TRAFFIC NOISE TECHNICAL REPORT FULL DEPTH ROADWAY RECONSTRUCTION AND WIDENING OF THE PENNSYLVANIA TURNPIKE (I-76) FROM MILEPOST 312 TO 319.

Prepared for

Pennsylvania Turnpike Commission P.O. Box 67676 Harrisburg, Pennsylvania 17106

Cole Martin, INCE Member Senior Acoustics Specialist

. Suge

Paul L. Burgé, INCE.Bd.Cert. Principal Engineer, Acoustics and Noise Control

May 2020

AECOM

625 West Ridge Pike, Suite E-100 Conshohocken, PA 19428

Submitted: May 06, 2014 Revised: June 2, 2020

This page intentionally left blank

TABLE OF CONTENTS

Executive S	Summar	у	ES-1	
Section 1	Introduction and Project Description			
	Projec	ct Description	1-1	
Section 2	Noise	e Analysis Overview	2-1	
	2.2 2.3 2.4 2.5 2.6 2.7 2.8	Regulatory Overview	2-1 2-1 2-3 2-4 2-4 2-4 2-5 2-6 2-6 2-7 2-7	
Section 3		Project Traffic Data		
	3.1	Existing Land Use and Zoning3.1.1Existing Land Uses3.1.2Noise Sensitive AreasExisting Noise Levels3.2.1Noise Measurements3.2.2Noise Monitoring Equipment and Atmospheric Conditions3.2.3Noise Model Validation and Results3.2.4Observed Traffic Counts3.2.5Existing Noise Levels	3-1 3-1 3-3 3-3 3-4 3-6 3-8	
Section 4	Futu	re Noise Levels and Impacts	4-1	
	4.2	Predicted noise levels and noise impacts Predicted Impact Distance for Undeveloped Lands	4-3	
Section 5	Noise	e Abatement Evaluation	5-1	
	5.1 5.2 5.3 5.4 5.5	Noise Abatement Measures Feasible and Reasonable Criteria and Requirements Design Goal Requirements Findings and Recommendations for Noise Abatement Viewpoints of Benefitted Receptors	5-1 5-1 5-2	
Section 6	Cons	struction Noise Control & Community Coordination	6-1	
Section 7	Infor	mation for Local Government Officials	7-1	

TABLE OF CONTENTS

Section 8	Conclusions and Recommendations8	-1
Section 9	References	-1

Tables

- Table ES-1 Summary of Identified Noise Sensitive Areas (NSAs)
- Table ES-2 Recommended Noise Abatement, by NSA
- Table ES-3 Proposed Noise Abatement Recommendation Summary
- Table ES-4 Noise Impact Distances for Undeveloped Lands
- Table 2-1 FHWA Noise Abatement Criteria¹
- Table 3-1 Noise Sensitive Areas (NSAs)
- Table 3-2 Short-Term Measurement Summary
- Table 3-3 Long-Term Measurement Summary
- Table 3-4 Measurement Weather Data
- Table 3-5 TNM Validation Summary Table
- Table 3-6 Predicted Existing Noise Levels
- Table 4-1 Predicted Noise Levels and Impact Summary
- Table 4-2 Noise Impact Distances for Undeveloped Land
- Table 5-1 Summary of Barrier Analysis for Each NSA Location
- Table D-1 Predicted Noise Level Data
- Table D-2 Barrier Segment Information

Figures

Figure 1	Project Location Map
Figure 2	Land Use Maps (Extents 1 through 6)
Figure 3	Measured Noise Levels
Figure 4	Future Build Noise Levels

Appendices

- Appendix A Fundamentals of Traffic Noise Assessment and Control
- Appendix B Noise Measurement Data
- Appendix C Traffic Data Used for Noise Analysis
- Appendix D TNM Predicted Noise Levels
- Appendix E Warranted, Feasible and Reasonable Worksheets from PennDOT Pub. 24, Appendix A

ANSI	American National Standards Institute
BR	Benefited Receptors
CE	Categorical Exclusion
dB	Decibel (measure of sound pressure level on a logarithmic scale)
dBA	A-weighted decibel (sound pressure level)
DU	Dwelling Unit
EPA	Environmental Protection Agency
FHWA	Federal Highway Administration
FONSI	Finding of No Significant Impact
Hz	Hertz
IL	Insertion Loss
Lx	Measured noise level exceeded x percent of the measurement period
Leq	Equivalent sound level (energy averaged sound level)
Leq(1h)	A-weighted, energy average sound level during a 1-hour period
Lmax	Maximum measured noise level
LT	Long Term
Max SF/BR	Maximum Square Foot per Benefited Receptor
MP	Mile Post
NAC	Noise Abatement Criteria
NSA	Noise Sensitive Area
PennDOT	Pennsylvania Department of Transportation
PTC	Pennsylvania Turnpike Commission
ROD	Record of Decision
ROW	Right of Way
SF/BR	Square Foot per Benefited Receptor
SLM	Sound Level Meter
ST	Short Term
SR	State Route
TNM	Traffic Noise Model
v/c	Volume to capacity ratio
vph	Vehicles per hour

ES.1 PROJECT DESCRIPTION SUMMARY

The Project under analysis entails the proposed widening and reconstruction of the existing Pennsylvania Turnpike (I-76) from four lanes to six lanes between MP 311.4 and MP 319.39, including the Downingtown Interchange ramps up to the toll booth area. The proposed design indicates the existing 82-foot pavement will be widened to approximately 122 feet. Three bridge replacements are proposed as part of the project: PA Turnpike over Ramp CD at MP 312.03; PA Turnpike over Pine Creek Road at MP 314.19; and PA Turnpike over SR 0401 at MP 314.95. In addition, two superstructure replacements will take place at PA Turnpike over SR 1003 (Phoenixville Pike) at MP 319.19 and PA Turnpike over Charlestown Road/SR 29 at MP 319.33. Figure 1 contains an overview of the Project location.

ES.2 NOISE LEVELS AND NOISE IMPACTS

The Pennsylvania Turnpike Commission follows Pennsylvania Department of Transportation (PennDOT) noise guidelines as stated in "*Pennsylvania Department of Transportation, Project Level Highway Traffic Noise Handbook, Publication No. 24, dated July 2011*". The noise analysis included a total of 275 measurement/modeled prediction locations (receivers) representing 475 individual noise sensitive dwelling units (receptors). In order to simplify the reporting of noise levels, noise impacts, noise mitigation, and in adherence with preferred PennDOT analysis methodology, these receptors were organized in 26 defined Noise Sensitive Areas (NSAs) within the general project area. The NSAs are shown in Figures 3-1 through 3-7.

Existing noise levels were predicted to determine the extent of the noise impact relative to the Project edge of pavement (PennDOT requires analysis out to 500 feet unless impacts are determined beyond that limit). Existing condition noise models were successfully validated at twenty-nine (29) short-term measurement locations, with predicted and measured noise levels differing by less than 3.0 dBA at each location, in keeping with PennDOT policy. Existing and future (Year 2038) noise levels were determined and modeled using standard Federal Highway Administration (FHWA) and PennDOT methodologies. These predicted levels were compared to the existing noise conditions and evaluated for potential impacts as defined by FHWA and PennDOT criteria.

Table ES-1 presents a summary of each of the identified NSAs in the project area along with its associated FHWA/PennDOT noise impact, Land Use, Activity Category, Noise Abatement Criteria (NAC), number of modeled receptor locations, number of representative equivalent units (dwelling units), predicted existing noise level, future noise level and type of impact.

NSA ID	Land Use	Activity Category	Noise Abatement Criteria	# of Modeled Receivers	# of Receptors/ Equivalent Residential Units (Dwelling Units)	Predicted Existing Noise Level. Range of Leq(1h), dBA	Predicted Future Noise Level Range of Leq(1h), dBA	Type of Impact NAC/ Increase/ None or Both
1	Residential/ Commercial	B, E	66, 71	7	6	64 - 73	67 - 77	NAC
2	Residential/ Commercial	B, E	66, 71	4	4	61 - 69	62 - 73	NAC
3	Commercial	E	71	13	0	55 - 76	58 - 79	NAC
4	Residential	В	66	55	153	52 - 74	54 – 80	NAC
5	Residential	В	66	37	95	59 - 77	61 – 80	NAC
6	Residential	В	66	1	1	64	67	NAC
7	Residential	В	66	3	4	62 - 66	64 – 69	NAC
8	Residential	В	66	20	20	57 - 75	61 – 76	NAC
9	Residential	В	66	6	8	58 - 69	60 – 71	NAC
10	Residential	В	66	4	4	62 - 66	64 – 68	NAC
11	Residential	В	66	2	2	60 - 72	62 – 75	NAC
12	Residential	В	66	1	1	66	69	NAC
13	Residential	В	66	3	3	66 - 71	70 – 74	NAC
14	Residential	В	66	1	1	66	69	NAC
15	Residential	В	66	13	13	59 - 74	63 – 77	NAC
16	Residential	В	66	6	6	59 - 68	61 – 70	NAC
17	Residential	В	66	4	4	56 - 64	59 – 67	NAC
18	Residential	В	66	4	4	61 - 73	62 – 75	NAC
19	Residential	В	66	14	14	54 - 61	59 – 65	None
20	Residential	В	66	15	44	55 - 66	59 – 70	NAC
21	Residential	В	66	30	30	44 - 74	46 – 76	NAC
22	Residential	В	66	4	4	51 - 62	54 – 65	None
23	Residential	В	66	3	3	57 - 62	60 – 65	None
24	Church	С	66	2	1	64 - 71	66 – 73	NAC
25	School/Future Residential	B, C	66	18	45	50 - 70	52 – 72	NAC
26	Residential	В	66	5	5	65 - 70	67 - 72	NAC
	T	OTAL		275	475			

 Table ES-1

 Summary of Identified Noise Sensitive Areas (NSAs)

Noise levels were predicted for all receptor locations for the Existing and Future Build alternative using the FHWA Traffic Noise Model (TNM), Version 2.5, the version currently accepted by PennDOT. Predictions assumed worst case hourly equivalent noise levels (1-hour Leq, dBA) using projected peakhour design year traffic volumes and speeds. The highest predicted future noise levels for each NSA (among the range of noise levels for all modeled receptors within the NSA), are summarized in Table ES-1. Figures 4-1 through 4-7 show the modeling results graphically.

The PennDOT noise manual defines a traffic noise impact under two separate conditions: 1) when the future predicted traffic noise level is equal to or exceeds the PennDOT NAC, or 2) when the future predicted traffic noise level creates a substantial increase of 10 dBA over existing noise levels. NAC values vary depending on land use but are generally either 66 dBA (1-hr Leq, exterior) for residential, institutional, and outdoor active use areas; or 71 dBA (1-hr Leq, exterior) for noise sensitive commercial areas, (including hotels and offices). NAC values for each NSA are indicated in Table ES-1. A summary of all predicted noise impacts for each of the identified NSAs is presented in Table ES-2. It should be noted that no receptors expected to experience substantial increase over existing noise levels.

	Highest Predicted Noise Level by Alternative Leq (1h), dBA	Number of Impacted Receptors	
NSA ID	Future 2038 Build	Future 2038 Build	Impact Type
4	80	99	NAC
5	79	69	NAC
20	70	15	NAC
Total		162	-

Table ES-2Recommended Noise Abatement, by NSA

ES.3 NOISE ABATEMENT CONSIDERATIONS AND COMMITMENTS

FHWA and PennDOT policy require that when noise impacts are identified, noise abatement must be evaluated; and if noise abatement is found to be feasible and reasonable, it must be incorporated into the project. PennDOT noise manual specifies that for noise abatement to be feasible it must be capable of providing a 5 dBA insertion loss (the net noise reduction provided by the barrier) for the majority (50% or greater) of impacted receptors, and that it must meet safety, constructability, and access requirements. For an abatement measure to be reasonable it must meet a maximum square foot per benefited receptor (Max SF/BR) criterion. PennDOT noise barrier cost reasonableness value is based on a Max SF/BR value of 2,000 square feet. The square footage of a barrier is based on its length multiplied by its height above the finished ground at its base to the top elevation. The benefited receptor values are determined by counting all receptors is required to meet the feasibility criterion, the proposed barrier must reduce noise level by at least 7 dBA for at least one benefited receptor. It is desirable to provide this IL for additional impacted receptors while confirming to the Max SF/BR criteria and if justified by a "point of

diminishing returns" evaluation. While optimizing a proposed noise barrier, the desired abatement goals should be evaluated in terms of establishing insertion loss for impacted receptors only.

The final factor of reasonableness is determined by the benefited receptors. The benefited receptors must be surveyed to get their input on whether or not they would approve the barrier. If a majority of the benefited receptors approve of the barrier (greater than 50%), then the barrier is deemed as reasonable.

Each impacted NSA was evaluated to determine if noise abatement, typically in the form of noise walls, was feasible and reasonable. The analyses for each NSA are presented in Section 5. A summary of recommended noise abatement are presented in Table ES-3. Figures 5-1 and 5-2 show the proposed placement of the barrier walls. Final wall design and placement is pending approval from PTC.

Descriptions	NSA4	NSA5	NSA20
Number of Impacted Receptors	99	69	15
Number of Benefited Receptors	96	69	39
Barrier Evaluation Method	TNM	TNM	TNM
Length (ft)	2,509	1,872	1,768
Average Height (ft)	15.00	13.92	11.50
Minimum Height (ft)	8.00	12.00	8.00
Maximum Height (ft)	20.00	17.00	16.00
Area (ft ²)	37,088	26,049	20,329
Calculated SF/ BR	386	378	521
Number of Receptors meeting Design Goal (7 dBA)	72	59	17
Design Goal Met?	Yes	Yes	Yes
Feasible?	Yes	Yes	Yes
Reasonable?	Yes	Yes	Yes

 Table ES-3

 Proposed Noise Abatement Recommendation Summary

ES.4 CONSTRUCTION NOISE

This work consists of making every effort to minimize the effect of construction noise on the surrounding community, and conducting an initial community meeting or distributing a Construction Notice to adjacent property owners prior to commencing construction, and at other times prior to critical phases of the project. Section 6 includes a sample Construction Noise Specification that can be used for this project.

ES.5 INFORMATION FOR LOCAL OFFICIALS

FHWA and PennDOT policy specify that local officials should be provided appropriate information to assist with future compatible land use planning, especially with regard to the future planning and development of currently undeveloped lands near the proposed project right-of-way.

This technical noise report will serve as the primary information source to help local officials avoid future incompatible land use planning with regard to noise generated by this project. In particular, refer to Table 4-2 for noise impact contour distances for various regions of the project. Two representative undeveloped lands were used as references for the entire project site; one of the undeveloped land contours represent topographically flat areas (line-of-sight (LOS) between receptor and sources) and the other represents a 'cut' section (no LOS). The shorter distance represents a typical 'cut' section, the longer distance represents a typical flat section. For convenience this table is presented below as Table ES-4.

Representative	Estimated Impact Distance (feet)			
Undeveloped Land	66 dBA (Categories B and C)	71 dBA (Category E)		
Typical Unobstructed Areas (line of sight to the roadway)	425	200		
Typical Obstructed Areas (no line of sight to roadway)	220	100		

 Table ES-4

 Noise Impact Distances for Undeveloped Lands

Notes:

1: The impact distances are from the edge of I-76.

This page intentionally left blank

SECTION 1 INTRODUCTION AND PROJECT DESCRIPTION

PROJECT DESCRIPTION

The Project entails the proposed widening and reconstruction of the existing Pennsylvania Turnpike (I-76) from four lanes to six lanes between MP 311.4 and MP 319.39, including the Downingtown Interchange ramps up to the toll booth area. The proposed design indicates the existing 82-foot pavement will be widened to approximately 122 feet. Three bridge replacements are proposed as part of the project: PA Turnpike over Ramp CD at MP 312.03; PA Turnpike over Pine Creek Road at MP 314.19; and PA Turnpike over SR 0401 at MP 314.95. In addition, two superstructure replacements will take place at PA Turnpike over SR 1003 (Phoenixville Pike) at MP 319.19 and PA Turnpike over Charlestown Road/SR 29 at MP 319.33.

Figure 1 contains an overview of the Project location.

This page intentionally left blank

SECTION 2 NOISE ANALYSIS OVERVIEW

This section identifies and reviews the methodology and policy for the technical tasks and analyses used in this report. The actual results of these tasks and analyses are presented in subsequent sections of this report.

2.1 REGULATORY OVERVIEW

2.1.1 Federal Regulations

The FHWA noise policy is contained within The Code of Federal Regulations, Title 23, Part 772 (23 CFR 772) which provides procedures for preparing operational and construction noise studies and evaluating noise abatement considered for federal and federal-aid highway projects. The code was recently updated in July of 2010. Under the current version of 23 CFR 772.5, projects are categorized as Type I, Type II or Type III projects. The FHWA defines a Type I project as a proposed federal or federal-aid highway project for the construction of a highway on a new location, or the physical alteration of an existing highway which significantly changes either the horizontal or vertical alignment, or increases the number of through-traffic lanes.

Type I projects include those that create a completely new noise source, as well as those that increase the volume or speed of traffic or move the traffic closer to a receptor. Type I projects include the addition of through traffic lanes, an interchange, ramp, auxiliary lane, or truck-climbing lane to an existing highway, or the widening of an existing ramp by a full lane width for its entire length. Projects unrelated to increased noise levels, such as lighting, signing, and landscaping, are not normally considered Type I projects.

Due to the addition of through traffic lanes throughout the project area, the proposed project would be considered Type I.

2.1.2 FHWA Noise Abatement Criteria (NAC)

Under 23 CFR 772.13, noise abatement must be considered for Type I projects if the project is predicted to result in traffic noise impacts. In such cases, 23 CFR 772 requires that the project sponsor "consider" noise abatement before adoption of the final PTC document. This process involves identification of noise abatement measures that are reasonable, feasible, and likely to be incorporated into the project, and of noise impacts for which no apparent solution is available.

Traffic noise impacts, as defined in 23 CFR 772.5, occur when the design year condition noise levels approach or exceed the noise abatement criteria (NAC) specified in 23 CFR 772, or design year condition noise levels create a substantial noise increase over existing noise levels. 23 CFR 772 does not specifically define the terms "substantial increase" or "approach"; these criteria are defined in the PennDOT *Publication No. 24 (May 2011)*, as described in the following section.

Table 2-1 summarizes the FHWA NAC corresponding to various defined land use activity categories. Activity categories and related traffic noise impacts are determined based on the actual land use in a given area. Background information on noise levels and noise metrics can be found in Appendix A.

In identifying noise impacts, primary consideration is given to exterior areas of frequent human use. In situations where there are no exterior activities, or where the exterior activities are far from the roadway or physically shielded in a manner that prevents an impact on exterior activities, the interior criterion (Activity Category D) may be used as the basis for determining a noise impact.

Activity	Activity Criteria ²		Evaluation	Activity description	
Category	Leq(h)	L10(h)	Location	Activity description	
A	57	60	Exterior	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.	
B ³	67	70	Exterior	Residential.	
C3	67	70	Exterior	Active sport areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings.	
D	52	55	Interior	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios.	
E ³	72	75	Exterior	Hotels, motels, offices, restaurants/bars, and other developed lands, properties or activities not included in A-D or F.	
F				Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing.	
G				Undeveloped lands that are not permitted.	

