	5 52.3 5 55.9	8.3	5 5	51.7 55.4	8.9	5 5 5 5	51.3 55.4	9.3 14.2	5 5 5 5
\$5_22-1 \$5_22-2	4	59.9 0 69.0 4	55.8	4.1	4 0 4 4	53.3 57.1	6.6 11.9	4 4	52.5 56.0	7.4	4	4 52.0 4 55.8	7.9	4 4 4 4	51.5 55.4	8.4 13.6	4 4	51.0	8.9 13.6	4 4 4 4
S5_23-1	6	63.2 0	58.7	4.5	6 6	56.0	7.2	6 6	55.2	8.0	6	6 54.8	8.4	6 6	54.4	8.8	6 6	54.2	9.0	6 6
S5_23-2 S5_24-1	2	67.9 6 61.4 0	61.8 59.7	6.1 1.7	6 6 0 0	58.3 58.6	9.6 2.8	6 6 2 0	57.5	10.4	6 2	6 57.1 0 58.1	10.8	6 6 2 0	56.7	3.5	6 6 2 0	56.5 57.8	11.4 3.6	6 6 2 0
\$5_24-2 \$5_24-3	2	66.3 2 69.6 2	63.1	3.2	2 0	61.8 64.5	4.5	2 2	61.6 63.2	4.7	2	2 61.4 2 63.0	4.9	2 2	61.3 62.9	5.0 6.7	2 2	61.2 62.8	5.1 6.8	2 2 2 2
S5_25-1	2	65.4 0	61.8	3.6	2 0	59.3	6.1	2 2	58.6	6.8	2	2 58.1	7.3	2 2	57.6	7.8	2 2	57.3	8.1	2 2
S5_25-2 S5_25-3	2	70.1 2 71.0 2	65.1	5.0	2 2 2 2 2	63.3 65.5	6.8 5.5	2 2 2 2	62.6 64.1	7.5	2	2 62.3 2 63.5	7.8	2 2 2 2 2	62.0	8.1 7.8	2 2 2 2	61.8 63.0	8.3 8.0	2 2 2 2
S5_26-1 S5_26-2	2	59.1 0 63.2 0	57.1 60.4	2.0	0 0	56.3 59.3	2.8	2 0	56.0 59.1	3.1	2	0 55.8	3.3 4.3	2 0	55.6 58.8	3.5 4.4	2 0	55.5 58.7	3.6 4.5	2 0
S5_27-1	2	62.4 0	60.1	2.3	0 0	58.4	4.0	2 0	57.9	4.5	2	2 57.5	4.9	2 2	57.2	5.2	2 2	57.0	5.4	2 2
S5_27-2 S5_28-1	2	67.7 2 61.4 0	63.3 58.4	4.4	2 0	61.3 56.7	6.4 4.7	2 2 2 2	60.7 56.1	7.0 5.3	2	2 60.3 2 55.8	7.4 5.6	2 2 2 2 2	60.1 55.4	7.6 6.0	2 2 2 2	59.8 55.1	7.9 6.3	2 2 2 2
S5_28-2 S5_28-1	2	66.2 2 59.0 0	61.9	4.3	2 0	59.7 55.0	6.5	2 2	59.1 54.5	7.1	2	2 58.6	7.6	2 2	58.3	7.9	2 2	58.0	8.2	2 2
S5_29-2	2	64.1 0	60.5	3.6	2 0	58.1	6.0	2 2	57.3	6.8	2	2 56.8	7.3	2 2	56.3	7.8	2 2	55.9	8.2	2 2
S5_29-3 S5_30-1	2	67.0 2 58.9 0	62.1 56.3	4.9 2.6	2 2 2 2 2	61.4 54.3	5.6 4.6	2 2 2 2	59.3 53.6	7.7	2	2 58.8 2 53.2	8.2	2 2 2 2 2	58.4 52.8	8.6 6.1	2 2 2 2	58.1 52.5	8.9 6.4	2 2 2 2
\$5_30-2 \$5_30-3	2	63.5 0 66.1 2	59.5	4.0	2 0	56.7	6.8	2 2	55.8 57.7	7.7	2	2 55.3	8.2	2 2	54.8	8.7	2 2	54.5	9.0	2 2
S5_31-1	2	59.7 0	57.0	2.7	2 0	54.4	5.3	2 2	53.7	6.0	2	2 53.2	6.5	2 2	52.8	6.9	2 2	52.5	7.2	2 2
S5_31-2 S5_31-3	2	64.8 0 66.5 2	59.9 61.1	4.9 5.4	2 2 2 2 2	56.6 60.7	8.2 5.8	2 2 2 2	55.7 57.9	9.1 8.6	2	2 55.1 2 57.4	9.7	2 2 2 2 2	54.6 56.9	10.2 9.6	2 2 2 2	54.3 56.5	10.5	2 2 2 2
\$5_32-1 \$5_32-2	2	60.4 0 64.7 0	57.0 60.3	3.4	2 0	55.5 58.2	4.9	2 2	54.7 57.4	5.7	2	2 54.3	6.1	2 2	53.8	6.6	2 2	53.4 56.2	7.0	2 2
S5_32-3	2	69.1 2	63.4	5.7	2 2	62.9	6.2	2 2	59.9	9.2	2	2 59.2	9.9	2 2	58.6	10.5	2 2	58.2	10.9	2 2
S5_33-1 S5_33-2	5	63.1 0 67.3 5	58.5 61.4	4.6 5.9	5 5 5 5	55.3 57.7	7.8 9.6	5 5 5 5	54.3 56.7	8.8 10.6	5	5 53.7 5 56.2	9.4 11.1	5 5 5 5	53.2 55.8	9.9 11.5	5 5 5 5	52.9 55.3	10.2 12.0	5 5
\$5_34-1 \$5_34-2	5	65.3 0 68.5 5	60.0	5.3	5 5	56.1 58.3	9.2	5 5	54.9 56.9	10.4	5	5 54.1	11.2	5 5	53.6	11.7	5 5	53.3	12.0	5 5
S5_35-1	6	60.3 0	56.1	4.2	6 0	53.0	7.3	6 6	52.5	7.8	6	6 52.1	8.2	6 6	51.9	8.4	- D 6 6	51.6	8.7	6 6
S5_35-2 S5_36-1	6	65.0 0 65.5 6	59.7 60.7	5.3 4.8	6 6 6 6	56.2 56.4	8.8 9.1	6 6	55.4 55.1	9.6 10.4	6	6 55.1 6 54.6	9.9 10.9	6 6	54.8 54.0	10.2	6 6 6 6	54.5 53.5	10.5 12.0	6 6 6 6
\$5_36-2 \$5_37-1	6	68.4 6	62.6	5.8	6 6	60.6 55.3	7.8	6 6	58.0	10.4	6	6 57.1 6 53.3	11.3	6 6	56.3 52.6	12.1	6 6	55.7	12.7	6 6