Table 2-1FHWA Noise Abatement Criteria1

¹ Either Leq(h) or L10(h) (but not both) may be used on a project.

² The Leq(h) and L10(h) Activity Criteria values are for impact determination only, and are not design standards for noise

³ Includes undeveloped lands permitted for this activity

The federal regulation also covers such topics as traffic noise prediction, analysis of traffic noise impacts, analysis of noise abatement, information for public officials, and construction noise issues, all of which have been incorporated into the current PennDOT noise manual, as discussed in the next section.

2.1.3 State Regulations and Policies

The Pennsylvania Turnpike Commission follows Pennsylvania Department of Transportation (PennDOT) noise guidelines. PennDOT's noise policy provides guidance in the analysis of highway traffic noise and the evaluation of noise mitigation measures. The noise guidelines are entitled "*Pennsylvania Department of Transportation, Project Level Highway Traffic Noise Handbook, Publication No. 24, dated July 2011*". (hereafter referred to as "noise manual"). It includes current policies, procedures, and practices to be used by agencies that sponsor new construction or reconstruction of federal or federal-aid highway projects. The NAC specified in the noise manual are the same as those specified in the most recent version of 23 CFR 772. The PennDOT noise manual states that a sound level is considered to approach the NAC level when the Leq(h) sound level is 1 dBA less than the NAC identified in 23 CFR 772. This means that a peak hour noise level of 66 dBA is considered to approach the NAC of 67 dBA, but 65 dBA does not. The PennDOT noise manual defines a noise increase as substantial when the predicted traffic noise levels with project implementation exceed existing noise levels by 10 dBA. The PennDOT noise manual provides detailed technical guidance for the evaluation of highway traffic noise. This includes field measurement methods, noise modeling methods, and report preparation guidance.

In addition to the NAC criteria above, the PennDOT noise manual also specifies the following definitions and policies:

- A **Benefited Receptor** is a receptor predicted to receive at least 5 dBA net noise reduction, also referred to as insertion loss (IL), from the proposed mitigation and inclusive of all such residences, not limited to those receptors in the first row.
- A **Feasible Noise Abatement Measure** is a mitigation measure that is acoustically feasible and meets engineering requirements for constructability. A feasible noise barrier must provide a minimum of 5 dBA IL for a majority (50% or greater) of the impacted receptors.
- The **Insertion loss Design Goal** is the optimum desired dBA noise reduction determined from calculating the difference between future build noise levels with abatement, to future build noise levels without abatement. The PENNDOT design goal is a 7 dBA IL for at least one benefited receptor.
- A **Reasonable Noise Abatement Measure** is defined by PennDOT as a Maximum Square Footage of Abatement Per Benefited Receptor (MaxSF/BR) value of 2,000. In determining the MaxSF value, the square footage of the barrier shall be based upon its length and its height from the finished ground elevation at the base of the barrier to its top elevation. In determining the Benefited Receptor (BR) value, count any receptor receiving 5 dBA IL or greater as being benefited.
- **Consideration of Viewpoints** of benefited property owners and residence is ultimately required for noise abatement to be considered Reasonable.

2.2 DEFINING AREA OF POTENTIAL IMPACT

PennDOT noise manual references the FHWA "Highway Traffic Noise: Analysis and Abatement Guideline", FHWA-HEP-10-025HP dated December 2011. The extent of the noise study analysis area should include all receptors potentially impacted by the project. The FHWA does not establish a fixed distance to define the noise impact analysis area. Historically, absolute noise impacts (those areas with noise levels approaching or exceeding the NAC – 66 dBA for residential land uses) rarely exist beyond about 400 to 500 feet from the roadway. It is also established that the FHWA Traffic Noise Model is less reliable at predicting noise levels beyond this range, so a 500 foot screening distance from the edge of the proposed highway is established as a default value for the area of potential impact. However, in some areas with low existing noise levels (say below 55 dBA during the loudest hour), substantial increase in noise impacts could exist without the predicted project noise level approaching or exceeding the NAC, so in these areas a more extensive analysis area may be required.

2.3 NOISE MEASUREMENT PROCEDURES

A variety of field noise measurements were conducted for this project. In general, the noise measurement procedures in the field follow recommended standard procedures, including those outlined in the FHWA's Measurement of Highway Related Noise, May 1996, and the PennDOT noise manual. Specifically, the following practices and procedures were used.

- Both long- and short-term noise measurements were conducted. (Appendix B)
- The long-term measurements (typically 24 hours) were used primarily to document the daily variation in existing traffic noise levels and to identify the worst case noise hour, if there was one. Long-term measurements were generally conducted at or near the highway right-of-way (ROW) line in order to best document hourly variation in traffic noise level with minimal influence from non-highway noise sources.
- The short-term noise measurements (typically 15-30 minutes) were conducted at actual noise sensitive receptor locations and were used primarily to validate noise models (at locations where traffic noise was dominant).
- Short-term noise measurements were generally conducted at areas of frequent exterior human use and were only conducted during periods of free-flowing traffic, dry roadways, and low to moderate wind speeds (less than 12 mph to avoid extraneous wind noise).
- Only ANSI (American National Standards Institute) Rated Type 1 or Type 2 sound levels meters were used (Type 1 for short-term and Type 2 for long-term). The meters were subjected to a field calibration check before and after each measurement. Calibration certificates and raw data for each meter used in the Project can be found in Appendix B.
- Concurrent classified (auto, medium and heavy trucks, buses, and motorcycles) traffic counts for the acoustically dominant road were conducted for each short-term measurement (either via live

count, or by videotape). Observed traffic counts can be found in Appendix B, official traffic counts used in the TNM modeling can be found in Appendix C.

- All field data was recorded on field data sheets, which included the time, name and location of the measurement, instrumentation data, 5-minute Leq noise levels, observed meteorological data, field calibration data, a measurement site diagram, GIS coordinates, and notes as to the dominant noise sources and any other observed acoustically relevant events (such as aircraft over-flights, emergency vehicle pass bys, etc.). Field sheets used in this project can be found in Appendix B.
- Photographs were taken for each measurement location showing the location relative to the dwelling and the noise source. Photographs of the measurement locations, along with a general description of the location, can be found in Appendix B.

2.4 ANALYSIS OBJECTIVES

The purpose of this final noise analysis report is to identify and document potential noise impacts associated with the future alternative of the proposed Project and to identify feasible and reasonable abatement. The general analysis procedure for the Project noise study includes the following steps:

- 1. **Review Project Description:** Review the project description and project data to be analyzed and collect additional required data (including roadway design files, existing and future traffic data, land use data, etc.). Consider all alternatives, design options, and construction phasing scenarios. This information is presented in Section 1 of this report.
- 2. **Identify Regulatory Framework:** Investigate and establish the regulatory framework to be followed for the noise analysis, including federal and state regulations. This information is presented in Section 2.1 of this report.
- 3. Establish Existing Land Use and Noise Environment: Investigate and document the existing noise environment for the Project area, including existing noise sensitive land uses and existing noise levels in the Project area. These were accomplished with a careful review of local zoning information, review of aerial photography and a site visit to the Project area. This information is presented in Section 3 of this report and background information can be found in Appendix B.
- 4. **Predict Future Noise Levels:** Future noise levels at noise sensitive land uses for the future Project alternative are predicted using the FHWA Traffic Noise Model (TNM) Version 2.5. This information is presented in Section 4 of this report and a summary of the TNM modeling can be found in Appendix D.
- 5. Assess Future Noise Impacts: For each alternative/design option, compare future noise levels (as well as increases in future noise levels over existing noise levels) to appropriate identified noise impact criteria and quantify resulting noise impacts. This information is presented in Section 4 of this report and a summary of the TNM modeling can be found in Appendix D.
- 6. **Evaluate Noise Abatement:** Where noise impacts are identified, evaluate potential noise abatement measures. Abatement measures are evaluated for feasibility and reasonableness according to FHWA and PENNDOT standards. This information is presented in Section 5 of this report and a summary of the TNM modeling can be found in Appendix D. Worksheets from

PennDOT Pub. #24 Appendix A ""Warranted, Reasonable and Feasible Worksheets" are located in Appendix E.

- 7. **Consider Construction Noise Impacts:** Analyze potential construction noise impacts, and discuss available mitigation options. This information is presented in Section 6 of this report.
- 8. **Information for Public Officials:** Provide or identify appropriate information for local public officials to help avoid future noise impacts. This information is presented in Section 7 of this report.

A more detailed accounting of the specific procedures involved in each of the above analysis steps is provided in the indicated report section.

2.5 SELECTION OF NOISE SENSITIVE RECEPTORS

In general, noise-sensitive receptors are selected to represent potentially impacted land uses within the Project area. Initially, the entire Project area was reviewed and noise sensitive areas were identified. A noise sensitive area, or NSA, is generally defined as a geographical area covering multiple properties with similar land uses and noise environments and that might benefit from a single noise abatement measure, such as a noise wall. An NSA might represent a single isolated property or an entire neighborhood. The delineated NSAs for this Project are described in Section 3 of this report. Within each NSA, several representative noise measurement and noise prediction locations may be identified. Typically, each NSA would have one measurement location and multiple noise prediction locations, although some smaller adjacent NSAs may share a single measurement location. The number and locations of the receptors (measurement and modeling locations) within each NSA are selected to adequately represent all of the noise-sensitive property units (dwellings) within that NSA, and these properties may include Activity Categories A through E in Table 2-1 (including residential, noise sensitive commercial, parks, schools, hotels, etc.). Activity Categories F and G (agriculture, retail, industrial, transportation, utilities, and undeveloped land), typically would not have associated NSAs or receptor locations. For residential properties in particular, more isolated residences would generally be modeled as individual receptors, while residences in multi-family buildings and densely populated neighborhoods may be modeled with one modeled receptor location representing multiple dwelling units or homes (receptors).

All receptor locations (short-term measurement locations and all modeled locations) are located to represent an area of frequent exterior human use. For residential properties, this would normally be an exterior activity area between the structure and the proposed project roadway. If no specific outdoor activity area is identified, a position at approximately 10 to 20 feet from the building façade exposed to the project roadway would be used. For commercial and other non-residential properties, some other area of frequent exterior human use would be selected.

2.6 WORST-CASE NOISE CONDITIONS

When determining noise impacts, traffic noise predictions must be made for the worst case noise hour (generally during level of service [LOS] C or D with high heavy truck volumes and speeds close to the posted speed limit or design speed). The worst case noise hour is typically either the peak vehicular truck

hour or the peak vehicular volume hour (with LOS A through D conditions). Long-term noise measurements were used to evaluate peak traffic noise hours at four locations within the Project area.

2.7 NOISE ABATEMENT REQUIREMENTS

According to the PennDOT noise manual, once a noise impact has been identified, feasible and reasonable noise abatement measures must be considered. For noise abatement, primary consideration is given to exterior areas of frequent human use. When traffic noise impacts are identified, noise barrier walls, at a minimum, are required to be considered.

When noise barriers are considered, a preliminary noise barrier design analysis must show that the barrier is feasible and reasonable. This typically requires that the barrier provides a minimum level of insertion loss. According to the PennDOT noise manual, feasible noise barriers must provide at least 5 dBA of insertion loss for the majority (50% or greater) of impacted receptors. In addition to meeting minimum insertion loss requirements, noise barriers must also meet engineering and constructability feasibility requirements in terms of safety, property and emergency access, drainage control, overhead and underground utilities clearance, and other issues.

For an abatement measure to be reasonable it must meet a maximum square foot per benefited receptor (Max SF/BR) criterion. PennDOT noise barrier cost reasonableness value is based on a Max SF/BR value of 2,000 square feet. The square footage of a barrier is based on its length multiplied by its height above the finished ground at its base to the top elevation. The benefited receptor values are determined by counting all receptors receiving a 5 dBA or greater insertion loss (IL). Although at least a 5 dBA IL for the majority of receptors is required to meet the feasibility criterion, the proposed barrier must reduce noise level by at least 7 dBA for at least one benefited receptor.

If noise barriers are determined to be reasonable and feasible then the viewpoints of property owners and residences should be taken into consideration. Half (50%) of all responding benefited owners and residences must be in favor of implementing noise abatement. The polling is typically conducted after the Final Noise Analysis is prepared and approved.

2.8 NOISE MODELING METHODOLOGY

Future build noise levels, along with existing noise levels, were predicted using the FHWA TNM Version 2.5, the most recent version available at the time of the analysis. All conventional modeling techniques and recommendations for TNM by both FHWA and PennDOT were implemented. These included the following modeling procedures and conventions:

- All roadway pavement types were modeled as "Average".
- Traffic speeds and volumes for peak traffic hour as provided in the traffic data were modeled to predict worst case noise levels. Traffic speeds and volumes used in this analysis were provided by the project engineers and are listed in Appendix C.
- Existing terrain lines (topography), buildings, ground zones and tree zones were modeled.
- All TNM model runs were detail checked for accuracy by an independent noise analyst.

2.9 PROJECT TRAFFIC DATA

Existing traffic data and traffic mix (autos, medium trucks, and heavy trucks) was provided by the Pennsylvania Turnpike Commission (PTC) and PennDOT. Project engineers generated the traffic projections for future years based on the existing traffic data and an estimated growth percentage. Traffic data used in this analysis can be found in Appendix C.

This page intentionally left blank

SECTION 3 EXISTING NOISE ENVIRONMENT AND NOISE SENSITIVE AREAS

3.1 EXISTING LAND USE AND ZONING

3.1.1 Existing Land Uses

The vicinity of the Project area consists of land uses, such as residential, industrial, commercial, public, and vacant, agricultural or open space. The areas at the western and eastern ends of the project (along SR100 and SR29, respectively) contain a majority of industrial and commercial businesses with a few residential homes interspersed. In the middle of the project area, the area mostly contains single-family and multi-family residences, and open space. Figure 2 shows the land use division within the project area.

3.1.2 Noise Sensitive Areas

In order to better categorize the potential noise impacts and evaluate noise abatement for the various project alternatives, all of the potentially impacted, noise-sensitive receptors have been organized into Noise Sensitive Areas, or NSAs. An NSA is defined as a geographical area that includes a variety of individual noise-sensitive receptor units (individual homes, apartment units, institutional properties, etc.) which have a similar land use and noise environment, and if impacted, would likely be protected by a single noise abatement element, such as a noise barrier. Descriptions of delineated NSAs, including geographic area, primary land use, and type of noise-sensitive receptors are listed in Table 3-1. Figures 3-1 through 3-7 show all of the defined NSAs and their associated noise measurement locations.

NSA	Description	Long-term Measurement ID	Short-term Measurement ID
1	South of I-76, East and West of State Route 100 Single-Family Residences and Proposed Hotel with no outdoor use		ST-01
2	North of I-76, East of East Township Line Road Single-Family Residence and Commercial Businesses		ST-02
3	South of I-76, North of Sheree Boulevard, in parking lot of office development. Commercial Businesses		ST-03
4	North of I-76, East of Uwchlan Avenue Multi-Family Residences	LT-01	ST-04, ST-26
5	North of I-76, South of Davis Road Multi-Family and Single-Family Residences		ST-05
6	South of I-76, West of Pine Creek Road Single-Family Residence		ST-06
7	South of I-76, North of Worthington Road Single-Family Residences and Church		ST-07

Table 3-1Noise Sensitive Areas (NSAs)

NSA	Description	Long-term Measurement ID	Short-term Measurement ID
8	South of I-76, East and West of Conestoga Road Single-Family Residences	LT-02	ST-08
9	North of I-76, East and West of Conestoga Road, South of Seven Oaks Road. Single-Family Residences		ST-09
10	North of I-76, East and West of Seven Oaks Road Single-Family Residences		ST-29
11	South of I-76, North of Conestoga Road, East of Newcomen Road. Single- Family Residence		ST-11
12	North of I-76, West of Bodine Road Single-Family Residence		ST-12
13	South of I-76, West of Bodine Road Single-Family Residences		ST-13
14	North of I-76, East of Bodine Road Single-Family Residence, Commercial Business		ST-14
15	South of I-76, End of Shamrock Hill Lane Single-Family Residences		ST-15
16	North of I-76, South of Wood Valley Lane Single-Family Residences		ST-16
17	South of I-76, East of Valley Hill Road Single-Family Residence		ST-17
18	North of I-76, East of Valley Hill Road Single-Family Residence		ST-18
19	North of I-76, South of Hollow Drive Single-Family Residences	LT03	ST-19
20	South of I-76, at intersection of Yellow Springs Road and Brandywine Road Single-Family and Multi-Family Residences	LT04	ST-20
21	North of I-76, east of Yellow Springs Road (homes on Blackberry Lane) Single-Family Residences		ST-21, ST-27
22	South of I-76, North of Phoenxiville Pike (Rt 29) Single-Family Residence		ST-22
23	South of I-76, North of Phoenixville Pike (Rt 29) Single-Family Residence		ST-23
24	South of I-76, North of Phoenixville Pike (Rt 29) Church		ST-24
25	North of I-76, West of Phoenixville Pike (Rt 29), North of Charlestown Road School, Future Housing Development		ST-25
26	South of I-76, east of Charlestown Road and north of Yellow Springs Road Single Family Homes		ST-28

3.2 EXISTING NOISE LEVELS

3.2.1 Noise Measurements

Multiple noise measurements were conducted for this project on November 26-30, 2012 and October 27-28, 2013 including long-term (24-hour) and short-term (10 to 30 minutes) measurements. Noise measurements were conducted for several reasons, including:

- 1. To empirically determine the peak noise hour, if one exists, in different areas of the project (long-term measurement). Leq values reported in Tables 3-2 and 3-5 and subsequently used for model validation were a result of an energy average of the individual interval values recorded on the data sheets.
- 2. To provide information for noise model validation (short-term measurements with accompanying classified traffic counts).

A total of twenty-nine (29) short-term (ST) noise measurements were conducted as summarized in Table 3-2. Figures 3-1 through 3-7 show an overview of the Project area with each measurement location.

Receptor ¹	Location	Date	Start Time	End Time	Measured Leq, dBA
ST-01	30 Pennsylvania Rd.	11/28/2012	09:35	09:55	67
ST-02	82 E. Township Line Rd.	11/28/2012	10:05	10:20	65
ST-03	180 Sheree Blvd., Suite #2100	10/29/2013	10:50	11:15	61
ST-04	Pickering Point Complex, 1202 Ambrosa Dr.	11/28/2012	11:20	11:35	67
ST-05	Holly Tree Ct. Playground	11/28/2012	11:45	12:00	69
ST-06	200 Upper Pine Creek Rd.	10/29/2013	13:20	13:45	60
ST-07	511 Worthington Rd.	10/29/2013	13:55	14:20	59
ST-08	1148 Conestoga Rd. CRT 401	11/28/2012	13:45	14:00	68
ST-09	906 Seven Oaks Rd.	10/29/2013	14:00	14:35	66
ST-11	Horse farm, 69 Hillsover Rd.	11/29/2012	11:00	11:20	67
ST-12	2151 Bodine Rd.	10/29/2013	08:15	08:35	66
ST-13	#2 Bodine Rd.	11/29/2012	11:30	11:50	66
ST-14	2148 Bodine Rd.	10/29/2013	15:55	16:20	66
ST-15	26 Shamrock Hill Ln.	11/30/2012	08:55	09:10	66
ST-16	10 Wood Valley Ln.	11/29/2012	14:25	14:40	66
ST-17	2198 Valley Hill Rd.	11/30/2012	09:25	09:40	62
ST-18	2236 Valley Hill Rd.	11/30/2012	09:50	10:05	66
ST-19	29 Hollow Dr.	10/28/2013	16:25	17:10	61
ST-20	2062 Yellow Springs Rd.	10/28/2013	16:35	16:55	64
ST-21	181 Blackberry Ln.	11/29/2012	15:55	16:10	69

Table 3-2Short-Term Measurement Summary

Existing Noise Environment and Noise Sensitive Areas

Receptor ¹	Location	Date	Start Time	End Time	Measured Leq, dBA
ST-22	3149 Phoenixville Pike	10/28/2013	15:45	16:10	62
ST-23	3199 Phoenixville Pike	10/28/2013	15:30	16:05	60
ST-24	3281 Phoenixville Pike	11/30/2012	12:25	12:45	59
ST-25	Near 2060 Clarkstown Rd.	11/30/2012	12:55	13:15	62
ST-26	3501 Eaton Ct.	10/29/2013	10:05	10:30	66
ST-27	31210 Blackberry Ln.	10/29/2013	15:10	15:30	68
ST-28	1022 Yellow Springs Rd.	10/28/2013	14:50	15:15	60
ST-29	2068 Seven Oaks Rd.	10/29/2013	17:25	17:45	62

¹Measurement ST-10 was discarded and replaced by ST-29 for NSA10.