S5_37-2	6	68.2 6	62.0	6.2	6 6	57.5	10.7	6 6	56.3	11.9	6	6 55.7	12.5	6 6	54.9	13.3	6 6	54.3	13.9	6 6
S5_38-1 S5_38-2	4	64.2 0 67.8 4	59.0 61.8	5.2 6.0	4 4 4	55.4 58.1	8.8 9.7	4 4	54.4 57.0	9.8 10.8	4	4 54.0 4 56.3	10.2	4 4	53.7	10.5	4 4 4 4	53.5 55.2	10.7	4 4 4
S5_39-1 S5_39-2	5	61.1 0 65.3 0	57.0	4.1	5 0	54.1 56.5	7.0	5 5	53.3 55.7	7.8	5	5 52.9 5 55.2	8.2	5 5	52.7 54.8	8.4	5 5	52.5 54.5	8.6 10.8	5 5
S5_40_ST14	0	73.8 0	66.2	7.6	0 0	63.5	10.3	0 0	62.3	11.5	0	0 61.5	12.3	0 0	60.8	13.0	0 0	60.2	13.6	0 0
						I														
P	# of impacted DU	s: 193	Avg. Insertion Lo	\$5:	5.3 dB	Avg. Insertion Lo	\$5:	8.0 dB	Avg. Insertion Li	oss:	92 dB	Avg. Insertion	Loss:	9.9 dB	Avg. Insertion Loss:		10.4 dB	Avg.Insertion Loss:	1	10.8 dB
	Impacted recent	ors w/min.3 dB LL:	Max. Insertion Lo [1] Imposti w/3 48	ill:	8.3 dB 193 DU*	Max. Insertion Lo [1] Imposti w/3 46	65: L:	12.3 dB 193 DUs	Max. Insertion L [1] Impost w/3 4	oss: BIL:	13.4 dB 193 DUx	Max. Insertion	Loss: dBIL:	14.0 dB 193 DHs	Max. Insertion Loss		14.8 dB 193 DUs	Max. Insertion Loss: [1] Impoted w/3 dB# ·	1	5.6 dB 193 DUs
			Impoted w/5 dB IL		178 DUs	Impostd w/5 dB IL		193 DUs	Impotd w/5 dB IL		193 DUs	Impostd w/5 dB		193 DUs	Impotd w/5 dB IL:		193 DUs	Impostd w/5 dB IL:	1	193 DUs
	Benefited (non-in	npacted) receptors:	%Impotd DUs w/	/5 dBIL: /5 dBIL:	92.2% 33 DUs	% Impoted DUs w [2] Non-impoted w	odBlL: (5dBlL:	100.0% 81 DUs	% Impetd DUs w [2] Non-impetd v	v/5dBL: v/5dBL:	100.0% 85 DUs	% Impoted DUs [2] Non-impote	w/5dBL: w/5dBL:	100.0% 87 DUs	% Impeted DUs w/5 d [2] Non-impeted w/5 d	IBIL: 1 IBIL:	89 DUs	% Impoted DUs w/5 d [2] Non-impoted w/5 d	BIL: 100. BIL:	0% 91 DUs
	Total DUs for cos	t reasonableness:	Total [1]+[2] for co	st	226 DUs	Total [1]+[2] for co	st	274 DUs	Total [1]+[2] for c	ost	278 DUs	Total [1]+[2] for	cost	280 DUs	Total [1]+[2] for cost	e4 + 0	282 DUs	Total [1]+[2] for cost	2 84.000	284 DUs
			Approx.Cost Approx Costper	DU:	\$2,800	Approx.Cost Approx Costper	S DU:	\$2.772	Approx.Cost Approx Costpe	r DU:	\$3.187	Approx Cost	er DU:	\$3.616	Approx.Cost Approx Costper DL	ծո,13 J: Տ	54.040	Approx.Cost Approx Costper DU	\$1,265,7 : \$4,4	457

Preliminary Noise Barrier Analysis: NSA-S5

Pennsylvania Turnpike MP 320-326 Reconstruction PTC Ref. 05-045-RD4C, HMMH Job No. 301940 Date and Initials JAC 5/15/2007

	No. of	No Bar	rrier		10-foot	Barrier			12-foot	Barrier			14-foot	Barrier			16-foot	Barrier			18-foot	Barrier			20-foot	Barrier	
- ·	Dwelling		No. of DUs								- (1-)								- (15)								
Receiver	Units script	Leq(dBA)	00+ UBA	Leq(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leq(dBA)	IL (dB)	IL 3+ (dB) IL	. 5+ (dB)	Leq(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leq(dBA)	IL (dB)	IL 3+ (dB) IL	5+ (dB)	Leq(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leq(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)
56_1 56_2	3	74.3	3 11	68.2	5.0	3	3 11	64.5	9.8	3 11	3 11	64.4	11.3	3	3 11	62.0	12.3	3	3 11	61.3	13.0	3	3	61.5	13.0	3	3 11
30_2 S6_3	6	74.7	6	70.2	5.9	6	6	68.5	6.7	6	6	67.0	8.2	6	6	65.3	9.9	6	6	64.0	12.5	6	6	63.0	12.2	6	6
S6_4_ST15	4	75.2	4	67.7	7.5	4	4	66.6	8.6	4	4	65.8	9.4	4	4	65.0	10.2	4	4	64.2	11.2	4	4	63.4	11.8	4	4
S6 5	3	67.5	3	61.6	5.9	3	3	60.9	6.6	3	3	60.1	7.4	3	3	59.5	8.0	3	3	58.9	8.6	3	3	58.2	9.3	3	3
S6 6	4	73.9	4	68.3	5.6	4	4	67.5	6.4	4	4	66.5	7.4	4	4	65.1	8.8	4	4	63.9	10.0	4	4	63.1	10.8	4	4
S6_7	5	70.5	5	67.2	3.3	5	0	66.2	4.3	5	0	65.2	5.3	5	5	63.3	7.2	5	5	61.8	8.7	5	5	60.3	10.2	5	5
S6_8	5	73.5	5	69.1	4.4	5	0	68.2	5.3	5	5	66.7	6.8	5	5	64.5	9.0	5	5	62.2	11.3	5	5	61.1	12.4	5	5
S6_9	1	75.7	1	72.7	3.0	1	0	70.6	5.1	1	1	69.6	6.1	1	1	67.1	8.6	1	1	64.6	11.1	1	1	63.3	12.4	1	1
S6_10	2	72.2	2	66.3	5.9	2	2	65.3	6.9	2	2	64.0	8.2	2	2	62.6	9.6	2	2	61.7	10.5	2	2	61.0	11.2	2	2
S6_11	2	73.2	2	65.1	8.1	2	2	64.3	8.9	2	2	63.4	9.8	2	2	62.5	10.7	2	2	61.8	11.4	2	2	61.1	12.1	2	2
S6_12	2	74.1	2	65.2	8.9	2	2	64.2	9.9	2	2	63.4	10.7	2	2	62.6	11.5	2	2	62.0	12.1	2	2	61.3	12.8	2	2
S6_13_L13	3	74.3	3	65.1	9.2	3	3	64.1	10.2	3	3	63.2	11.1	3	3	62.5	11.8	3	3	61.8	12.5	3	3	61.1	13.2	3	3
S6_14	3	71.9	3	65.1	6.8	3	3	63.7	8.2	3	3	62.4	9.5	3	3	61.6	10.3	3	3	60.9	11.0	3	3	60.2	11.7	3	3
50_15 S6_16	2	72.1	2	6.0	0.0	2	2	62.5	9.0	2	2	61.4	10.7	2	2	60.5	12.1	2	2	59.0	12.3	2	2	59.1	14.5	2	2
S6 17	2	68.2	2	63.1	9.0 5.1	2	2	61.8	6.4	2	2	60.9	7.3	2	2	60.3	7.9	2	2	59.7	8.5	2	2	59.2	9.0	2	2
S6 18	2	65.7	2	62.9	2.8	2	0	62.1	3.6	2	0	61.7	4.0	2	0	61.4	4.3	2	0	61.2	4.5	2	2	61.0	4.7	2	2
S6 19	7	71.9	7	65.3	6.6	7	7	62.0	9.9	7	7	60.7	11.2	7	7	59.8	12.1	7	7	59.2	12.7	7	7	58.7	13.2	7	7
S6 20	12	66.4	12	62.4	4.0	12	0	61.8	4.6	12	12	61.0	5.4	12	12	60.2	6.2	12	12	59.1	7.3	12	12	58.5	7.9	12	12
	6	62.8	0	60.0	2.8	6	0	59.5	3.3	6	0	59.3	3.5	6	0	58.8	4.0	6	0	58.3	4.5	6	6	57.6	5.2	6	6
S6_22	4	66.8	4	62.1	4.7	4	4	61.4	5.4	4	4	60.7	6.1	4	4	59.9	6.9	4	4	59.1	7.7	4	4	58.3	8.5	4	4
S6_23	7	60.4	0	58.5	1.9	0	0	58.0	2.4	0	0	57.7	2.7	7	0	57.3	3.1	7	0	56.9	3.5	7	0	56.2	4.2	7	0
S6_24	8	65.1	0	61.6	3.5	8	0	60.9	4.2	8	0	59.9	5.2	8	8	58.4	6.7	8	8	56.5	8.6	8	8	55.6	9.5	8	8
S6_25	3	65.5	3	61.1	4.4	3	0	60.2	5.3	3	3	59.3	6.2	3	3	58.1	7.4	3	3	57.4	8.1	3	3	56.5	9.0	3	3
S6_26	6	70.9	6	65.1	5.8	6	6	64.8	6.1	6	6	60.5	10.4	6	6	59.2	11.7	6	6	58.1	12.8	6	6	57.1	13.8	6	6
S6_27	3	66.0	3	61.8	4.2	3	0	61.2	4.8	3	3	58.0	8.0	3	3	57.1	8.9	3	3	56.4	9.6	3	3	55.8	10.2	3	3
S6_28	4	62.3	0	57.4	4.9	4	4	57.0	5.3	4	4	56.5	5.8	4	4	55.9	6.4	4	4	55.4	6.9	4	4	54.9	7.4	4	4
S6_29	3	63.0	0	57.4	4.2	1	0	57.9	5.1	3	3	54.0	6.2	3	3	50.0	7.0	3	3	52.4	7.0	1	3	52.4	0.2	3	3
S6_31	2	64.7	0	60.2	4.5	2	2	57.9	6.8	2	2	57.1	7.6	2	2	56.4	83	2	2	55.8	8.9	2	2	55.2	9.5	2	2
S6 32	4	60.4	0	57.7	2.7	4	0	56.8	3.6	4	0	56.3	4.1	4	0	56.0	4.4	4	0	55.7	4.7	4	4	55.4	5.0	4	4
S6 33	1	62.5	0	61.8	0.7	0	0	61.6	0.9	0	0	61.5	1.0	0	0	61.4	1.1	0	0	61.4	1.1	0	0	61.3	1.2	0	0
S6_34	4	65.5	4	58.3	7.2	4	4	58.2	7.3	4	4	55.7	9.8	4	4	55.3	10.2	4	4	54.9	10.6	4	4	54.7	10.8	4	4
S6_35	11	56.5	0	51.2	5.3	11	11	51.1	5.4	11	11	50.9	5.6	11	11	50.7	5.8	11	11	50.6	5.9	11	11	50.5	6.0	11	11
S6_36	16	57.1	0	54.7	2.4	0	0	54.4	2.7	16	0	54.1	3.0	16	0	53.5	3.6	16	0	53.0	4.1	16	0	52.4	4.7	16	16
S6_37	4	61.7	0	57.7	4.0	4	0	57.4	4.3	4	0	54.1	7.6	4	4	53.2	8.5	4	4	52.4	9.3	4	4	51.7	10.0	4	4
S6_38	7	59.8	0	55.8	4.0	7	0	55.3	4.5	7	7	54.7	5.1	7	7	53.9	5.9	7	7	53.4	6.4	7	7	52.9	6.9	7	7
S6_39	4	59.6	0	56.4	3.2	4	0	54.2	5.4	4	4	53.6	6.0	4	4	53.1	6.5	4	4	52.7	6.9	4	4	52.2	7.4	4	4