A total of four (4) long-term (LT) noise measurements were conducted as summarized in Table 3-4 and Figures 3-1 through 3-7 show an overview of the Project area with each measurement location. Appendix B contains a graphical presentation of the long-term data collected.

Receptor	Location	Start Date	Start Time	End Date	End Time	Minimum and Maximum Measured Leq, dBA
LT1	Liongate Community, Eaton Court, near basketball court	11/28/12	08:34	11/29/12	2:40	67 - 73
LT2	931 Newcomen Road	11/28/12	09:15	11/29/12	08:45	71 - 80
LT3	57 Deerfield Drive	11/29/12	10:15	11/30/12	10:00	66 - 72
LT4	Across street from 2111 Yellow Springs Road	10/28/13	17:15	10/29/13	17:00	64 - 75

 Table 3-3

 Long-Term Measurement Summary

Long-term noise measurements were conducted at fence-line locations in order to identify general trends in noise variation over the course of the day. These were used to determine if or when noise levels peaked during the day, or if noise levels were reduced at peak traffic hours due to traffic congestion. In general the measurement data showed that while traffic noise levels fluctuated somewhat over the course of the day there was generally no identified discrete "worst hour", with noise levels loudest between about 6:00 AM and 6:00 PM. The data also provided no indication that noise levels were substantially reduced due to congestion at any time during the day.

3.2.2 Noise Monitoring Equipment and Atmospheric Conditions

Only ANSI (American National Standards Institute) Rated Type 1 or Type 2 Sound Levels Meters were used (Type 1 for short-term and Type 2 for long-term). Meters were subjected to a field calibration check

before and after each measurement. Current annual factory calibration certificates for the meters used on this project can be found in Appendix B.

Weather conditions in the Project area were recorded using hand-held anemometers. Table 3-4 contains the weather data recorded at each measurement position. This data can also be found on the noise measurement field sheets in Appendix B. Meteorological conditions were noted for all short-term noise measurements to document that conditions were appropriate. All measurements were conducted during appropriate and acceptable meteorological weather conditions with dry roadways (i.e., acceptable temperature and humidity ranges, wind less than 12 mph).

All field data was recorded on field data sheets, which included the time, name and location of the measurement, instrumentation data, 5-minute Leq noise levels (for short-term readings), meteorological data, field calibration data, a measurement site diagram, GIS coordinates, and notes as to the dominant noise sources and any other observed acoustically relevant events (such as aircraft over-flights, emergency vehicle pass-bys, etc.). Classified traffic counts were generally taken from video shot during the noise measurements. Speeds used for validation runs were values indicated on the field data sheets as "Observed" speeds. Existing speeds were estimated by driving through the project roadway during periods with similar traffic conditions and noting vehicle speed. For this project, the observed speeds during noise measurement activities were approximately the same as posted speeds. Field sheets used for this project can be found in Appendix B.

	Atmospheric Conditions							
Receptor ¹	Temperature (°F)	Wind Descriptor	Avg. Wind Speed (mph) ²	Wind Direction	Relative Humidity (%)	Barometric Pressure (Hg)	Cloud Cover (%)	
ST-01	36.0	Calm, occasional light gusts	0 - 2	-	73.0	1004.7	20	
ST-02	35.0	gusty	5	-	59.0	1004.7	20	
ST-03	49.0	calm	-	-	65.0	-	0	
ST-04	37.0	Calm, occasional light gusts	0 - 2	-	70.0	1004.7	50	
ST-05	39.0	Calm, occasional light gusts	0 - 2	-	67.0	1007.0	50	
ST-06	55.0	Calm, occasional light gusts	0 - 2	-	64.7	1011.7	0	
ST-07	60.0	calm	-	-	61.6	1010.4	0	
ST-08	41.0	Calm, occasional light gusts	0 - 2	-	70.0	1005.0	20	
ST-09	60.0	calm	-	-	62.0	1009.0	0	
ST-11	38.0	gusty	0 - 8	variable	56.0	1010.0	100	
ST-12	41.5	calm	-	-	77.7	1009.1	0	
ST-13	38.0	Calm, occasional light gusts	0 - 2	-	67.0	1008.0	50	

Table 3-4Measurement Weather Data

	Atmospheric Conditions							
Receptor ¹	Temperature (°F)	Wind Descriptor	Avg. Wind Speed (mph) ²	Wind Direction	Relative Humidity (%)	Barometric Pressure (Hg)	Cloud Cover (%)	
ST-14	60.0	calm	-	-	52.5	1007.0	0	
ST-15	31.0	calm	-	-	69.4	1005.1	80	
ST-16	45.0	steady	0 - 8	variable	53.3	1004.1	0	
ST-17	32.0	calm	-	-	62.1	1004.0	90	
ST-18	32	calm	-	-	59.1	1004.8	60	
ST-19	62.0	Calm, occasional light gusts	0 - 3	-	54.1	1000	10	
ST-20	60.0	calm	-	-	53.2	1002.6	10	
ST-21	43.0	calm	-	-	53.0	1003.4	0	
ST-22	64.1	Calm, occasional light gusts	1 - 3	-	52.4	1005.0	10	
ST-23	64.1	Calm, occasional light gusts	0 - 3	-	54.5	1008.0	10	
ST-24	43.0	steady	0 - 8	east	55.2	1010.5	100	
ST-25	44.0	steady	2	east	59.6	1009.6	90	
ST-26	42.0	calm	-	-	75.0	1011.6	0	
ST-27	60.0	calm	-	-	62.0	1009.0	0	
ST-28	65.3	Calm, occasional light gusts	0 - 3	-	54.3	1008.4	10	
ST-29	48.0	calm	-	-	65.6	1009.7	0	

¹Measurement ST-10 was discarded and replaced by ST-29 for NSA10.

² Measurements were not conducted if wind speeds exceeded 12mph

3.2.3 Noise Model Validation and Results

The FHWA TNM Version 2.5 was used to predict noise levels for the future build alternative as well as existing noise levels at receptor locations where noise levels are dominated by traffic noise on project roadways. To demonstrate that the noise model is predicting noise levels within a reasonable margin of error, the noise model runs are validated by comparing predicted noise levels to measured noise levels for similar traffic conditions. Acoustical measurements were only taken when traffic was free-flowing. However, since the TNM only predicts noise levels associated with traffic noise, the model runs can only be validated at measurement locations where current noise levels are dominated by project roadways. For this project, noise model validation was possible for all noise measurement locations. Noise models are considered to be validated according to the PennDOT noise manual if the difference between measured and modeled noise levels for comparable conditions is 3 dBA or less. The results of the noise validation effort are presented in Table 3-5.

While it is usually preferred to conduct model validation measurements without snow cover that is not always possible given field conditions and project deadlines. Due to a recent snowfall preceding the

November 12 measurement trip there was a light snow cover for some of the validation site measurements (generally less than a few inches), as shown in some of the noise measurement location photographs. In this case the snow cover was apparently light enough that validation models did not require any special modeling or adjustments to account for the snow and all measurement location were validated within an acceptable margin of error (+/- 3 dBA).

Receptor	Location	Date	NSA	Measured Leq, dBA	Modeled Leq, dBA	Delta
ST-01	30 Pennsylvania Rd.	11/28/2012	01	66.6	65.4	1.2
ST-02	82 E. Township Line Rd.	11/28/2012	02	64.7	66.5	-1.8
ST-03	180 Sheree Blvd., Suite #2100	10/29/2013	03	61.0	58.1	2.9
ST-04	Pickering Point Complex, 1202 Ambrosa Dr.	11/28/2012	04	67.0	64.8	2.2
ST-05	Holly Tree Ct. Playground	11/28/2012	05	68.9	71.7	-2.8
ST-06	200 Upper Pine Creek Rd.	10/29/2013	06	60.0	61.5	-1.5
ST-07	511 Worthington Rd.	10/29/2013	07	59.2	60.1	-0.9
ST-08	1148 Conestoga Rd. CRT 401	11/28/2012	08	68.5	71.2	-2.7
ST-09	906 Seven Oaks Rd.	10/29/2013	09	65.9	66.2	-0.3
ST-11	Horse farm, 69 Hillsover Rd.	11/29/2012	11	66.6	69.4	-2.8
ST-12	2151 Bodine Rd.	10/29/2013	12	66.4	63.8	2.6
ST-13	#2 Bodine Rd.	11/29/2012	13	66.1	65.4	0.7
ST-14	2148 Bodine Rd.	10/29/2013	14	66.1	64.8	1.3
ST-15	26 Shamrock Hill Ln.	11/30/2012	15	66.4	67.7	-1.3
ST-16	10 Wood Valley Ln.	11/29/2012	16	66.3	66.3	0.0
ST-17	2198 Valley Hill Rd.	11/30/2012	17	61.9	63.3	-1.4
ST-18	2236 Valley Hill Rd.	11/30/2012	18	66.5	64.9	1.6
ST-19	29 Hollow Dr.	10/28/2013	19	61.5	58.7	2.8
ST-20	2062 Yellow Springs Rd.	10/28/2013	20	64.1	63.6	0.5
ST-21	181 Blackberry Ln.	11/29/2012	21	68.7	71.3	-2.6
ST-22	3149 Phoenixville Pike	10/28/2013	22	62.3	59.5	2.8
ST-23	3199 Phoenixville Pike	10/28/2013	23	60.4	58.2	2.2
ST-24	3281 Phoenixville Pike	11/30/2012	24	59.5	61.8	-2.3
ST-25	Near 2060 Clarkstown Rd.	11/30/2012	25	62.4	62.4	0.0
ST-26	3501 Eaton Ct.	10/29/2013	04	65.8	64.8	1.0
ST-27	31210 Blackberry Ln.	10/29/2013	21	67.9	68.9	-1.0
ST-28	1022 Yellow Springs Rd.	10/28/2013	26	60.3	62.4	-2.1
ST-29	2068 Seven Oaks Rd.	10/29/2013	10	62.2	64.6	-2.4

Table 3-5TNM Validation Summary Table

¹Measurement ST-10 was discarded and replaced by ST-29 for NSA10.

As shown in Table 3-5, all calculated differences between modeled and measured noise levels are less than 3.0 dBA. Therefore the noise models in those locations are considered validated.

3.2.4 Observed Traffic Counts

The observed traffic counts are used for validating the TNM models. The field-observed values are compared to the predicted values. If the difference between the two values is less than ± 3 decibels, then the model is considered to be within an acceptable level of accuracy. All NSAs were within ± 3 decibels. The observed traffic data videotaped or hand-counted during the noise measurements and used in the validation process can be found in Appendix B. TNM validation runs developed for this Project are available on request.

3.2.5 Existing Noise Levels

Existing noise levels for NSAs were predicted by modeling the receptor locations using the FHWA TNM. Table 3-6 presents a summary of existing noise levels for all modeled receptors in the Project area. Existing levels range from 44 to 77 dBA. Figures 3-1 through 3-7 contains an overview of the Project area showing measured receptor locations within each NSA, represented by a green circle. Figures 4-1 through 4-7 show the modeling results for the measurement location.

NSA	NSA Description	# of Modeled Receivers	# of Receptors/ Equivalent Residential Units	Predicted Existing Noise Level, Range of Leq (1h) dBA
1	South of I-76, East and West of State Route 100 Single-Family Residences and Proposed Hotel with no outdoor use	7	6	64 - 73
2	North of I-76, East of East Township Line Road Single-Family Residence and Commercial	4	4	61 - 69
3	South of I-76, North of Sheree Boulevard, in parking lot of office development Office development outdoor area for employees	13	0	55 - 76
4	North of I-76, East of Uwchlan Avenue Multi-Family Residences	55	153	52 - 74
5	North of I-76, South of Davis Road Multi-Family, Single-Family Residences and undeveloped land	37	95	59 - 77
6	South of I-76, West of Pine Creek Road Single-Family Residence and undeveloped land	1	1	64

Table 3-6Predicted Existing Noise Levels

SECTIONTHREE

Existing Noise Environment and Noise Sensitive Areas

NSA	NSA Description	# of Modeled Receivers	# of Receptors/ Equivalent Residential Units	Predicted Existing Noise Level, Range of Leq (1h) dBA
7	South of I-76, North of Worthington Road Single-Family Residence (abandoned) and Church	3	4	62 - 66
8	South of I-76, West of Conestoga Road Single-Family Residences	20	20	57 - 75
9	North of I-76, East of Conestoga Road, South of Seven Oaks Road Single-Family Residences	6	8	58 - 69
10	North of I-76, East of Seven Oaks Road Single-Family Residences ¹	4	4	62 - 66
11	South of I-76, North of Conestoga Road, East of Newcomen Road Single-Family Residence	2	2	60 - 72
12	North of I-76, West of Bodine Road Single-Family Residence	1	1	66
13	South of I-76, West of Bodine Road Single-Family Residences	3	3	66 - 71
14	North of I-76, East of Bodine Road Single-Family Residence, Commercial Business	1	1	66
15	South of I-76, End of Shamrock Hill Lane Single-Family Residences	13	13	59 - 74
16	North of I-76, South of Wood Valley Lane Single-Family Residences	6	6	59 - 68
17	South of I-76, East of Valley Hill Road Single-Family Residence	4	4	56 - 64
18	North of I-76, East of Valley Hill Road Single-Family Residence	4	4	61 - 73
19	North of I-76, South of Hollow Drive Single-Family Residences	14	14	54 - 61
20	South of I-76, Northside of Yellow Springs Road Single-Family and Multi-Family Residences	15	44	55 - 66
21	North of I-76, End of Blackberry Lane Single-Family Residences	30	30	44 - 74
22	South of I-76, North of Phoenxiville Pike (Rt 29) Single-Family Residence	4	4	51 - 62
23	South of I-76, North of Phoenixville Pike (Rt 29) Single-Family Residence	3	3	57 - 62
24	South of I-76, North of Phoenixville Pike (Rt 29) Church	2	1	64 - 71
25	North of I-76, West of Phoenixville Pike (Rt 29), North of Charlestown Road School, Housing Development	18	45	50 - 70
26	South of I-76 and east of Charlestown Rd.	5	5	65 - 70

¹Access to ST-10 was granted by owner during the November 2012 acoustical survey. The property had been sold to a new owner when URS returned in October 2013 to collect additional survey data. Repeated attempts to contact the new owner were made, but no contact was established. Therefore, a new receptor was selected adjacent to the initial property with similar distance to the PA Turnpike. The new measurement receptor representing NSA10 is noted as ST-29.

.

This page intentionally left blank

SECTION 4 FUTURE NOISE LEVELS AND IMPACTS

This section presents predicted noise levels and noise impacts (or noise impact distances for both identified NSA areas and general undeveloped areas

4.1 PREDICTED NOISE LEVELS AND NOISE IMPACTS

Future build alternative noise levels, along with existing noise levels, were predicted using the FHWA TNM Version 2.5, the version currently accepted by PennDOT. All conventional modeling techniques and recommendations for TNM by both FHWA and PennDOT were implemented. These included the following modeling procedures and conventions:

- All roadway pavement types were modeled as "Average".
- Traffic speeds and volumes for peak traffic hour as provided in the traffic data were modeled to predict worst case noise levels. Traffic speeds and volumes used in this analysis were provided by the project engineers and are listed in Appendix C. Modeled vehicle-type traffic data (i.e., car, medium truck, heavy truck, bus, motorcycle) is located in Appendix C.
- All TNM runs were detail checked for accuracy by an independent noise analyst.

An "Approach or Exceed" noise impact occurs when the predicted future noise level at an identified noise receptor location approaches or exceeds the FHWA NAC within 1 dBA. Table 4-1 below summarizes the number of absolute or "Approach or Exceed" noise impacts for the Future Build alternative.

A "Substantial Increase" noise impact occurs when the predicted future noise level at an identified noise receptor location exceeds the existing condition noise level by 10 dBA or more. No substantial increase impacts have been identified for the Project area.

Table 4-1 below contains a summary of the predicted noise levels and noise impacts at all NSA locations in the Project area for the existing condition and the future Build alternative. Predicted levels for each individual modeled receiver location for each condition (existing, future build, and future no-build) are provided in Appendix D

Figures 4-1 through 4-7 contain an overview of the Project area showing all Future Build modeled receptor locations.

NSA ID	Total # of Dwelling Units	Predicted Noise Levels (range) Leq (1H), dBA Existing Future Build		# of Impacted Receptors/Dwelling Units	Impact Type
1	6 a	64 - 73	67 - 77	6	NAC
2	4	61 - 69	62 - 73	1	NAC
3	0	55 - 76	58 - 79	0	NAC
4	153	55 - 76	54 - 80	99	NAC
5	95		61 - 79	69	NAC
6	90 1	59 - 77	67	1	NAC
7	4	64	64 - 69	2	NAC
		62 - 66			
8	20	57 - 75	61 - 76	7	NAC
9	8	58 - 69	60 - 71	2	NAC
10	4	62 - 66	64 - 68	3	NAC
11	2	60 - 72	62 - 75	1	NAC
12	1	66	69	1	NAC
13	3	66 - 71	70 - 74	3	NAC
14	1	66	69	1	NAC
15	13	59 - 74	63 - 77	8	NAC
16	6	59 - 68	61 - 70	2	NAC
17	4	56 - 64	59 - 67	2	NAC
18	4	61 - 73	62 - 75	2	NAC
19	14	54 - 61	59 - 65	0	None
20	44	55 - 66	59 - 70	15	NAC
21	30	44 - 74	46 - 76	21	NAC
22	4	51 - 62	54 - 65	0	None
23	3	57 - 62	60 - 65	0	None
24	1	64 - 71	66 - 73	1	NAC
25	45	50 - 70	52 - 72	27	NAC
26	5	65 - 70	67 - 72	5	NAC

Table 4-1 Predicted Noise Levels and Impact Summary

^aA seventh receiver is shown in the figures within the NSA. The seventh receiver is a hotel with no planned outdoor activities for their guests (i.e., no pool, no picnic area, etc.), therefore, it was not assigned a dwelling unit and would not be considered for abatement.