S6_40	4	58.1	0	55.9	2.2	0	0	55.1	3.0	4	0	54.7	3.4	4	0	54.4	3.7	4	0	54.1	4.0	4	0	53.9	4.2	4	0
S6 42	1	61.5 63.4	U	61.2 56.1	0.3	U	U	61.U	0.5	U	U	61.0 54.0	0.5	U	U	60.9 53.6	0.6	U	U	60.9 53.3	0.6	U	U	60.9 53.2	U.6 10.2	U	U
30_42 S6_43	12	61.6	0	55.9	5.7	12	12	55.8	5.8	12	12	55.4	9.4 6.2	12	12	55.2	9.8 6.4	12	12	54.8	6.8	12	12	54.7	6.9	12	12
S6 44	7	59.8	0	56.2	3.6	7	0	55.9	3.9	7	0	55.6	4.2	7	0	55.1	4.7	7	7	54.8	5.0	7	7	54.4	5.4	7	7
S6 45	16	61.7	0	57.5	4.2	16	0	56.9	4.8	16	16	55.6	6.1	16	16	53.5	8.2	16	16	51.5	10.2	16	16	50.8	10.9	16	16
S6 46	6	64.9	0	60.0	4.9	6	6	59.6	5.3	6	6	56.5	8.4	6	6	54.6	10.3	6	6	53.5	11.4	6	6	52.7	12.2	6	6
S6_47	2	56.8	0	54.0	2.8	2	0	52.4	4.4	2	0	50.3	6.5	2	2	49.5	7.3	2	2	49.0	7.8	2	2	48.5	8.3	2	2
S6_48	6	56.1	0	52.5	3.6	6	0	52.4	3.7	6	0	51.5	4.6	6	6	50.7	5.4	6	6	50.3	5.8	6	6	50.1	6.0	6	6
S6_49	2	53.2	0	51.0	2.2	0	0	49.0	4.2	2	0	48.3	4.9	2	2	48.0	5.2	2	2	48.0	5.2	2	2	48.1	5.1	2	2
S6_50	11	55.9	0	54.1	1.8	0	0	53.4	2.5	11	0	53.1	2.8	11	0	52.8	3.1	11	0	52.7	3.2	11	0	52.4	3.5	11	0
				Arrest 1	1		-ID	Access 1: 11	1			Aven 1 1	1		-ID	Aven 1 1				Array In 19	1	<u>.</u>	-ID	Aven 1	1	o =	-10
	# Of I	mpacted DUs	100	Avg. Insertion	LOSS:	4.5	dB dB	Avg. Insertion	Loss:	5.3 dB		Avg. Insertion	LOSS:	6.4 12.2	dB	Avg. Insertion	n Loss:	7.3 dB		Avg. Insertion	LOSS:	8.1	dB dB	Avg. Insertion	LOSS:	8.7	3B
	Impo	cted recentors	w/min 3d	[1] Impetd w/	2 dB II ·	9.8	DIIs	[1] Impetd w/	2 dB II ·	100 10	le	[1] Impetd w/	2 dB II ·	12.2	DLIs	[1] Impetd w/	3 dB II ·	100 00	c	[1] Impetd w/ 2	LUSS. ABIL:	10.0	DLIs	[1] Impetd w/	2 dB II ·	14.5	au alla
	mpa	olou receptors	, mm. 3 u	Impetd w/ 5 dF	3 00 10. 3 11 ·	001 001	DUs	Impetd w/ 5 d	3 10 12.	93 DL	ls	Impetd w/ 5 d	BII ·	001	DUs	Importd w/ 5 d	BII ·	98	s	Impetd w/ 5 dB		100	DUs	Impetd w/ 5 dF	3 00 12. 3 11 ·	100	DUs
				% Importd DU	sw/5dBlL∙	69.0%		% Impetd DU	sw/5 dBll ∙	93.0%	-	% Impetd DU	sw/5dBll∙	98.0%		% Importd DI	lsw/5dBll⁺	98.0%	-	% Importd DUs	w/5dBIL	100.0%		% Importd DU	sw/5dBll·	100.0%	
	Bene	fited (non-impa	acted) recep	[2] Non-impete	d w/ 5 dB IL:	41	DUs	[2] Non-impct	d w/ 5 dB IL:	72 DL	ls	[2] Non-impete	d w/ 5 dB IL:	94	DUs	[2] Non-impct	td w/ 5 dB IL:	101 DU	s	[2] Non-impctd	w/ 5 dB IL:	111	DUs	[2] Non-impete	d w/ 5 dB IL:	127	DUs
	Total	DUs for cost r	reasonablen	Total [1]+[2] fo	or cost:	141	DUs	Total [1]+[2] f	or cost:	172 DL	ls	Total [1]+[2] fo	or cost:	194	DUs	Total [1]+[2] f	or cost:	201 DU	s	Total [1]+[2] for	r cost:	211	DUs	Total [1]+[2] fo	or cost:	227	DUs
				Approx. Cost:		\$1,147,822		Approx. Cost:		\$1,377,388		Approx. Cost:		\$1,606,952		Approx. Cost:		\$1,836,516		Approx. Cost:		\$2,066,081		Approx. Cost:		\$2,295,645	
				Approx Cost p	er DU:	\$8,141		Approx Cost p	er DU:	\$8,008		Approx Cost p	er DU:	\$8,283		Approx Cost	per DU:	\$9,137		Approx Cost pe	er DU:	\$9,792		Approx Cost p	er DU:	\$10,113	

Pennsylvania Turnpike MP 320-326 Reconstruction PTC Ref. 05-045-RD4C, HMMH Job No. 301940 Date and Initials 05/15/07 ADD Revised 8/17/2007 JAC

	No. of No Barrier Dwelling No. of D Units Description Leg(dBA) 66+ dB			rrier		10-foot	Barrier		12-foo	t Barrier			14-foot	Barrier		16-foc	ot Barrier		18-foot	Barrier		20-foot	Barrier	
Receiver	Dwelling Units	Description	Leg(dBA)	No. of DUs 66+ dBA	Leg(dBA)	IL (dB)	IL 3+ (dB) IL 5+ (dB	Leg(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leg(dBA)	IL (dB)	IL 3+ (dB) IL 5+ (dB)	Leg(dBA)	IL (dB)	IL 3+ (dB) IL 5+ (dB) Leg(dBA)	IL (dB)	IL 3+ (dB) IL 5+ (d	B) Leg(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)
S7_01	0	Decemption	60.8	0	57.9	2.9	0 0	57.5	3.3	0	0	57.0	3.8	0 0	56.7	4.1	0 0	56.3	4.5	0	0 55.9	4.9	0	0
S7_02	2		66.4	2	61.8	4.6	2 2	60.6	5.8	2	2	59.5	6.9	2 2	58.7	7.7	2 2	57.9	8.5	2	2 57.2	9.2	2	2
S7_03_S117 S7_04	6 2		59.6 64.1	0	57.1 58.8	2.5	6 U 2 2	56.6	3.0 5.8	6	2	56.2 57.8	3.4 6.3	6 U 2 2	55.7 57.3	3.9	6 U 2 2	55.3 56.7	4.3	6	2 56.2	4.7	6 2	6
S7_05	2		66.2	2	60.2	6.0	2 2	59.5	6.7	2	2	58.8	7.4	2 2	58.1	8.1	2 2	57.4	8.8	2	2 56.9	9.3	2	2
S7_06	3		67.6	3	61.9	5.7	3 3	61.1	6.5	3	3	60.0	7.6	3 3	59.3	8.3	3 3	58.7	8.9	3	3 58.1	9.5	3	3
S7_07_ST18	1		69.0 71.0	1	62.8 66.9	6.2 5.0	1 1	62.1 66.4	6.9 5.5	1	1	60.8 65.3	8.2	1 1	59.9 64.9	9.1	1 1	59.3 64.5	9.7 7.4	1	1 58.7	10.3	1	1
S7_00	1		61.8	0	59.6	2.2	0 0	58.2	3.6	1	0	57.8	4.0	1 0	57.5	4.3	1 0	57.2	4.6	1	1 57.0	4.8	1	1
S7_10	2		67.3	2	64.0	3.3	2 0	63.8	3.5	2	0	60.3	7.0	2 2	59.6	7.7	2 2	59.1	8.2	2	2 58.6	8.7	2	2
S7_11	1		75.6	1	70.5	5.1	1 1	70.1	5.5	1	1	65.9	9.7	1 1	64.9	10.7	1 1	64.2	11.4	1	1 63.6	12.0	1	1
S7_12 S7_13_ST20	2		74.4	2	69.3 63.3	5.1	2 2	65.7 62.3	8.7 8.2	2	2	64.0 61.4	10.4 9.1	2 2	62.9 60.8	11.5	2 2	62.0 60.1	12.4 10.4	2	2 61.3	13.1 10.8	2	2
S7_13_5120 S7_14	1		69.9	1	62.5	7.4	1 1	61.6	8.3	1	1	60.8	9.1	1 1	60.2	9.7	1 1	59.6	10.4	1	1 59.1	10.8	1	1
S7_15	1		68.9	1	62.1	6.8	1 1	60.7	8.2	1	1	59.8	9.1	1 1	59.0	9.9	1 1	58.4	10.5	1	1 58.0	10.9	1	1
S7_16	2		67.7	2	62.8	4.9	2 2	59.1	8.6	2	2	57.7	10.0	2 2	56.7	11.0	2 2	55.9	11.8	2	2 55.4	12.3	2	2
S7_17 S7_18	2		71.8	2	65.8 70.2	6.0 5.8	2 2	62.1	9.7	2	2	60.8 65.6	11.0 10.4	2 2	60.0 64.7	11.8	2 2	59.4 64.0	12.4 12.0	2	2 58.8	13.0 12.5	2	2
S7_19	1		76.9	1	71.5	5.4	1 1	70.1	6.8	1	1	69.6	7.3	1 1	69.4	7.5	1 1	69.3	7.6	1	1 69.2	7.7	1	1
S7_20	2		57.4	0	55.4	2.0	0 0	55.2	2.2	0	0	55.0	2.4	0 0	54.7	2.7	2 0	54.5	2.9	2	0 54.2	3.2	2	0
S7_21	3		56.3	0	54.4	1.9	0 0	54.2	2.1	0	0	53.9	2.4	0 0	53.6	2.7	3 0	53.2	3.1	3	0 52.8	3.5	3	0
S7_22 S7_23	2		54.5 57.4	0	54.2 56.0	0.3	0 0	54.1 55.8	0.4	0	0	53.8 55.4	0.7	0 0	53.6 55.1	0.9	0 0	53.3 54.8	1.2	0	0 53.0	1.5 3.0	0	0
S7_24	1		58.0	0	56.4	1.6	0 0	56.2	1.8	0	0	55.8	2.2	0 0	55.5	2.5	1 0	55.1	2.9	1	0 54.7	3.3	1	0
S7_25	1		55.8	0	55.2	0.6	0 0	55.1	0.7	0	0	54.8	1.0	0 0	54.5	1.3	0 0	54.1	1.7	0	0 53.7	2.1	0	0
S7_26	1		56.9	0	56.6	0.3	0 0	56.4	0.5	0	0	55.9	1.0	0 0	55.5	1.4	0 0	55.1	1.8	0	0 54.7	2.2	0	0
S7_27 S7_28	2		66.3	4	62.8	1.9	4 0	58.6	3.4 7.7	2	4	60.3 57.4	4.4 8.9	2 0	59.8	4.9 9.5	2 2 4	59.4 56.0	5.3 10.3	2	2 59.1 4 55.6	5.6 10.7	2	2
S7_29	3		68.8	3	63.6	5.2	3 3	63.4	5.4	3	3	61.1	7.7	3 3	59.4	9.4	3 3	58.9	9.9	3	3 58.5	10.3	3	3
S7_30	1		70.1	1	64.5	5.6	1 1	64.4	5.7	1	1	62.1	8.0	1 1	61.7	8.4	1 1	61.4	8.7	1	1 61.2	8.9	1	1
S7_31	2		54.9	0	53.1	1.8	0 0	53.0	1.9	0	0	52.8	2.1	0 0	52.6	2.3	0 0	52.3	2.6	2	0 52.1	2.8	2	0