SECTIONFOUR

4.2 PREDICTED IMPACT DISTANCE FOR UNDEVELOPED LANDS

For use in Land Use Planning, distances to potential noise impact contours have been calculated for generalized regions within the project corridor, as presented in Table 4-2 below. Two representative undeveloped lands were used as references for the entire project site; one of the undeveloped land contours represent topographically flat areas (line-of-sight (LOS) between receptor and sources) and the other represents a 'cut' section (no LOS). The shorter distance represents a typical 'cut' section, the longer distance represents a typical flat section. The distances are measured from the outside edge of the Pennsylvania Turnpike shoulder in each direction.

Representative	Estimated Impact Distance (feet)			
Undeveloped Land	66 dBA (Categories B and C)	71 dBA (Category E)		
Typical Unobstructed Areas (line of sight to the roadway)	425	200		
Typical Obstructed Areas (no line of sight to roadway)	220	100		

Table 4-2 Noise Impact Distances for Undeveloped Land

Notes:

1: The impact distances are from the edge of I-76.

This page intentionally left blank

SECTION 5 NOISE ABATEMENT EVALUATION

5.1 NOISE ABATEMENT MEASURES

According to FHWA and PennDOT policies, when noise impacts are identified, noise barriers (at a minimum) must be considered as noise abatement. Noise barriers were evaluated for twenty two of the twenty six NSAs for feasibility and reasonableness. Four NSAs (03, 19, 22 and 23) were predicted to not have any receptors that approached or exceeded the NAC criteria in the future build condition. The following sections describe results of barrier assessment.

5.2 FEASIBLE AND REASONABLE CRITERIA AND REQUIREMENTS

In order for mitigation to be recommended, the barrier must meet certain feasibility and reasonability requirements established by PennDOT in the noise manual.

When noise barriers are considered, a preliminary noise barrier design analysis must show that the barrier is feasible. This typically requires that the barrier provides a minimum level of insertion loss (IL). According to PennDOT policy, feasible noise barriers must provide at least 5 dBA of IL for a majority (50% or greater) of impacted receptors. In addition to meeting minimum IL requirements, noise barriers must also meet engineering and constructability feasibility requirements in terms of safety, property and emergency access, drainage control, overhead and underground utilities clearance, and other issues.

Noise barrier reasonableness generally is related to cost effectiveness. PennDOT noise barrier cost reasonableness value is based on a Maximum Square Foot per Benefited Residence (Max SF/BR) value of 2,000 square feet. The square footage of a barrier is based on its length multiplied by its height above the finished ground at its base to the top elevation. The benefited receptor values are determined by counting all receptors receiving a 5 dBA or greater IL. Although at least a 5 dBA IL for the majority of receptors is required to meet the feasibility criterion, the proposed barrier must reduce noise level by at least 7 dBA for at least one benefited receptor.

If noise barriers are determined to be reasonable and feasible then the viewpoints of property owners and residents should be taken into consideration. Agreement of half (50%) of all responding benefited owners and residences is needed to implement noise abatement. Polling for the viewpoints of benefited receptors typically occurs after the Final Noise Analysis is prepared and approved.

5.3 DESIGN GOAL REQUIREMENTS

PennDOT defines its IL design goal as 7 dBA. The IL design goal is not to be confused with the 5 dBA feasibility criterion (see section 3.3.3.2 "*Noise Reduction Design Criteria and Goals*" of the PennDOT noise manual). It is PennDOT policy that at least one benefited property must receive at least a 7 dBA reduction in noise levels with the proposed abatement measure. The IL design goal results in the construction of more effective barriers.

5.4 FINDINGS AND RECOMMENDATIONS FOR NOISE ABATEMENT

Noise abatement was considered for each NSA with noise impacted receptors. Initially, noise abatement was checked for feasibility (5 dBA reduction at a minimum of half of impacted receptors and access restrictions). If abatement was feasible, the abatement was analyzed for reasonableness factors. For all impacted receptors meeting feasibility requirements, preliminary barrier designs were evaluated using TNM. For some NSAs with only one or two isolated impacted receptors, a simplified screening analysis was used rather than TNM modeling. In this estimation calculation it was assumed that a barrier would need to be at least 4 times as long as the distance from the end receptor to the barrier and at least 8 feet tall.

If the abatement was found to be both reasonable and feasible, it would be recommended for inclusion in the project pending a polling of viewpoints from benefited receptors per PennDOT Pub. 24, Section 6.4 "Voting Procedures". The narrative results of abatement evaluations for each impacted NSA are summarized below. Table 5-1 summarizes the barrier analysis for each NSA location. Figures 5-1 and 5-2 illustrate the three NSA locations that barrier walls are recommended for and the location of the barrier wall. Appendix D contains a summary of the TNM modeling results. Appendix E presents PennDOT Pub. #24's Appendix A "Warranted, Reasonable and Feasible Worksheets".

NSA	Description	Number of Impacted Receptors	Method ¹	Feasible? ²	Reasonable? ³	Proposed Barrier Length, in feet	Average Height, in feet	Barrier Total Sq. Ft.	Number of Benefited Receptors	Sq. Ft. / BDU ³	Recommend?
1	South of I-76 east and west of Pottstown Pike (SR- 100)	6	TNM	Yes	No	1300	9.85	12801	4	3200	No
2	North of I-76, between E. Township Line Rd. and the curve at Haywood Dr.	1	TNM	Yes	No	500	12.40	6199	1	6199	No
3	South of I-76 and west of Uwchlan Ave.	0	NA	NA	NA	NA	NA	NA	NA	NA	NA
4	North of I-76 and east of Uwchlan Ave.	99	TNM	Yes	Yes	2473	15.00 ⁴	37088	96	386	Yes
5	North of I-76, east of Uwchlan Ave. at Pickering Station Dr.	69	TNM	Yes	Yes	1872	13.925	26049	69	378	Yes
6	South of I-76 and west of Pine Creek Rd.	1	Screening Analysis	Yes	No	1660	8.00	13280	1	13280	No
7	South of I-76 and east of Pine Creek Rd.	2	Screening Analysis	Yes	No	1320	8.00	10560	2	5280	No
8	South of I-76 at Conestoga Rd. (SR- 401)	7	TNM	Yes	No	1538	12.96	19934	8	2942	No
9	North of I-76 at Conestoga Rd. (SR- 401)	2	TNM	Yes	No	785	8.47	6650	2	3325	No
10	North of I-76 at 7 Oaks Rd.	3	TNM	Yes	No	1101	8.00	8810	3	2937	No

 Table 5-1

 Summary of Barrier Analysis for Each NSA Location

SECTIONFIVE

Impact Assessment

NSA	Description	Number of Impacted Receptors	Method ¹	Feasible? ²	Reasonable? ³	Proposed Barrier Length, in feet	Average Height, in feet	Barrier Total Sq. Ft.	Number of Benefited Receptors	Sq. Ft. / BDU ³	Recommend?
11	South of I-76 between Conestoga Rd. and Bodine Rd.	1	TNM	Yes	No	470	11.72	5508	1	5508	No
12	North of I-76 and west of Bodine Rd.	1	Screening Analysis	Yes	No	900	8.00	7200	1	7200	No
13	South of I-76 and west of Bodine Rd.	3	TNM	Yes	No	400	16.50	6600	3	2200	No
14	North of I-76 and east of Bodine Rd.	1	Screening Analysis	Yes	No	700	8.00	5600	1	5600	No
15	South of I-76 and west of Valley Hill Rd.	8	TNM	Yes	No	2250	14.40	32500	7	4643	No
16	North of I-76 and west of Valley Hill Rd.	2	TNM	Yes	No	1000	12.80	12800	2	6400	No
17	South of I-76 and east of Valley Hill Rd.	2	TNM	Yes	No	1235	14.00	22900	1	22900	No
18	North of I-76 and east of Valley Hill Rd.	2	TNM	Yes	No	1042	8.19	8532	2	4266	No
19	North of I-76 and west of Yellow Springs Rd.	0	NA	NA	NA	NA	NA	NA	NA	NA	NA
20	South of I-76 at the intersection of Yellow Springs Rd. and Brandywine Rd.	15	TNM	Yes	Yes	1768	11.506	20329	39	521	Yes
21	North of I-76 and east of Yellow Springs Rd. (homes on Blackberry Ln.)	21	TNM	Yes	No	4538	12.77	57927	22	2633	No
22	South of I-76 and north of Phoenixville Pike	0	NA	NA	NA	NA	NA	NA	NA	NA	NA
23	South of I-76 and north of Phoenixville Pike, near Spring Mill Rd.	0	NA	NA	NA	NA	NA	NA	NA	NA	NA
24	South of I-76 and north of Phoenixville Pike, near Spring Mill Rd.	1	Screening Analysis	Yes	No	576	8.00	4608	1	4608	No
25	North of I-76 and Charlestown Rd., west of Phoenixville Pike ⁷	27	TNM	No ²	No	2699	20.00	53972	4	13493	No
26	South of I-76 and east of Charlestown Rd. Screening Analysis con	5	TNM	Yes	No	2000	20.00	40000	5	8000	No

Screening Analysis consisted of an estimation calculation. The calculation assumed that a barrier would need to be at least 4 times as long as the distance from the roadway in each direction from the end receptor and at least 8 feet tall, TNM indicates the use of the Traffic Noise Model to establish barrier dimensions.

2 Noise abatement considered feasible if a minimum of 5 dBA Insertion Loss (IL) for a majority (50% or greater) of the impacted receptors.

3 Noise abatement considered reasonable if the Maximum Square Footage per Benefited Receptor (MaxSF/BR) has a value of 2000 or less. One benefited receptor

must have an IL of 7 dBA.

4 Barrier minimum Height is 8.00 feet, maximum Height is 20.00 feet

5 Barrier minimum height is 12.00 feet, maximum height is 17.00 feet

6 Barrier minimum height is 8.00 feet, maximum height is 16.00 feet

7 Not applicable since not feasible. Barrier at Turnpike ROW/shoulder is not feasible; no barriers on arterial roadways

Tables 5-2 through 5-23 summarizes the narrative results for abatement evaluations for each of the twenty two (22) NSAs that were determined to have impacted receptors. Table 5-24 presents the summary of recommended noise abatement.

NSA1 Residential/Commercial

NSA1 contains six (6) identified receptors with NAC impacts associated with the proposed alternative. These receptors are representative of a single-family residential land use south of I-76 and east of Route 100 (Pottstown Pike). Noise abatement was evaluated at six receptors within the NSA. A seventh receptor is shown in the figure representing a future hotel with no planned outdoor activities (i.e., no pool, picnic area, etc.). Because no outdoor activities are associated with the hotel, it is not considered a benefited receptor. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 3200 square feet per benefited receptor) to provide the minimum required noise reduction far exceeded the maximum allowable amount of 2000 square feet per benefited receptor. Table 5-2 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	6
Number of Benefited Receptors	4
Barrier Evaluation Method	TNM
Length (ft)	1300
Average Height (ft)	9.85
Minimum Height (ft)	8.00
Maximum Height (ft)	14.00
Area (ft ²)	12801
Calculated SF/BR	3200
Number of Receptors meeting Design Goal (7 dBA)	1
Design Goal Met?	Yes
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-2Barrier Analysis Summary – NSA1

NSA2 Residential/Commercial

NSA2 contains one residential receptor with NAC impacts associated with the proposed alternative. This receptor is located north of I-76, east of East Township Road and at the curve of Haywood Drive. Noise abatement was evaluated for the single-family residence. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 6200 square feet per benefited receptor) to provide the minimum required noise reduction far exceeded the maximum allowable amount of 2000 square feet per benefited receptor. Table 5-3 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	1
Number of Benefited Receptors	1
Barrier Evaluation Method	TNM
Length (ft)	500
Average Height (ft)	12.40
Minimum Height (ft)	8.00
Maximum Height (ft)	18.00
Area (ft ²)	6199
Calculated SF/BR	6199
Number of Receptors meeting Design Goal (7 dBA)	1
Design Goal Met?	Yes
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-3Barrier Analysis Summary – NSA2

NSA4 Residential

NSA4 contains ninety-nine (99) receptors with NAC impacts associated with the proposed alternative. These receptors are representative of single-family and multi-family residences north of I-76 and east of Uwchlan Avenue. Noise abatement was evaluated and is considered feasible and reasonable. Due to a conflict with a gas line, the barrier in this location was shortened by approximately 36' on the western end to maintain feasibility. This results in a slight decrease in the IL provided by the barrier when compared to the draft analysis, but the barrier is still determined to be reasonable and feasible by a wide margin. Table 5-4 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	99
Number of Benefited Receptors	96
Barrier Evaluation Method	TNM
Length (ft)	2473
Average Height (ft)	15.00
Minimum Height (ft)	8.00
Maximum Height (ft)	20.00
Area (ft ²)	37088
Calculated SF/BR	386
Number of Receptors meeting Design Goal (7 dBA)	72
Design Goal Met?	Yes
Feasible?	Yes
Reasonable?	Yes
Recommended?	Yes

Table 5-4 Barrier Analysis Summary – NSA4

NSA5 Residential

NSA5 contains sixty-nine (69) receptors with NAC impacts associated with the proposed alternative. These receptors are representative of single-family and multi-family residential land uses located north of I-76, east of Uwchlan Avenue along Pickering Station Drive, Holly Tree Court and Davis Road. Noise abatement was evaluated and is considered feasible and reasonable. Table 5-5 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	69
Number of Benefited Receptors	69
Barrier Evaluation Method	TNM
Length (ft)	1872
Average Height (ft)	13.92
Minimum Height (ft)	12.00
Maximum Height (ft)	17.00
Area (ft ²)	26049
Calculated SF/BR	378
Number of Receptors Meeting Design Goal (7 dBA)	59
Design Goal Met?	Yes
Feasible?	Yes
Reasonable?	Yes
Recommended?	Yes

Table 5-5Barrier Analysis Summary – NSA5

NSA6 Residential

NSA6 contains one (1) receptor with NAC impacts associated with the proposed alternative. This receptor is representative of a single-family residential land use located south of I-76 and west of Pine Creek Road. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 13280 square feet per benefited receptor) to provide the minimum required noise reduction far exceeded the maximum allowable amount of 2000 square feet per benefited receptor. This receptor was evaluated on Screening Analysis and the analysis results are shown below.

Descriptions	Results
Number of Impacted Receptors	1
Number of Benefited Receptors	1
Barrier Evaluation Method	Screening Analysis
Length (ft)	1660
Average Height (ft)	8.00
Minimum Height (ft)	8.00
Maximum Height (ft)	8.00
Area (ft ²)	13280
Calculated SF/BR	13280
Number of Receptors meeting Design Goal (7 dBA)	0
Design Goal Met?	No
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-6 Barrier Analysis Summary – NSA6

NSA7 Residential

NSA7 contains two (2) receptors with NAC impacts associated with the proposed alternative. These receptors are representative of a single-family residential land use and a church located south of I-76 and north of Worthington Road. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 5280 square feet per benefited receptor) to provide the minimum required noise reduction far exceeded the maximum allowable amount of 2000 square feet per benefited receptor. This receptor was evaluated on Screening Analysis and the analysis results are shown below.

Descriptions	Results
Number of Impacted Receptors	2
Number of Benefited Receptors	2
Barrier Evaluation Method	Screening Analysis
Length (ft)	1320
Average Height (ft)	8.00
Minimum Height (ft)	8.00
Maximum Height (ft)	8.00
Area (ft ²)	10560
Calculated SF/BR	5280
Number of Receptors meeting Design Goal (7 dBA)	0
Design Goal Met?	No
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-7Barrier Analysis Summary – NSA7

NSA8 Residential

NSA8 contains seven (7) receptors with NAC impacts associated with the proposed alternative. These receptors are representative of single-family residences located south of I-76 and straddling east and west of Conestoga Road. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 2850 square feet per benefited receptor) to provide the minimum required noise reduction exceeded the maximum allowable amount of 2000 square feet per benefited receptor. Table 5-8 summarizes the barrier analysis for this NSA location.

Descriptions	NSA 8 Results
Number of Impacted Receptors	7
Number of Benefited Receptors	8
Barrier Evaluation Method	TNM
Length (ft)	1538
Average Height (ft)	12.96
Minimum Height (ft)	8.00
Maximum Height (ft)	20.00
Area (ft ²)	19934
Calculated SF/BR	2492
Number of Receptors meeting Design Goal (7 dBA)	2
Design Goal Met?	Yes
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-8Barrier Analysis Summary – NSA8

NSA9 Residential

NSA9 contains two (2) receptors with NAC impacts associated with the proposed alternative. These receptors are representative of single-family residences located north of I-76, straddling east and west Conestoga Road. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 3325 square feet per benefited receptor) to provide the minimum required noise reduction far exceeded the maximum allowable amount of 2000 square feet per benefited receptor. Table 5-9 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	2
Number of Benefited Receptors	2
Barrier Evaluation Method	TNM
Length (ft)	785
Average Height (ft)	8.47
Minimum Height (ft)	8.00
Maximum Height (ft)	10.00
Area (ft ²)	6650
Calculated SF/BR	3325
Number of Receptors meeting Design Goal (7 dBA)	1
Design Goal Met?	Yes
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-9Barrier Analysis Summary – NSA9

NSA10 Residential

NSA10 contains three (3) receptors with NAC impacts associated with the proposed alternative. These receptors are representative of single-family residences located north of I-76, east and west of Seven Oaks Road. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 2940 square feet per benefited receptor) to provide the minimum required noise reduction exceeded the maximum allowable amount of 2000 square feet per benefited receptor. Table 5-10 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	3
Number of Benefited Receptors	3
Barrier Evaluation Method	TNM
Length (ft)	1101
Average Height (ft)	8.00
Minimum Height (ft)	8.00
Maximum Height (ft)	8.00
Area (ft ²)	8810
Calculated SF/BR	2937
Number of Receptors meeting Design Goal (7 dBA)	1
Design Goal Met?	Yes
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-10 Barrier Analysis Summary – NSA10

NSA11 Residential

NSA11 contains one (1) receptor with NAC impacts associated with the proposed alternative. This receptor is representative of single-family residence located south of I-76, north of Conestoga Road and east of Newcomen Road. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 5500 square feet per benefited receptor) to provide the minimum required noise reduction far exceeded the maximum allowable amount of 2000 square feet per benefited receptor. Table 5-11 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	1
Number of Benefited Receptors	1
Barrier Evaluation Method	TNM
Length (ft)	470
Average Height (ft)	11.72
Minimum Height (ft)	10.00
Maximum Height (ft)	12.00
Area (ft ²)	5508
Calculated SF/BR	5508
Number of Receptors meeting Design Goal (7 dBA)	1
Design Goal Met?	Yes
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-11 Barrier Analysis Summary – NSA11

NSA12 Residential

NSA12 contains one (1) receptor with NAC impacts associated with the proposed alternative. This receptor is representative of single-family residence located north of I-76, and west of Bodine Road. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 7200 square feet per benefited receptor) to provide the minimum required noise reduction far exceeded the maximum allowable amount of 2000 square feet per benefited receptor. This receptor was evaluated on Screening Analysis and the results are shown below.