S7_32 S7_33	2		54.2 51.8	0	52.3	-0.5	0 0	52.0	-0.2	0	0	54.1	0.1	0 0	53.8	0.4	0 0	53.5	0.7	0	0 50.9	0.9	0	0
S7_34	2		56.6	0	55.7	0.9	0 0	55.6	1.0	0	0	55.0	1.6	0 0	54.6	2.0	0 0	54.3	2.3	0	0 53.9	2.7	2	0
S7_35	3		56.9	0	56.3	0.6	0 0	55.6	1.3	0	0	55.2	1.7	0 0	54.8	2.1	0 0	54.4	2.5	3	0 54.1	2.8	3	0
S7_36	3		59.3	0	57.5	1.8	0 0	56.1	3.2	3	0	55.5	3.8	3 0	55.3	4.0	3 0	55.1	4.2	3	0 54.8	4.5	3	3
S7_37 S7 38 ST21	4		60.1	0	57.4	2.7	3 0	53.9	4.9 6.2	4	3	52.8	7.3	3 3	52.0	8.1	3 3	51.4	8.7	4	4 51.5 3 51.0	9.1	4	4
S7_39	2		65.8	2	60.1	5.7	2 2	60.0	5.8	2	2	58.0	7.8	2 2	57.1	8.7	2 2	56.8	9.0	2	2 56.6	9.2	2	2
S7_40	4		54.1	0	53.2	0.9	0 0	52.5	1.6	0	0	52.1	2.0	0 0	51.8	2.3	0 0	51.5	2.6	4	0 51.3	2.8	4	0
57_41	5		63.7	0	58.6	5.1	5 5	58.4	5.3	5	5	56.1	7.6	5 5	55.5	8.2	5 5	55.2	8.5	5	5 54.9	8.8	5	5
		_						_													_		_	
		# of impacted D)Us:	35	Avg. Insertion	n Loss:	3.4 dB	Avg. Insertion	n Loss:	4.5	dB	Avg. Insertio	n Loss:	5.5 dB	Avg. Insertio	n Loss:	6.1 dB	Avg. Insertio	on Loss:	6.5 dB	Avg. Insertio	n Loss:	6.9 0	IB 1P
		Impacted recept	tors w/ min. 3	dB IL:	[1] Impctd w/	3 dB IL:	35 DUs	[1] Impctd w/	3 dB IL:	35	DUs	[1] Impetd w	3 dB IL:	35 DUs	[1] Impetd w/	3 dB IL:	35 DUs	[1] Impetd w	/ 3 dB IL:	35 DUs	[1] Impetd w/	3 dB IL:	35 [JUs
					Impctd w/ 5 d	IB IL:	29 DUs	Impctd w/ 5 c	IB IL:	33	DUs	Impctd w/ 5	dB IL:	35 DUs	Impctd w/ 5 o	BIL:	35 DUs	Impctd w/ 5	dB IL:	35 DUs	Impctd w/ 5 d	IB IL:	35 [JUs
					% Impctd DU	ls w/5 dB IL:	82.9%	% Impctd DU	s w/5 dB IL:	94.3%		% Impctd DU	Js w/5 dB IL:	100.0%	% Impctd DL	Js w/5 dB IL	: 100.0%	% Impctd DI	Us w/5 dB IL:	100.0%	% Impetd DL	s w/ 5 dB IL:	100.0%	
		Benefited (non-	-impacted) rece	eptors:	[2] Non-impct	a w/ 5 dB IL:	7 DUs 42 DUs	[2] Non-import	a w/ 5 dB IL:	14 14	DUs DUs	[2] Non-impo Total [1]+[2]	ta w/ 5 dB IL:	14 DUs 49 DUs	[2] Non-impc	ta w/ 5 dB IL for cost	: 16 DUs	[2] Non-impo Total [1]+[2]	ta w/ 5 dB IL:	17 DUs	[2] Non-impo Total [1]+[2] (a w/ 5 dB IL:	26 E	ius Ills
					Approx. Cost:	:	\$1,691,096	Approx. Cost	:	\$2,029,315	200	Approx. Cost	:	\$2,367,534	Approx. Cost	:	\$2,705,754	Approx. Cos	t:	\$3,043,973	Approx. Cost		\$3,382,191	
					Approx Cost	per DU:	\$40,264	Approx Cost	per DU:	\$41,415		Approx Cost	per DU:	\$48,317	Approx Cost	per DU:	\$53,054	Approx Cost	per DU:	\$58,538	Approx Cost	per DU:	\$55,446	1

Pennsylvania Turnpike MP 320-326 Reconstruction PTC Ref. 05-045-RD4C, HMMH Job No. 301940 Date and Initials 5/15/2007 ADD

	No of		No Ba	arrier		10-foot	Barrier			12-foot	Barrier			14-foot	Barrier			16-foot	Barrier			18-foot	Barrier		20-foot	Barrier	
	Dwelling			No. of DUs																							
Receiver	Units	Description	Leq(dBA)	66+ dBA	Leq(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leq(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leq(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leq(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)	Leq(dBA)	IL (dB)	IL 3+ (dB) IL 5+ (dB)	Leq(dBA)	IL (dB)	IL 3+ (dB)	IL 5+ (dB)
S8_1-1	3		66.8	3	62.1	4.7	3	3	59.2	7.6	3	3	58.2	8.6	3	3	57.5	9.3	3	3	56.8	10.0	3 3	56.3	10.5	3	3
58_1-2 58_1-3	4		69.3 72.5	4	65.8	5.6	4	4	61.0	8.3	4	4	59.7	9.6	4	4	58.8	10.5	4	4	58.1	11.Z 13.0	4 4	57.5	11.8	4	4
S8 2-1	4		65.8	4	59.8	6.0	4	4	58.5	7.3	4	4	57.6	8.2	4	4	56.9	8.9	4	4	56.3	9.5	4 4	55.9	9.9	4	4
S8_2-2	4		68.0	4	62.9	5.1	4	4	60.0	8.0	4	4	58.9	9.1	4	4	58.3	9.7	4	4	57.6	10.4	4 4	57.1	10.9	4	4
S8_2-3	4		72.6	4	65.9	6.7	4	4	62.7	9.9	4	4	61.5	11.1	4	4	60.6	12.0	4	4	59.9	12.7	4 4	59.3	13.3	4	4
S8_3-1	4		64.9	0	60.5	4.4	4	0	58.2	6.7	4	4	57.3	7.6	4	4	56.8	8.1	4	4	56.3	8.6	4 4	55.9	9.0	4	4
S8_3-2	4		67.9	4	62.3	5.6	4	4	59.9	8.0	4	4	58.8	9.1	4	4	58.1	9.8	4	4	57.5	10.4	4 4	57.0	10.9	4	4
S8_3-3	4		72.3	4	65.8	6.5	4	4	62.7	9.6	4	4	61.6	10.7	4	4	60.8	11.5	4	4	60.2	12.1	4 4	59.7	12.6	4	4
S8 4-2	4		69.8	4	64.5	5.3	4	4	61.9	7.9	4	4	60.9	8.9	4	4	60.3	9.5	4	4	59.7	10.1	4 4	59.3	10.5	4	4
S8_4-3	4		73.1	4	66.6	6.5	4	4	63.4	9.7	4	4	62.2	10.9	4	4	61.5	11.6	4	4	60.7	12.4	4 4	60.2	12.9	4	4
S8_5-1	3		66.4	3	61.3	5.1	3	3	60.0	6.4	3	3	59.2	7.2	3	3	58.7	7.7	3	3	58.3	8.1	3 3	57.9	8.5	3	3
S8_5-2	4		68.4	4	63.9	4.5	4	4	61.8	6.6	4	4	61.0	7.4	4	4	60.5	7.9	4	4	60.2	8.2	4 4	59.9	8.5	4	4
S8_5-3	4		71.5	4	65.4	6.1	4	4	63.0	8.5	4	4	62.1	9.4	4	4	61.6	9.9	4	4	61.1	10.4	4 4	60.7	10.8	4	4
S8_6-2	3		67.3	3	62.6	4.7	3	3	61.6	5.7	3	3	61.0	6.3	3	3	60.6	6.7	3	3	60.2	7.1	3 3	59.9	7.4	3	3
S8 6-3	4		72.4	4	66.7	5.7	4	4	64.6	7.8	4	4	63.8	8.6	4	4	63.4	9.0	4	4	63.0	9.4	4 4	62.7	9.7	4	4
S8_7-1	3		66.7	3	63.0	3.7	3	0	62.4	4.3	3	0	62.0	4.7	3	3	61.8	4.9	3	3	61.6	5.1	3 3	61.4	5.3	3	3
S8_7-2	4		67.9	4	63.8	4.1	4	0	62.0	5.9	4	4	61.4	6.5	4	4	61.0	6.9	4	4	60.7	7.2	4 4	60.5	7.4	4	4
S8_7-3	4		71.9	4	66.8	5.1	4	4	65.2	6.7	4	4	64.7	7.2	4	4	64.4	7.5	4	4	64.2	7.7	4 4	64.0	7.9	4	4
S8_8-1	2		65.7	2	62.9	2.8	2	0	62.2	3.5	2	0	61.9	3.8	2	0	61.8	3.9	2	0	61.6	4.1	2 0	61.5	4.2	2	0
S8_8-2	4		67.8	4	65.2	2.6	4	0	64.3	3.5	4	0	64.1	3.7	4	0	63.9	3.9	4	0	63.8	4.0	4 0	63.7	4.1	4	0
58_9	4		63.0	4	60.4	2.6	4	0	58.5	4.5	4	4	57.5	5.5	4	4	57.0	5.0 6.0	4	4	56.7	6.3	4 4	56.4	5.8	4	4
S8 10	0		63.4	0	59.9	3.5	0	0	56.9	6.5	0	0	55.9	7.5	0	0	55.1	8.3	0	0	54.5	8.9	0 0	54.0	9.4	0	0
	0		70.0	0	62.5	7.5	0	0	61.3	8.7	0	0	60.3	9.7	0	0	59.7	10.3	0	0	59.0	11.0	0 0	58.5	11.5	0	0
S8_12-1	4		60.1	0	57.8	2.3	0	0	54.9	5.2	4	4	54.0	6.1	4	4	53.5	6.6	4	4	53.1	7.0	4 4	52.8	7.3	4	4
S8_12-2	4		63.3	0	59.6	3.7	4	0	56.7	6.6	4	4	55.6	7.7	4	4	54.9	8.4	4	4	54.4	8.9	4 4	54.0	9.3	4	4
S8_12-3	4		65.8	4	60.9	4.9	4	4	58.6	7.2	4	4	57.5	8.3	4	4	57.0	8.8	4	4	56.7	9.1	4 4	56.4	9.4	4	4
S8 13-2	4		63.0	0	57.9	2.5	4	0	57.2	5.1	3	4	56.4	5.0	4	3	56.1	6.2	4	4	55.8	0.5 7.2	3 3 4 4	55.6	7.4	4	4
S8_13-3	4		65.5	4	61.0	4.5	4	4	58.6	6.9	4	4	57.7	7.8	4	4	57.4	8.1	4	4	57.1	8.4	4 4	56.9	8.6	4	4
S8_14-1	4		63.2	0	59.8	3.4	4	0	57.7	5.5	4	4	57.1	6.1	4	4	56.6	6.6	4	4	56.3	6.9	4 4	56.0	7.2	4	4
S8_14-2	4		66.1	4	62.3	3.8	4	0	60.0	6.1	4	4	59.2	6.9	4	4	58.7	7.4	4	4	58.3	7.8	4 4	58.0	8.1	4	4
S8_14-3	4		69.0	4	63.4	5.6	4	4	61.2	7.8	4	4	60.3	8.7	4	4	59.8	9.2	4	4	59.4	9.6	4 4	59.1	9.9	4	4
S8_15-1	4		61.2	0	58.6	2.6	4	0	56.2	5.0	4	4	55.5	5.7	4	4	55.2	6.0	4	4	54.9	6.3 7.1	4 4	54.7	6.5	4	4
S8 15-3	4		65.8	4	61.3	4.5	4	4	59.3	6.5	4	4	58.7	7.1	4	4	58.4	7.4	4	4	58.1	7.1	4 4	57.9	7.3	4	4
S8_16-1	4		62.3	0	59.3	3.0	4	0	57.9	4.4	4	0	57.5	4.8	4	4	57.2	5.1	4	4	56.9	5.4	4 4	56.8	5.5	4	4