Descriptions	Results
Number of Impacted Receptors	1
Number of Benefited Receptors	1
Barrier Evaluation Method	Screening Analysis
Length (ft)	900
Average Height (ft)	8.00
Minimum Height (ft)	8.00
Maximum Height (ft)	8.00
Area (ft ²)	7200
Calculated SF/BR	7200
Number of Receptors meeting Design Goal (7 dBA)	0
Design Goal Met?	No
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-12Barrier Analysis Summary – NSA12

NSA13 Residential

NSA13 contains three (3) receptors with NAC impacts associated with the proposed alternative. These receptors are representative of single-family residences located south of I-76, west of Bodine Road. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 5280 square feet per benefited receptor) to provide the minimum required noise reduction exceeded the maximum allowable amount of 2200 square feet per benefited receptor. Table 5-13 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	3
Number of Benefited Receptors	3
Barrier Evaluation Method	TNM
Length (ft)	400
Average Height (ft)	16.50
Minimum Height (ft)	14.00
Maximum Height (ft)	18.00
Area (ft ²)	6600
Calculated SF/BR	2200
Number of Receptors meeting Design Goal (7 dBA)	1
Design Goal Met?	Yes
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-13Barrier Analysis Summary – NSA13

NSA14 Residential

NSA14 contains one (1) receptor with NAC impacts associated with the proposed alternative. This receptor is representative of a single-family residence located north of I-76, and east of Bodine Road. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 5600 square feet per benefited receptor) to provide the minimum required noise reduction far exceeded the maximum allowable amount of 2000 square feet per benefited receptor. This receptor was evaluated on Screening Analysis and the analysis results are shown below.

Descriptions	Results
Number of Impacted Receptors	1
Number of Benefitted Receptors	1
Barrier Evaluation Method	Screening Analysis
Length (ft)	700
Average Height (ft)	8.00
Minimum Height (ft)	8.00
Maximum Height (ft)	8.00
Area (ft ²)	5600
Calculated SF/BR	5600
Number of Receptors meeting Design Goal (7 dBA)	0
Design Goal Met?	No
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-14Barrier Analysis Summary – NSA14

NSA15 Residential

NSA15 contains eight (8) receptors with NAC impacts associated with the proposed alternative. These receptors are representative of single-family residences located south of I-76, and west of Valley Hill Road. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 4640 square feet per benefited receptor) to provide the minimum required noise reduction far exceeded the maximum allowable amount of 2000 square feet per benefited receptor. Table 5-15 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	8
Number of Benefited Receptors	7
Barrier Evaluation Method	TNM
Length (ft)	2250
Average Height (ft)	14.40
Minimum Height (ft)	8.00
Maximum Height (ft)	20.00
Area (ft ²)	32500
Calculated SF/BR	4643
Number of Receptors meeting Design Goal (7 dBA)	5
Design Goal Met?	Yes
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-15Barrier Analysis Summary – NSA15

NSA16 Residential

NSA16 contains two (2) receptors with NAC impacts associated with the proposed alternative. These receptors are representative of single-family residences located north of I-76, and west of Valley Hill Road. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 6400 square feet per benefited receptor) to provide the minimum required noise reduction far exceeded the maximum allowable amount of 2000 square feet per benefited receptor. Table 5-16 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	2
Number of Benefited Receptors	2
Barrier Evaluation Method	TNM
Length (ft)	1000
Average Height (ft)	12.80
Minimum Height (ft)	8.00
Maximum Height (ft)	14.00
Area (ft ²)	12800
Calculated SF/BR	6400
Number of Receptors meeting Design Goal (7 dBA)	1
Design Goal Met?	Yes
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-16 Barrier Analysis Summary – NSA16

NSA17 Residential

NSA17 contains two (2) receptors with NAC impacts associated with the proposed alternative. These receptors are representative of single-family residences located south of I-76, and east of Valley Hill Road. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 22900 square feet per benefited receptor) to provide the minimum required noise reduction far exceeded the maximum allowable amount of 2000 square feet per benefited receptor. Table 5-17 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	2
Number of Benefited Receptors	1
Barrier Evaluation Method	TNM
Length (ft)	1235
Average Height (ft)	14.00
Minimum Height (ft)	10.00
Maximum Height (ft)	20.00
Area (ft ²)	17290
Calculated SF/BR	17290
Number of Receptors meeting Design Goal (7 dBA)	0
Design Goal Met?	No
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-17 Barrier Analysis Summary – NSA17

NSA18 Residential

NSA18 contains two (2) receptors with NAC impacts associated with the proposed alternative. These receptors are representative of single-family residences located north of I-76, and east of Valley Hill Road. Noise abatement was evaluated at one location along the alignment and is considered feasible. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 4270 square feet per benefited receptor) to provide the minimum required noise reduction far exceeded the maximum allowable amount of 2000 square feet per benefited receptor. Table 5-18 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	2
Number of Benefited Receptors	2
Barrier Evaluation Method	TNM
Length (ft)	1042
Average Height (ft)	8.19
Minimum Height (ft)	8.00
Maximum Height (ft)	10.00
Area (ft ²)	8532
Calculated SF/BR	4266
Number of Receptors meeting Design Goal (7 dBA)	1
Design Goal Met?	Yes
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-18 Barrier Analysis Summary – NSA18

NSA20 Residential

NSA20 contains fifteen (15) receptors with NAC impacts associated with the proposed alternative. These receptors are representative of single-family and multi-family residences located south of I-76, and the intersection of Yellow Springs and Brandywine Roads. Noise abatement was evaluated and is considered feasible and reasonable. Table 5-19 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	15
Number of Benefited Receptors	39
Barrier Evaluation Method	TNM
Length (ft)	1768
Average Height (ft)	11.50
Minimum Height (ft)	8.00
Maximum Height (ft)	16.00
Area (ft ²)	20329
Calculated SF/BR	521
Number of Receptors meeting Design Goal (7 dBA)	17
Design Goal Met?	Yes
Feasible?	Yes
Reasonable?	Yes
Recommended?	Yes

Table 5-19Barrier Analysis Summary – NSA20

NSA21 Residential

NSA21 contains twenty (20) receptors with NAC impacts associated with the proposed alternative. These receptors are representative of single-family residences located north of I-76, and east of Yellow Springs Road, along Blackberry Lane. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 2633 square feet per benefited receptor) to provide the minimum required noise reduction exceeded the maximum allowable amount of 2000 square feet per benefited receptor. Table 5-20 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	21
Number of Benefited Receptors	22
Barrier Evaluation Method	TNM
Length (ft)	4538
Average Height (ft)	12.77
Minimum Height (ft)	8.00
Maximum Height (ft)	18.00
Area (ft ²)	57927
Calculated SF/BR	2633
Number of Receptors meeting Design Goal (7 dBA)	11
Design Goal Met?	Yes
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-20Barrier Analysis Summary – NSA21

NSA24 Church

NSA24 contains one (1) receptor with NAC impacts associated with the proposed alternative. This receptor is representative of a church located south of I-76, and north of Phoenixville Pike. Noise abatement was evaluated and is considered feasible but not reasonable. The sensitive receptor in this NSA is a church, not a single- or multi-family residence. Because the receptor is a church, Equivalent Residential Unit (ERU) calculation was used to determine the number of receptors at this location. The ERU calculation was based on PennDOT Pub. #24, Section 3.3.1.2 and Appendix E.

A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 4600 square feet per benefited receptor) to provide the minimum required noise reduction far exceeded the maximum allowable amount of 2000 square feet per benefited receptor. Table 5-21 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	1
Number of Benefited Receptors	1
Barrier Evaluation Method	Screening Analysis
Length (ft)	576
Average Height (ft)	8.00
Minimum Height (ft)	8.00
Maximum Height (ft)	8.00
Area (ft ²)	4608
Calculated SF/BR	4608
Number of Receptors meeting Design Goal (7 dBA)	0
Design Goal Met?	No
Feasible?	Yes
Reasonable?	No
Recommended?	No

Table 5-21 Barrier Analysis Summary – NSA24

NSA25 School/Future Residential

NSA25 contains Twenty-Seven (27) receptors with NAC impacts associated with the proposed alternative. These receptor represent a school (Charlestown Elementary School) and a residential development currently under construction east of the school, They are both located north of I-76 and Charlestown Road, and west of Phoenixville Pike. A noise barrier for this NSA was determined to be not feasible and reasonable because a barrier within the Highway Right-of-way line could not provide sufficient noise reduction to meet the noise barrier design goal at the impacted receptors. This was primarily due to significant noise contributions from the local arterial roadways between the Highway and impacted receptors (Charlestown Road and Phoenixville Pike). Table 5-22 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	27
Number of Benefited Receptors	4
Barrier Evaluation Method	TNM
Length (ft)	2699
Average Height (ft)	20.00
Minimum Height (ft)	20.00
Maximum Height (ft)	20.00
Area (ft ²)	53972
Calculated SF/BR	13493
Number of Receptors meeting Design Goal (7 dBA)	0
Design Goal Met?	No
Feasible?	No
Reasonable?	No
Recommended?	No

Table 5-22Barrier Analysis Summary – NSA25

NSA26 Residential

NSA26 contains five (5) receptors with NAC impacts associated with the proposed alternative. These receptors are representative of single-family residences located south of I-76, east of Morehall Road and north of Yellow Springs Road. Noise abatement was evaluated and is considered feasible but not reasonable. A barrier in this location was determined to not be reasonable because the size of the barrier required (approximately 8000 square feet per benefited receptor) to provide the minimum required noise reduction far exceeded the maximum allowable amount of 2000 square feet per benefited receptor. Table 5-23 summarizes the barrier analysis for this NSA location.

Descriptions	Results
Number of Impacted Receptors	5
Number of Benefited Receptors	5
Barrier Evaluation Method	TNM
Length (ft)	2000
Average Height (ft)	20.00
Minimum Height (ft)	20.00
Maximum Height (ft)	20.00
Area (ft ²)	40000
Calculated SF/BR	8000
Number of Receptors meeting Design Goal (7 dBA)	0
Design Goal Met?	No
Feasible?	No
Reasonable?	No
Recommended?	No

Table 5-23Barrier Analysis Summary – NSA26

Descriptions	NSA4	NSA5	NSA20
Number of Impacted Receptors	99	69	15
Number of Benefited Receptors	96	69	39
Barrier Evaluation Method	TNM	TNM	TNM
Length (ft)	2473	1872	1769
Average Height (ft)	15.00	13.92	11.50
Minimum Height (ft)	8.00	12.00	8.00
Maximum Height (ft)	20.00	17.00	16.00
Area (ft ²)	37,088	26,049	20,329
Calculated SF/BR	386	378	521
Number of Receptors meeting Design Goal (7 dBA)	72	59	17
Design Goal Met?	Yes	Yes	Yes
Feasible?	Yes	Yes	Yes
Reasonable?	Yes	Yes	Yes

 Table 5-24

 Recommended Noise Abatement Summary

5.5 VIEWPOINTS OF BENEFITTED RECEPTORS

When proposed noise abatement is found to be reasonable and feasible in accordance with PennDOT policy, benefited residents and owners are polled to determine if they are in favor of having the noise abatement constructed. When noise abatement is recommended, a "Statement of Likelihood" is required that states that the recommended abatement is based upon preliminary design data, and that the abatement might not be provided if the final design changes significantly.

Polling for the viewpoints of benefited receptors will be conducted by the PTC Engineer's office and typically occurs after the Draft Noise Analysis is prepared and approved.

SECTION 6 CONSTRUCTION NOISE CONTROL & COMMUNITY COORDINATION

The Commission is committed to minimizing disruption to local residents, business owners, and the traveling public while also providing for the efficient construction of the proposed improvements. To this end, it is anticipated that a specification will be included in the construction contract(s) detailing responsibilities and actions relative to pending disruptions and noise levels (a sample of which is included below):

SAMPLE CONSTRUCTION NOISE SPECIFICATION

The Commission is committed to minimizing disruption to local residents, business owners, and the traveling public. The Commission will assign an individual to support this commitment. Indicate at the pre-construction conference the individual assigned this responsibility.

Coordinate activities with the Commission's Manager of Public Information & Involvement. Refer media contacts to the Commission's Manager of Public Information & Involvement.

At least two (2) weeks in advance of the start of construction activity affecting the local residents, business owners, and traveling public, make arrangements with the local municipality to conduct an initial community meeting or distribute a Construction Notice to adjacent property owners. For this meeting, have appropriate company personnel attend and be prepared to inform the public of the planned construction activities and their impacts. At other times as necessary, attend municipal meetings to inform the public of anticipated major changes to construction activities. If distribution of a Construction Notice is chosen, the contractor must have personnel distribute a handout to adjacent property owners stating:

- (a) that the contractor is performing work for the Commission
- (b) the type of work to be performed
- (c) the specific nights of the week, with dates, and the hours of work
- (d) the contractor's Name and Phone Number to provide further information

Coordinate with local municipalities and schedule short-term road closures so as not to impact civic or sport events.

Throughout the project duration, provide notifications to local residents, business owners, and the traveling public for any temporary inconveniences such as utility service interruptions, driveway construction, traffic interruptions, temporary and permanent road closures, detours, and other construction coordination as required.

COMMUNITY AWARENESS - Keep the Representative aware of all planned activities and specifically identify those that could have significant noise impact on the community due to close proximity of work to receptors.

This page intentionally left blank

SECTION 7 INFORMATION FOR LOCAL GOVERNMENT OFFICIALS

To minimize future traffic noise impacts on currently undeveloped lands of Type I projects, PennDOT is required to inform local jurisdictions (where the proposed highway project is located) of the following:

- 1. Noise compatible planning concepts.
- 2. The best estimation of the future design year noise levels at various distances from the edge of the nearest travel lane of the highway, where the future noise levels meet PennDOT's definition of "approach" for undeveloped lands or properties within the project limits. At a minimum, the distance to PennDOT's exterior NAC from Table 2-1 must be identified (this information is provided in Table 4-2).

To fulfill these two requirements, at a minimum, PTC must send a cover letter to local jurisdictions, along with copies of the noise study, explaining noise compatible planning concepts. A face-to-face meeting between PTC and the local jurisdiction(s) will likely better convey information than only sending a letter with attachments. The letter must also include a table of future noise levels at specific locations or a figure showing the distances to typical noise levels along the roadway for unpermitted, undeveloped lands in the project area. The letter should encourage local officials to make this information available for disclosure in real estate transactions. Local officials should be made aware that funds for traffic noise abatement are not available for development that occurs after the date of public knowledge of the project as explained in the letter.

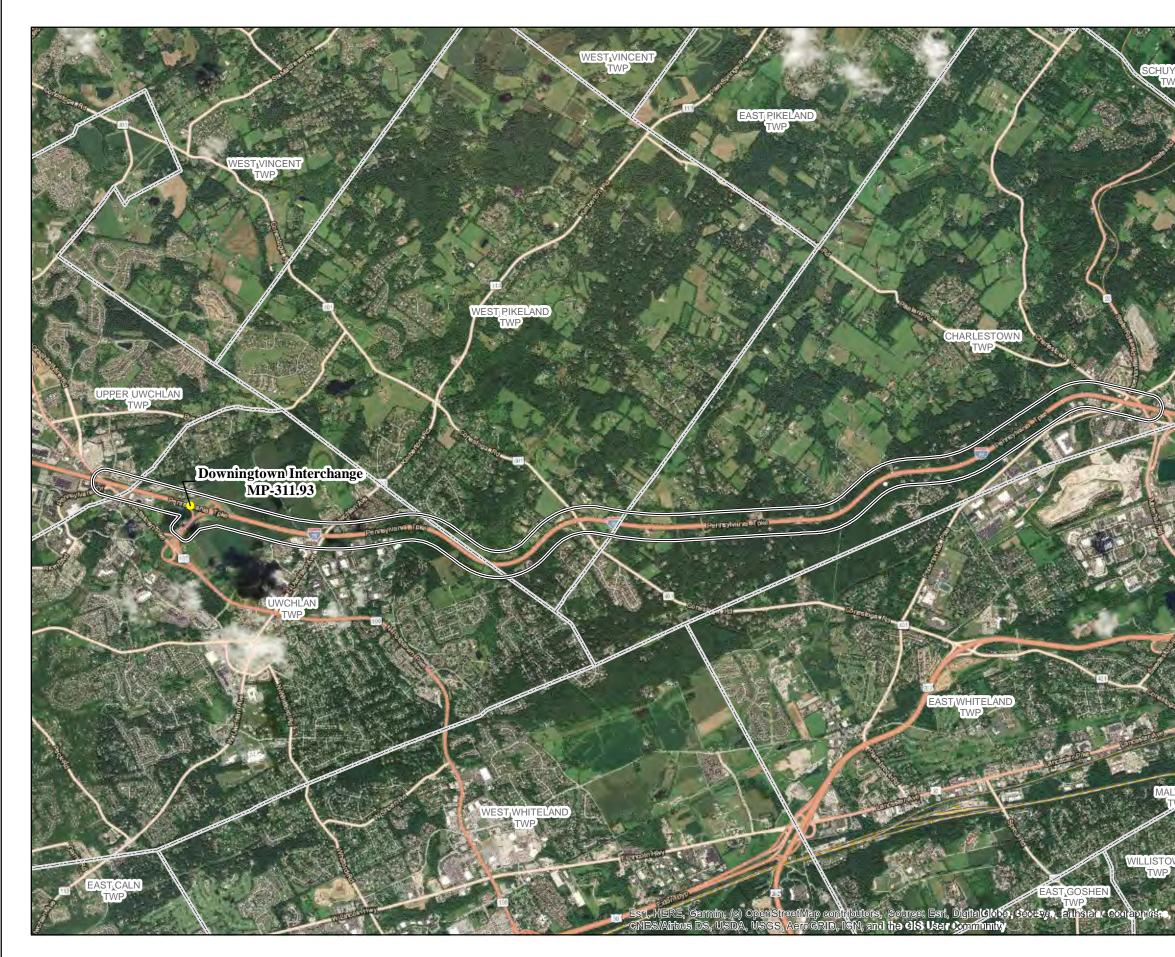
The letter and copies of the noise technical report must be provided to and reviewed by City and/or County planning departments. The letter and the report should be distributed with the environmental document. The distribution information, including names and date distributed, and any follow-up contact with local agencies must be documented in the project files.