S8_16-2	4		65.7	4	62.5	3.2	4	0	60.7	5.0	4	4	60.0	5.7	4	4	59.7	6.0	4	4	59.4	6.3	4 4	59.2	6.5	4	4
S8_16-3	4		69.1	4	63.9	5.2	4	4	61.8	7.3	4	4	61.2	7.9	4	4	60.8	8.3	4	4	60.5	8.6	4 4	60.3	8.8	4	4
S8_17-1	3		58.8	0	56.2	2.6	3	0	55.1	3.7	3	0	54.7	4.1	3	0	54.5	4.3	3	0	54.3	4.5	3 3	54.2	4.6	3	3
S8_17-2	4		61.2	0	58.2	3.0	4	0	56.8	4.4	4	0	56.2	5.0	4	4	55.9	5.3	4	4	55.8	5.4	4 4	55.6	5.6	4	4
S8 18-1	2		61.4	0	58.8	2.6	2	0	57.7	4.0	2	0	57.3	5.0 4 1	2	0	57.1	5.2 4.3	2	0	56.9	5.5	2 2	56.8	5.4 4.6	2	2
S8_18-2	4		64.5	0	61.7	2.8	4	0	60.4	4.1	4	0	60.0	4.5	4	4	59.8	4.7	4	4	59.6	4.9	4 4	59.6	4.9	4	4
S8_18-3	4		65.2	0	62.2	3.0	4	0	61.0	4.2	4	0	60.6	4.6	4	4	60.5	4.7	4	4	60.4	4.8	4 4	60.3	4.9	4	4
S8_19-1	3		63.1	0	60.7	2.4	0	0	59.8	3.3	3	0	59.4	3.7	3	0	59.2	3.9	3	0	59.1	4.0	3 0	59.0	4.1	3	0
S8_19-2	3		65.4	0	63.1	2.3	0	0	62.2	3.2	3	0	61.8	3.6	3	0	61.7	3.7	3	0	61.6	3.8	3 0	61.5	3.9	3	0
S8_19-3 S8_20-1	4		67.6 60.7	4	64.9 59.9	2.7	4	0	64.2 59.6	3.4	4	0	64.0 59.4	3.6	4	0	63.8 59.4	3.8	4	0	63.7 50.3	3.9	4 0	63.7 59.3	3.9	4	0
S8 20-2	3		63.1	0	62.3	0.8	0 0	0	62.0	1.1	0	0	61.8	1.3	ő	0	61.8	1.3	ő	0	61.7	1.4	0 0	61.7	1.4	0	0
S8_20-3	4		67.0	4	64.9	2.1	0	0	64.3	2.7	4	0	64.2	2.8	4	0	64.1	2.9	4	0	64.0	3.0	4 0	64.0	3.0	4	0
S8_21	0		70.3	0	65.7	4.6	0	0	65.3	5.0	0	0	65.0	5.3	0	0	64.8	5.5	0	0	64.6	5.7	0 0	64.5	5.8	0	0
S8_22_ST24	0		69.2	0	64.1	5.1	0	0	63.1	6.1	0	0	62.6	6.6	0	0	62.2	7.0	0	0	61.8	7.4	0 0	61.5	7.7	0	0
			I		1				I				I				I				1			1			
		# of impacted D	Us:	121	Avg. Insertior	n Loss:	4.1	dB	Avg. Insertion	Loss:	6.0 d	∄B	Avg. Insertion	Loss:	6.7 d	В	Avg. Insertion	Loss:	7.1	dB	Avg. Insertion	Loss:	7.5 dB	Avg. Insertion	Loss:	7.7	dB
					Max. Insertior	n Loss:	7.5	dB	Max. Insertion	Loss:	9.9 d	₿	Max. Insertion	Loss:	11.2 d	В	Max. Insertion	Loss:	12.2	dB	Max. Insertion	Loss:	13.0 dB	Max. Insertion	Loss:	13.6	dB
		Impacted recep	tors w/ min. 3	dBIL:	[1] Impetd w/	3 dB IL:	117	DUs	[1] Impetd w/	3 dBIL:	121 E	JUS	[1] Impetd w/	3 dB IL:	121 D	Us	[1] Impetd w/ 3	3 dBIL:	121	DUs	[1] Impetd w/ 3	3 dBIL:	121 DUs	[1] Impetd w/ 3	odBIL:	121	DUs
					% Impeted DI	sw/5dBIL	69.4%	203	% Imported D11	sw/5dBlL⁺	86.0%	505	% Impeted W 5 d	sw/5dBIL	88.4%		% Imported DI Is	w/5 dB II ·	88.4%	205	% Imported DI Is	sw/5dBlL	88.4%	% Importd DUs	w/5 dB IL	88.4%	203
		Benefited (non-	impacted) rec	eptors:	[2] Non-impct	d w/ 5 dB IL:	00.170	DUs	[2] Non-impcto	d w/ 5 dB IL:	35 E	DUs	[2] Non-impct	d w/ 5 dB IL:	51 D	Us	[2] Non-impete	I w/ 5 dB IL:	51	DUs	[2] Non-impcto	d w/ 5 dB IL:	56 DUs	[2] Non-impete	1 w/ 5 dB IL:	56	DUs
		Total DUs for c	ost reasonable	eness:	Total [1]+[2] f	or cost:	117	DUs	Total [1]+[2] fo	or cost:	156 E	DUs	Total [1]+[2] f	or cost:	172 D	Us	Total [1]+[2] f c	or cost:	172	DUs	Total [1]+[2] fo	or cost:	177 DUs	Total [1]+[2] f c	r cost:	177	DUs
					Approx. Cost:		\$525,897		Approx. Cost:		\$631,076		Approx. Cost:		\$736,256		Approx. Cost:		\$841,436		Approx. Cost:		\$946,615	Approx. Cost:		\$1,051,794	
					Approx Cost r	per DU:	\$4,495		Approx Cost p	er DU:	\$4.045		Approx Cost n	per DU:	\$4,281		Approx Cost p	er DU:	\$4,892		Approx Cost p	er DU:	\$5.348	Approx Cost p	er DU:	\$5.942	