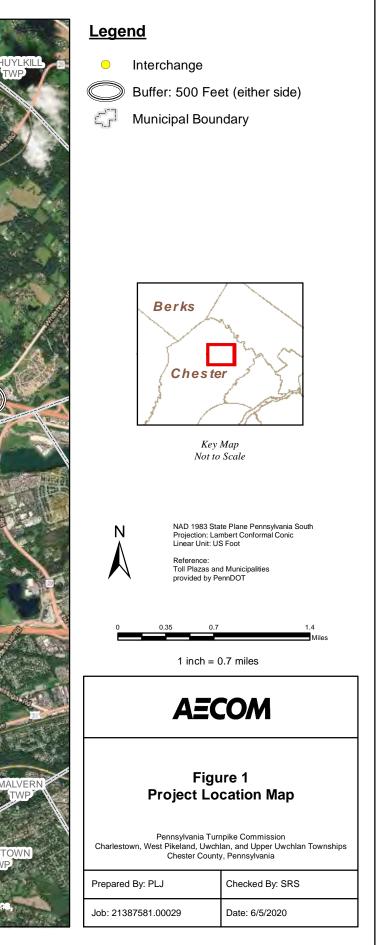
This page intentionally left blank

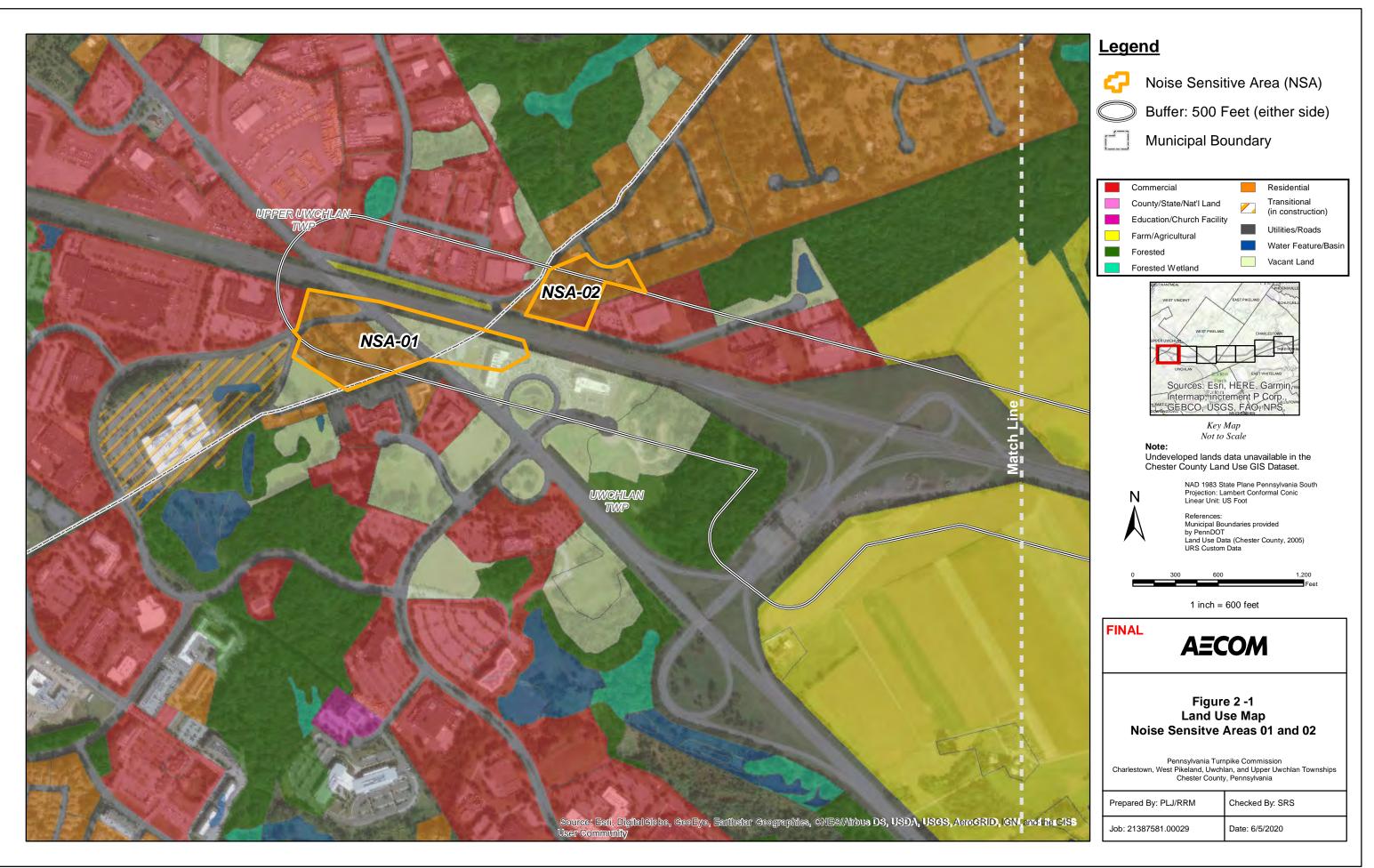
SECTION 8 CONCLUSIONS AND RECOMMENDATIONS

The noise analysis included a total of 275 measurement/prediction locations (receivers) representing 475 individual noise sensitive dwelling units (receptors). In order to simplify the reporting of noise levels, noise impacts, and noise mitigation, and in adherence with preferred PennDOT analysis methodology, these receptors were organized in 26 NSAs within the general project area.

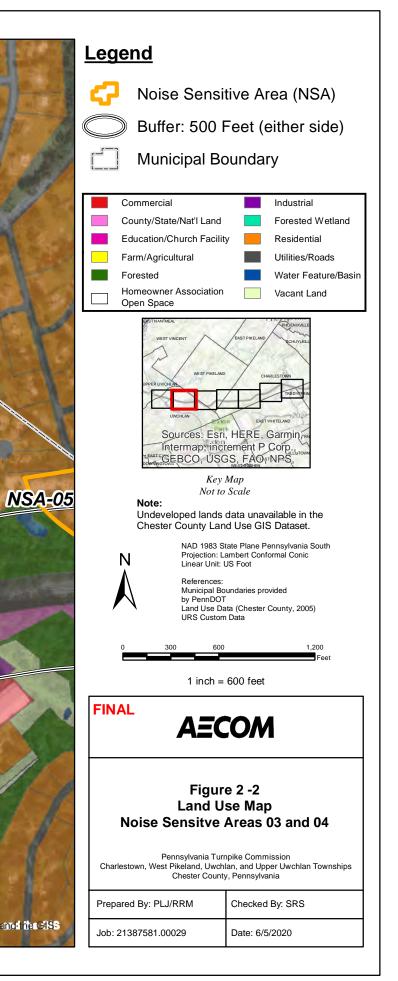
Of the twenty-six (26) NSAs evaluated, twenty-two (22) NSAs contained receptors with predicted future noise levels approaching or exceeding the NAC. These twenty-two NSAs were evaluated for noise abatement by modeling with TNM or screening evaluation. Noise barriers for three NSAs were found to be both feasible and reasonable following PennDOT's noise handbook. Therefore, noise abatement is recommended for NSAs 4, 5, and 20.

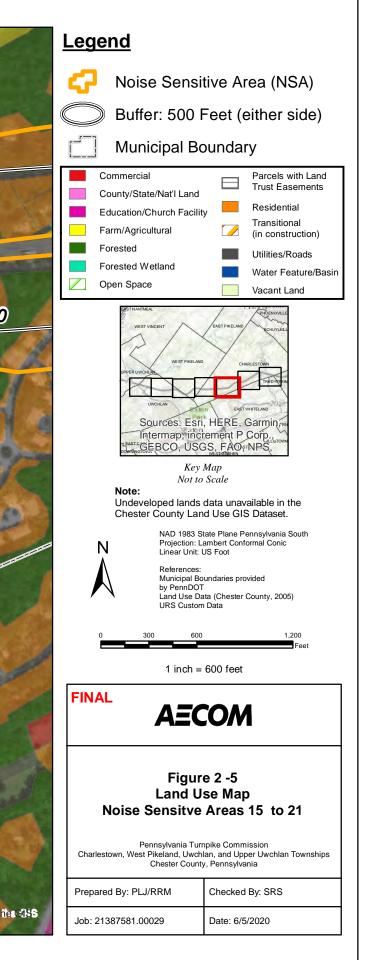

This page intentionally left blank

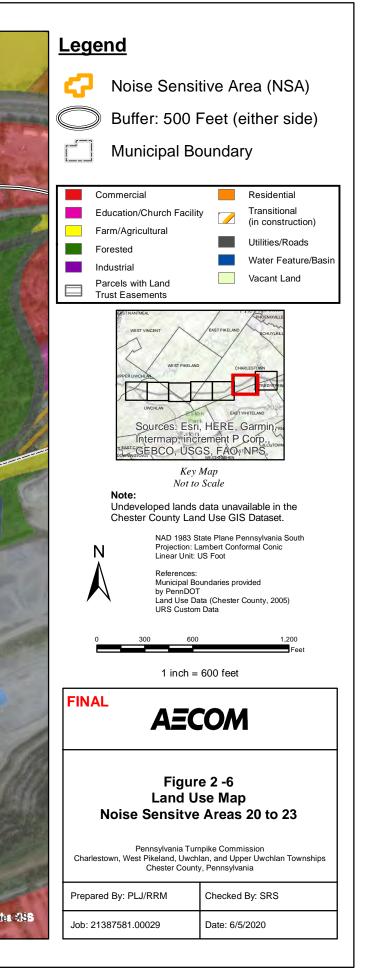

SECTION 9 REFERENCES

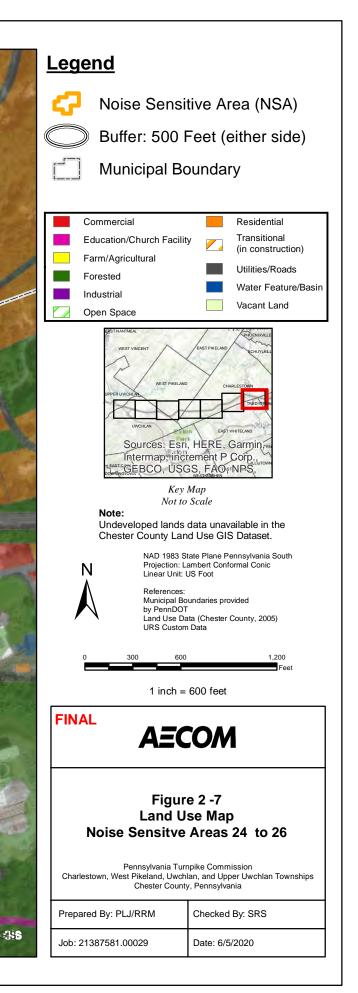

- Pennsylvania Department of Transportation, Publication #24, Revision 2 "*Project Level Highway Traffic Noise Handbook*", 12-12-13.
- Federal Highway Administration, 23 CFR 772, Procedures for Abatement of Highway Traffic Noise and Construction Noise, July 2010.
- Federal Highway Administration (FHWA). 2011. Highway Traffic Noise: Analysis and Abatement Guidance. U.S. Department of Transportation, Federal Highway Administration, Washington, DC.
- Lee, C.S.Y. and G.G. Fleming. 1996. Measurement of Highway Related Noise, Federal Highway Administration Report FHWA-PD-96-046. U.S. Department of Transportation, Research and Special Programs Administration, John A. Volpe National Transportation Systems Center, Cambridge, MA.


This page intentionally left blank


All Figures for this document are located in this section.







Legend

- Noise Receiver
- PA Turnpike Toll Plaza \bigcirc
 - Short-Term Measurement Location
 - Long-Term Measurement Location
 - Buffer: 500 Feet (either side)
 - Noise Sensitive Area (NSA)
 - Municipal Boundary

Кеу Мар Not to Scale

Receiver ID Measured Noise Level in dBA (A-weighted decibels)

Note: ST-10* could not be accessed during second site survey (Oct 2013). NAD 1983 State Plane Pennsylvania South Projection: Lambert Conformal Conic Linear Unit: US Foot Ν

FINAL

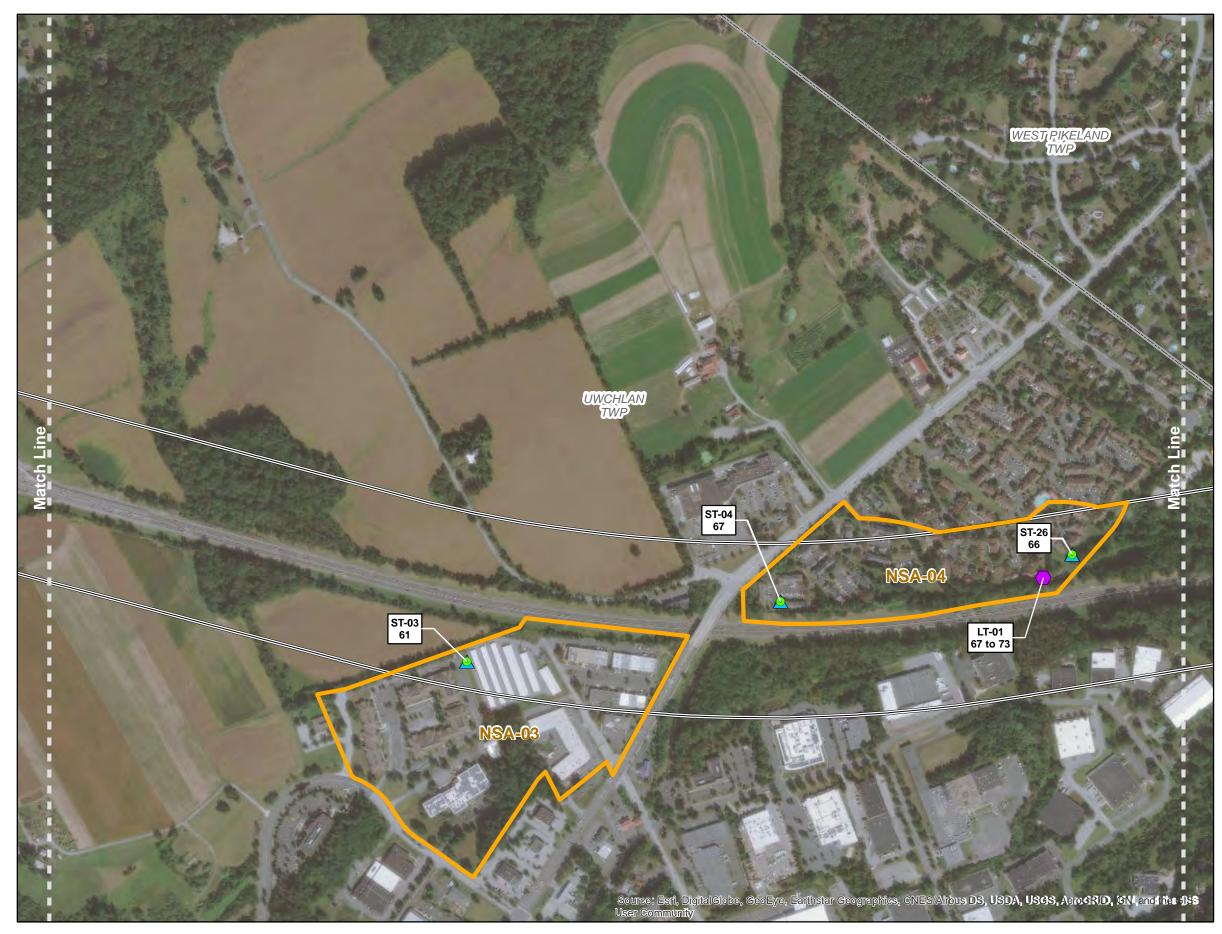

References: Toll Plazas & Municipal Boundaries provided by PennDOT TeleAtlas North America (2003) URS Custom Data

Figure 3 - 1 Measured Noise Levels Noise Sensitve Areas 01 and 02

Prepared By: PLJ	Checked By: SRS
Job: 21387581.00029	Date: 6/5/2020

- Noise Receiver
- PA Turnpike Toll Plaza
 - Short-Term Measurement Location
 - Long-Term Measurement Location
 - Buffer: 500 Feet (either side)
 - Noise Sensitive Area (NSA)
 - Municipal Boundary

Key Map Not to Scale

Receiver ID Measured Noise Level in dBA (A-weighted decibels)

Note: ST-10* could not be accessed during second site survey (Oct 2013).
NAD 1983 State Plane Pennsylvania South
Projection: Lambert Conformal Conic
Linear Unit: US Foot

FINAL

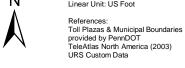
References: Toll Plazas & Municipal Boundaries provided by PennDOT TeleAtlas North America (2003) URS Custom Data

Figure 3 - 2 Measured Noise Levels Noise Sensitve Areas 03 and 04

Prepared By: PLJ	Checked By: SRS
Job: 21387581.00029	Date: 6/5/2020

ലി

- Noise Receiver
- PA Turnpike Toll Plaza
 - Short-Term Measurement Location
 - Long-Term Measurement Location
 - Buffer: 500 Feet (either side)
 - Noise Sensitive Area (NSA)
 - Municipal Boundary



Key Map Not to Scale

Receiver ID Measured Noise Level in dBA (A-weighted decibels)

Note: ST-10* could not be accessed during second site survey (Oct 2013).
NAD 1983 State Plane Pennsylvania South
Projection: Lambert Conformal Conic
Linear Unit: US Foot

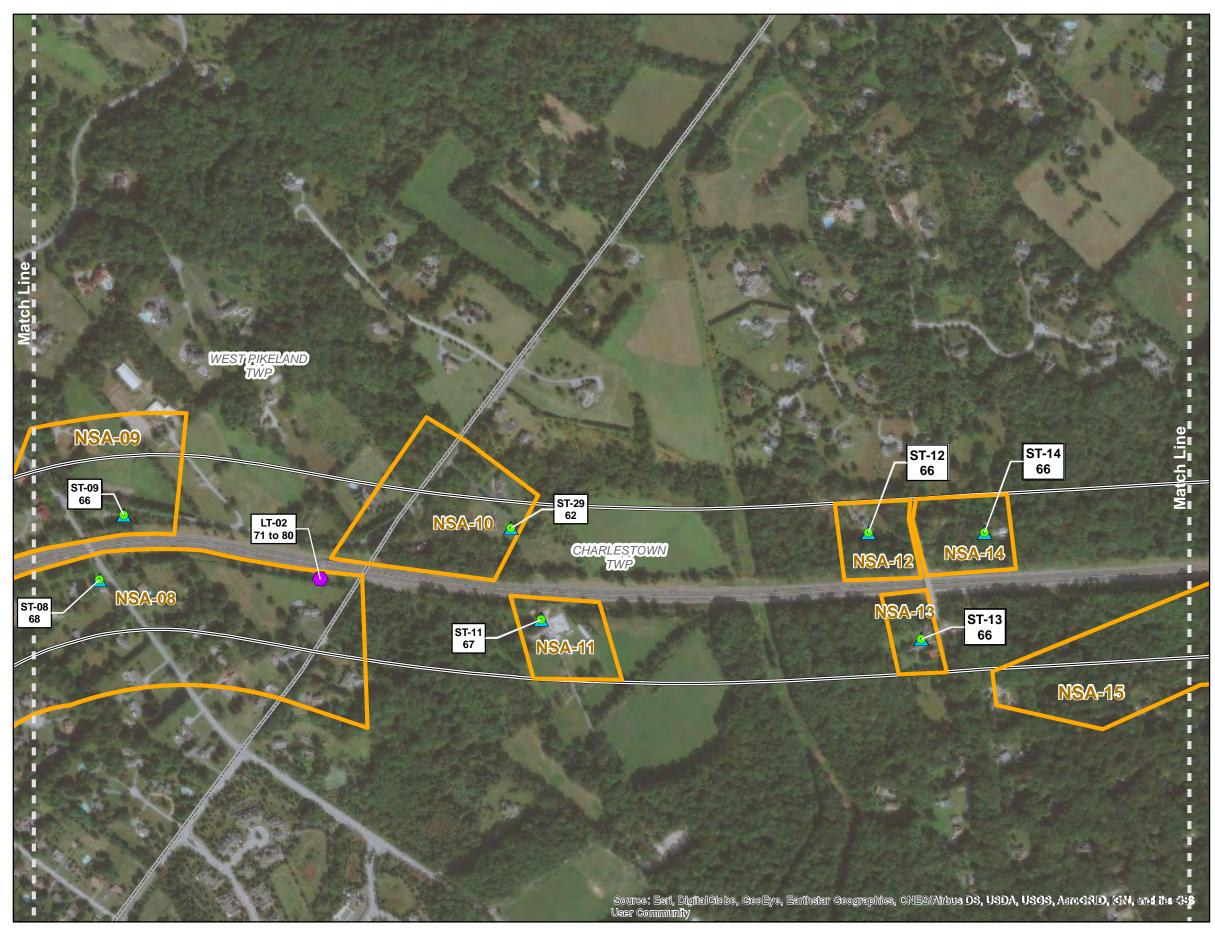

FINAL

Figure 3 - 3 Measured Noise Levels Noise Sensitve Areas 05 to 09

Prepared By: PLJ	Checked By: SRS
Job: 21387581.00029	Date: 6/5/2020

27

- Noise Receiver
- PA Turnpike Toll Plaza
 - Short-Term Measurement Location
 - Long-Term Measurement Location
 - Buffer: 500 Feet (either side)
 - Noise Sensitive Area (NSA)
 - Municipal Boundary

Key Map Not to Scale

Receiver ID Measured Noise Level in dBA (A-weighted decibels)

Note: ST-10* could not be accessed during second site survey (Oct 2013).
NAD 1983 State Plane Pennsylvania South
Projection: Lambert Conformal Conic
Linear Unit: US Foot

FINAL

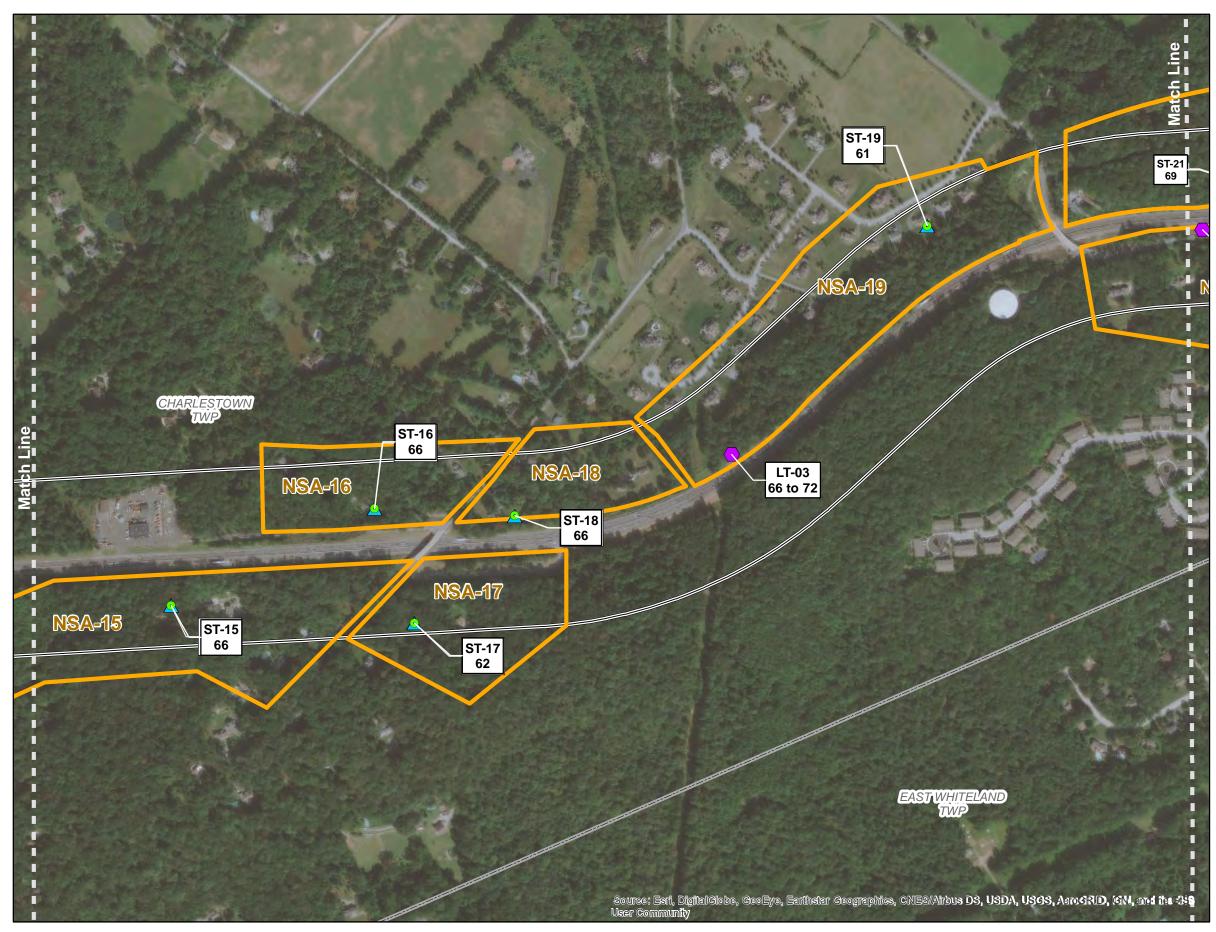

References: Toll Plazas & Municipal Boundaries provided by PennDOT TeleAtlas North America (2003) URS Custom Data

Figure 3 - 4 Measured Noise Levels Noise Sensitve Areas 08 to 15

Prepared By: PLJ	Checked By: SRS
Job: 21387581.00029	Date: 6/5/2020

ല

- Noise Receiver
- PA Turnpike Toll Plaza
 - Short-Term Measurement Location
 - Long-Term Measurement Location
 - Buffer: 500 Feet (either side)
 - Noise Sensitive Area (NSA)
 - Municipal Boundary

Key Map Not to Scale

Receiver ID Measured Noise Level in dBA (A-weighted decibels)

Note: ST-10* could not be accessed during second site survey (Oct 2013).
NAD 1983 State Plane Pennsylvania South
Projection: Lambert Conformal Conic
Linear Unit: US Foot

FINAL

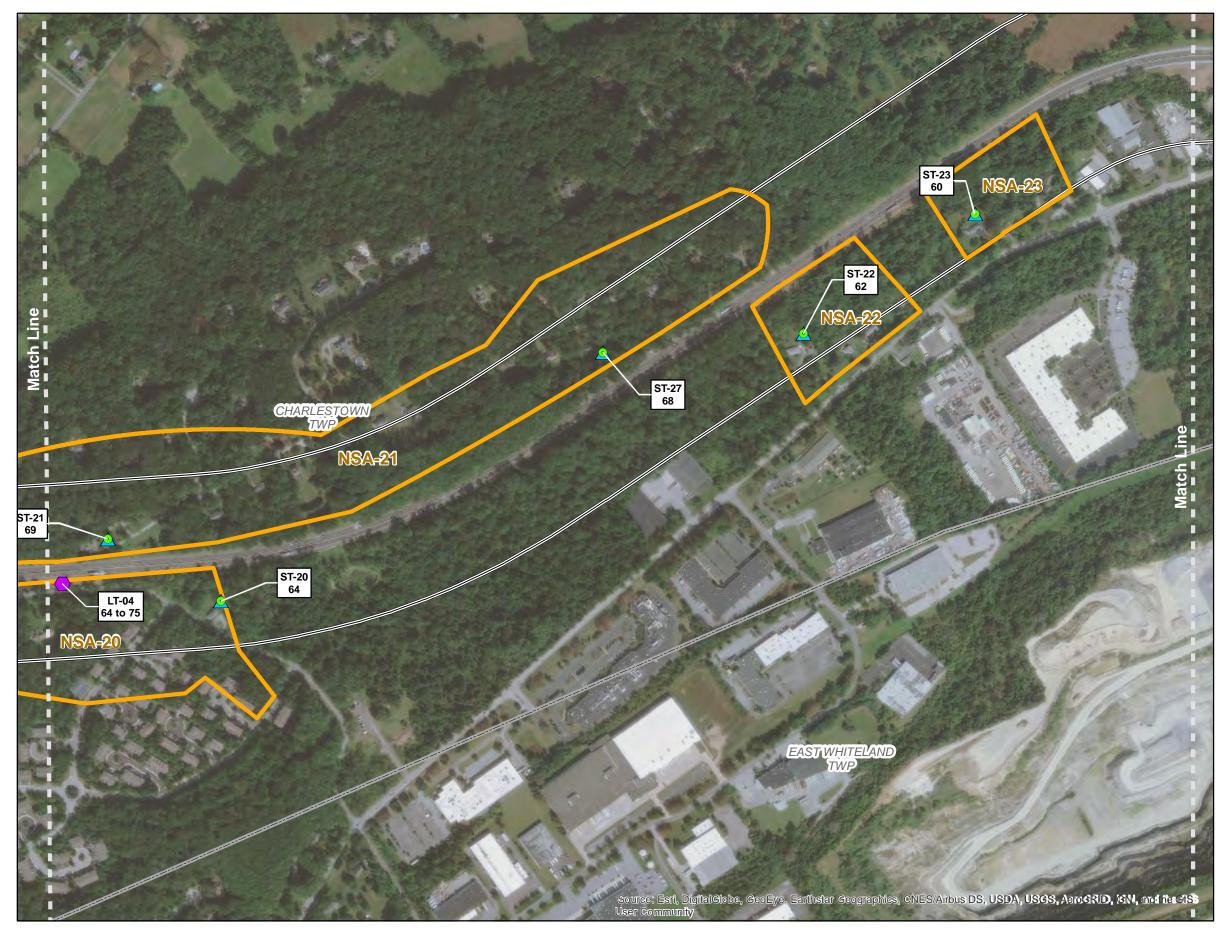

References: Toll Plazas & Municipal Boundaries provided by PennDOT TeleAtlas North America (2003) URS Custom Data

Figure 3 - 5 Measured Noise Levels Noise Sensitve Areas 15 to 21

Prepared By: PLJ	Checked By: SRS
Job: 21387581.00029	Date: 6/5/2020

7

- Noise Receiver
- PA Turnpike Toll Plaza
 - Short-Term Measurement Location
 - Long-Term Measurement Location
 - Buffer: 500 Feet (either side)
 - Noise Sensitive Area (NSA)
 - Municipal Boundary

Key Map Not to Scale

Receiver ID Measured Noise Level in dBA (A-weighted decibels)

Note: ST-10* could not be accessed during second site survey (Oct 2013).
NAD 1983 State Plane Pennsylvania South
Projection: Lambert Conformal Conic
Linear Unit: US Foot

FINAL

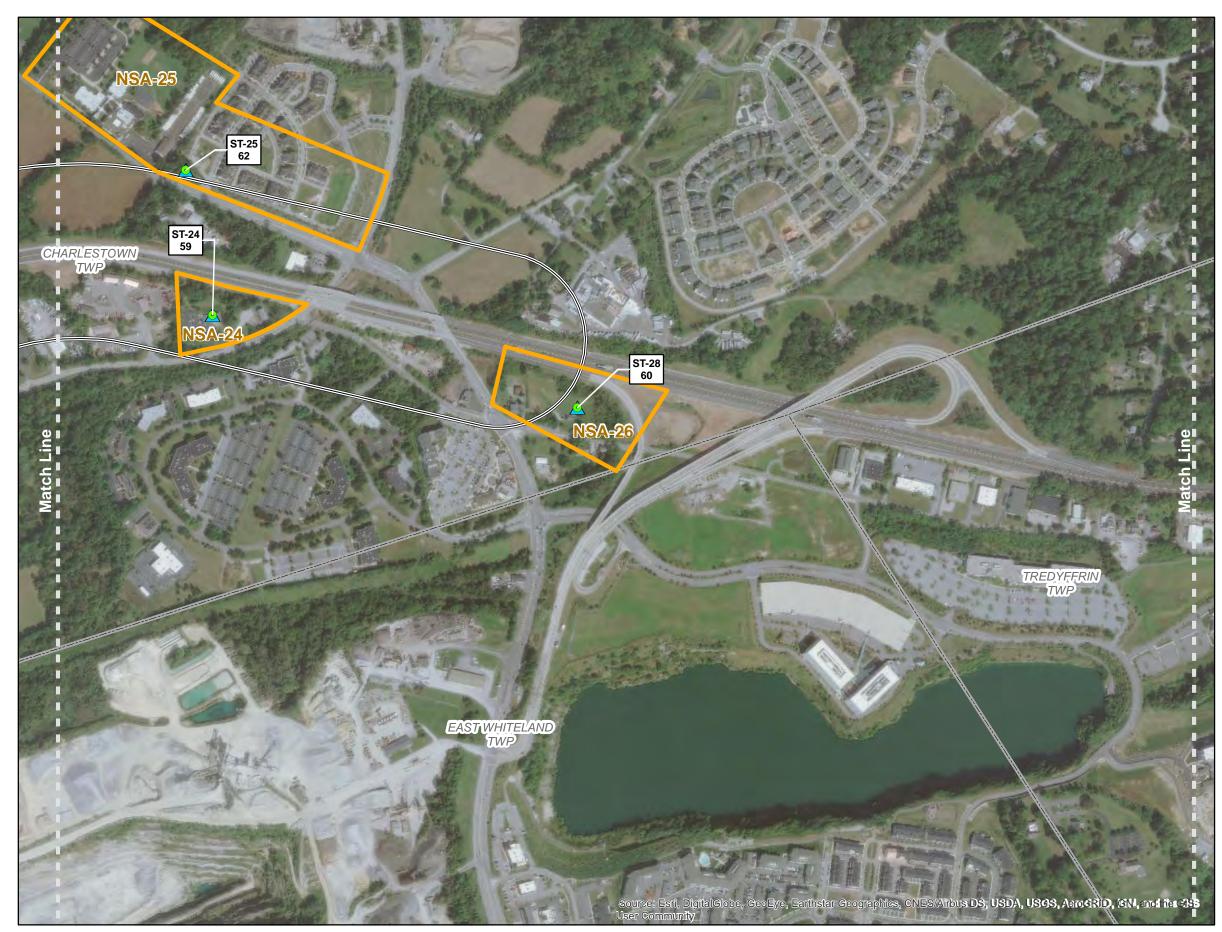

References: Toll Plazas & Municipal Boundaries provided by PennDOT TeleAtias North America (2003) URS Custom Data

Figure 3 - 6 Measured Noise Levels Noise Sensitve Areas 20 to 23

Prepared By: PLJ	Checked By: SRS
Job: 21387581.00029	Date: 6/5/2020

- Noise Receiver
- PA Turnpike Toll Plaza
 - Short-Term Measurement Location
 - Long-Term Measurement Location
 - Buffer: 500 Feet (either side)
 - Noise Sensitive Area (NSA)
 - Municipal Boundary

Key Map Not to Scale

Receiver ID Measured Noise Level in dBA (A-weighted decibels)

Note: ST-10* could not be accessed during second site survey (Oct 2013).
NAD 1983 State Plane Pennsylvania South
Projection: Lambert Conformal Conic
Linear Unit: US Foot

FINAL

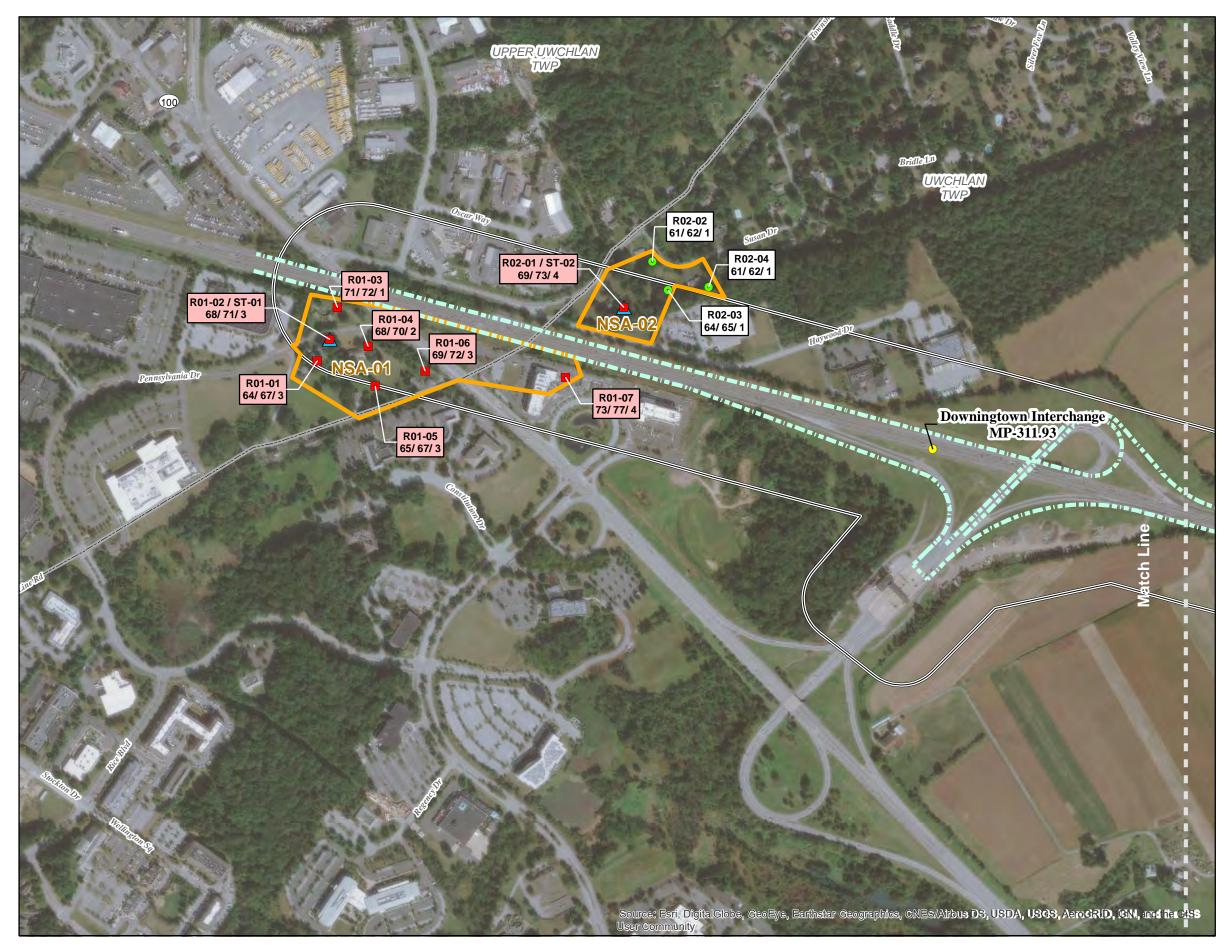
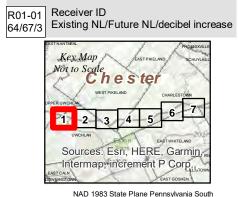

References: Toll Plazas & Municipal Boundaries provided by PennDOT TeleAtlas North America (2003) URS Custom Data

Figure 3 - 7 Measured Noise Levels Noise Sensitve Areas 24 to 26

Prepared By: PLJ	Checked By: SRS
Job: 21387581.00029	Date: 6/5/2020

- Noise Receiver ≥ 66 dBA
- Noise Receiver <66 dBA
- PA Turnpike Toll Plaza
- Short-Term Measurement Location
- Long-Term Measurement Location
- Future Roadway
- Buffer: 500 Feet (either side)
- Noise Sensitive Area (NSA)



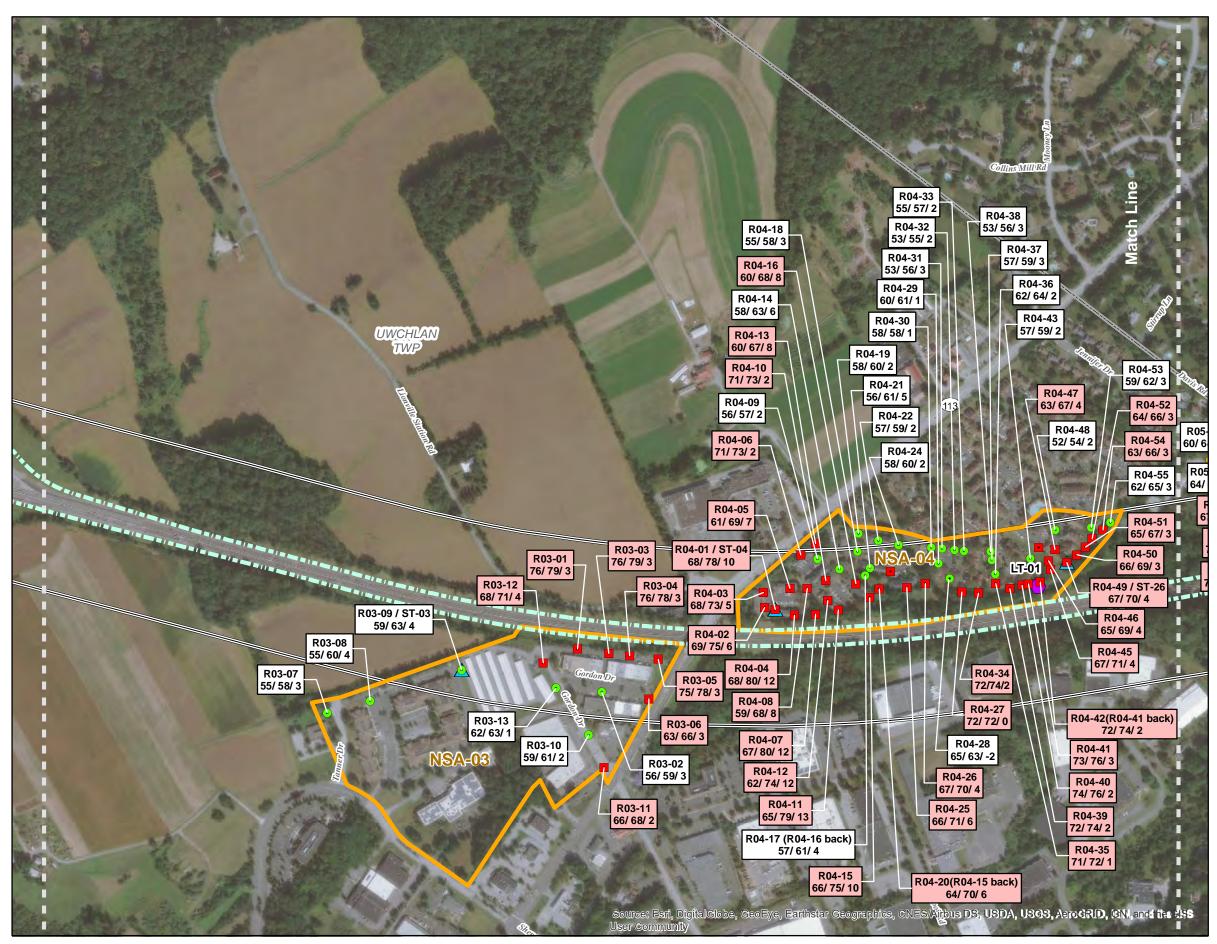
N

FINAL

Municipal Boundary

Note: Noise Levels (NL) in dBA (A-weighted decibels)

NAD 1983 State Plane Pennsylvania South Projection: Lambert Conformal Conic Linear Unit: US Foot


References: Toll Plazas & Municipal Boundaries provided by PennDOT TeleAtlas North America (2003) URS Custom Data

AECOM

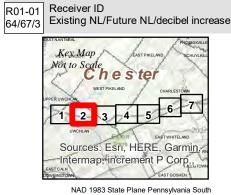
Figure 4 - 1 Future Build Noise Levels Noise Sensitve Areas 01 and 02

Prepared By: PJL	Checked By: SRS
Job: 21387581.00029	Date: 6/5/2020

Path: C:\Users\supraja.sundaresan\PennDOT\Acoustical Report\Figure 4 PTC Overall Receivers Future Build Noise Levels.mxd

<u>Legend</u>

- Noise Receiver ≥ 66 dBA
- Noise Receiver <66 dBA
- PA Turnpike Toll Plaza
- Short-Term Measurement Location
- Long-Term Measurement Location
- Future Roadway
- Buffer: 500 Feet (either side)
- Noise Sensitive Area (NSA)



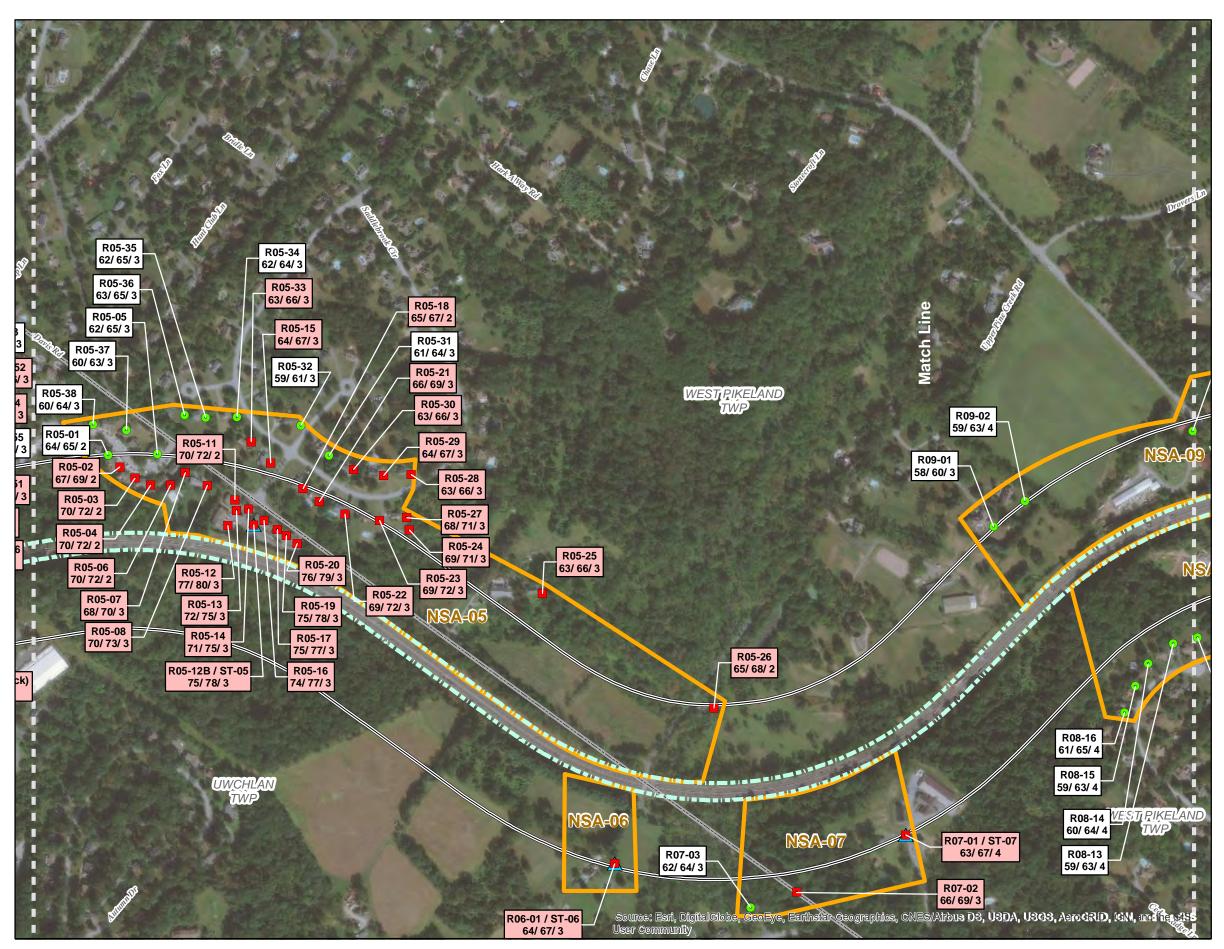
Ν

FINAL

Municipal Boundary

Note: Noise Levels (NL) in dBA (A-weighted decibels)

NAD 1983 State Plane Pennsylvania South Projection: Lambert Conformal Conic Linear Unit: US Foot References:


Toll Plazas & Municipal Boundaries provided by PennDOT TeleAtlas North America (2003) URS Custom Data

ΑΞϹΟΜ

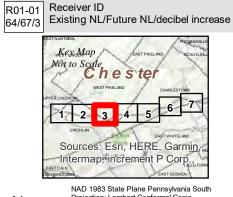
Figure 4 - 2 Future Build Noise Levels Noise Sensitve Areas 03 and 04

Prepared By: PJL	Checked By: SRS
Job: 21387581.00029	Date: 6/5/2020

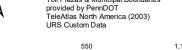
Path: C:\Users\supraja.sundaresan\PennDOT\Acoustical Report\Figure 4 PTC Overall Receivers Future Build Noise Levels.mxd

Legend

- Noise Receiver ≥ 66 dBA
- Noise Receiver <66 dBA
- PA Turnpike Toll Plaza
- Short-Term Measurement Location
- Long-Term Measurement Location
- Future Roadway
- Buffer: 500 Feet (either side)
- Noise Sensitive Area (NSA)



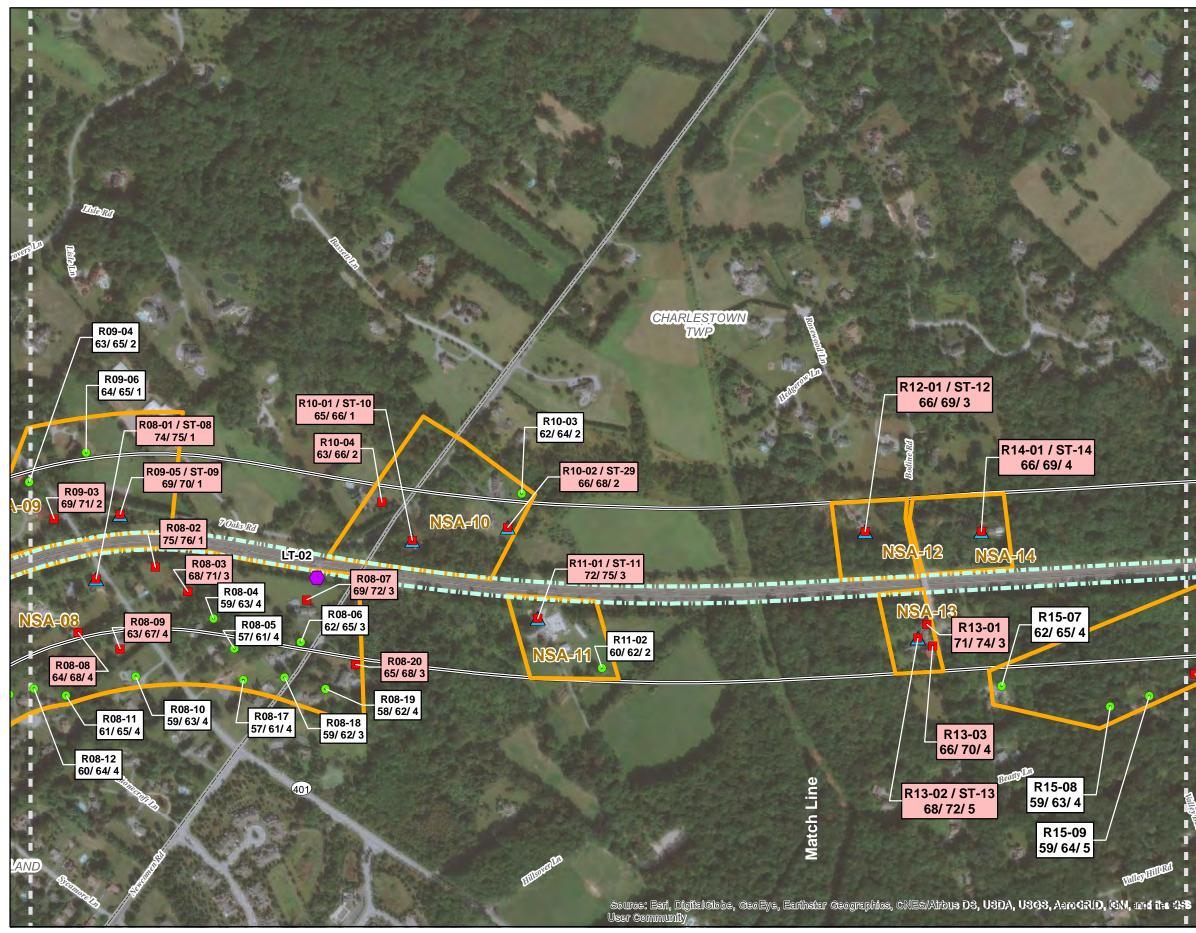
Ν


FINAL

Municipal Boundary

Note: Noise Levels (NL) in dBA (A-weighted decibels)

Projection: Lambert Conformal Conic Linear Unit: US Foot References Toll Plazas & Municipal Boundaries



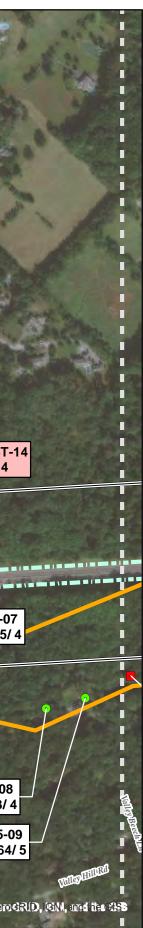


Figure 4 - 3 Future Build Noise Levels Noise Sensitve Areas 05 to 09

Prepared By: PJL	Checked By: SRS
Job: 21387581.00029	Date: 6/5/2020

Legend

- Noise Receiver ≥ 66 dBA •
- Noise Receiver <66 dBA
- PA Turnpike Toll Plaza
- Short-Term Measurement Location
- Long-Term Measurement Location
- Future Roadway
- Buffer: 500 Feet (either side)
- Noise Sensitive Area (NSA)

Ν

FINAL

Municipal Boundary

Receiver ID

Note: Noise Levels (NL) in dBA (A-weighted decibels)

NAD 1983 State Plane Pennsylvania South Projection: Lambert Conformal Conic Linear Unit: US Foot

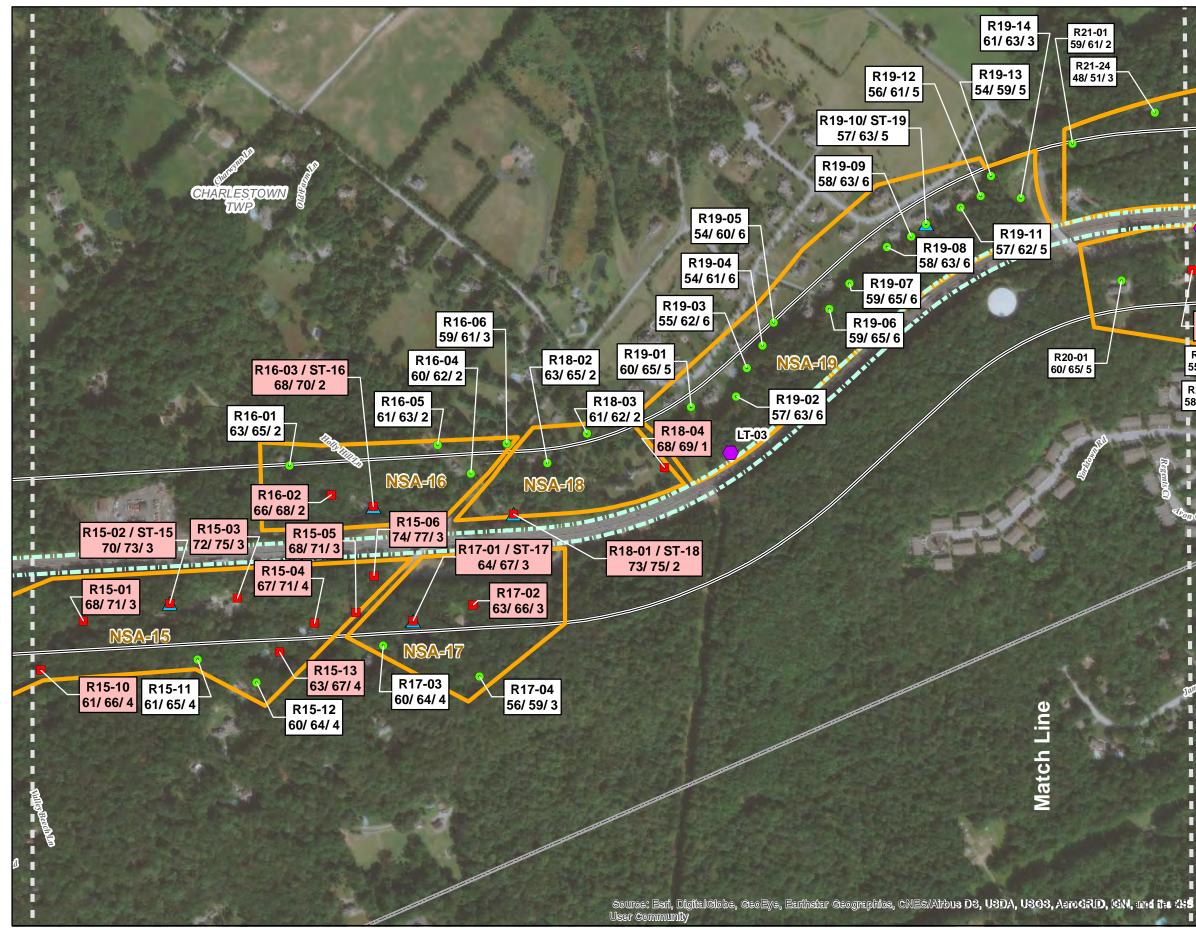
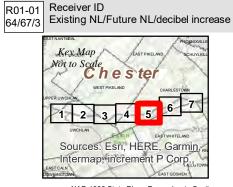

References Toll Plazas & Municipal Boundaries provided by PennDOT TeleAtlas North America (2003) URS Custom Data

Figure 4 - 4 Future Build Noise Levels Noise Sensitve Areas 08 to 15

Prepared By: PJL	Checked By: SRS
Job: 21387581.00029	Date: 6/5/2020

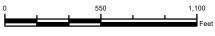
Legend

- Noise Receiver ≥ 66 dBA
- Noise Receiver <66 dBA
- PA Turnpike Toll Plaza
- Short-Term Measurement Location
- Long-Term Measurement Location
- Future Roadway
- Buffer: 500 Feet (either side)
- Noise Sensitive Area (NSA)



Ν

FINAL


Municipal Boundary

Note: Noise Levels (NL) in dBA (A-weighted decibels)

NAD 1983 State Plane Pennsylvania South Projection: Lambert Conformal Conic Linear Unit: US Foot

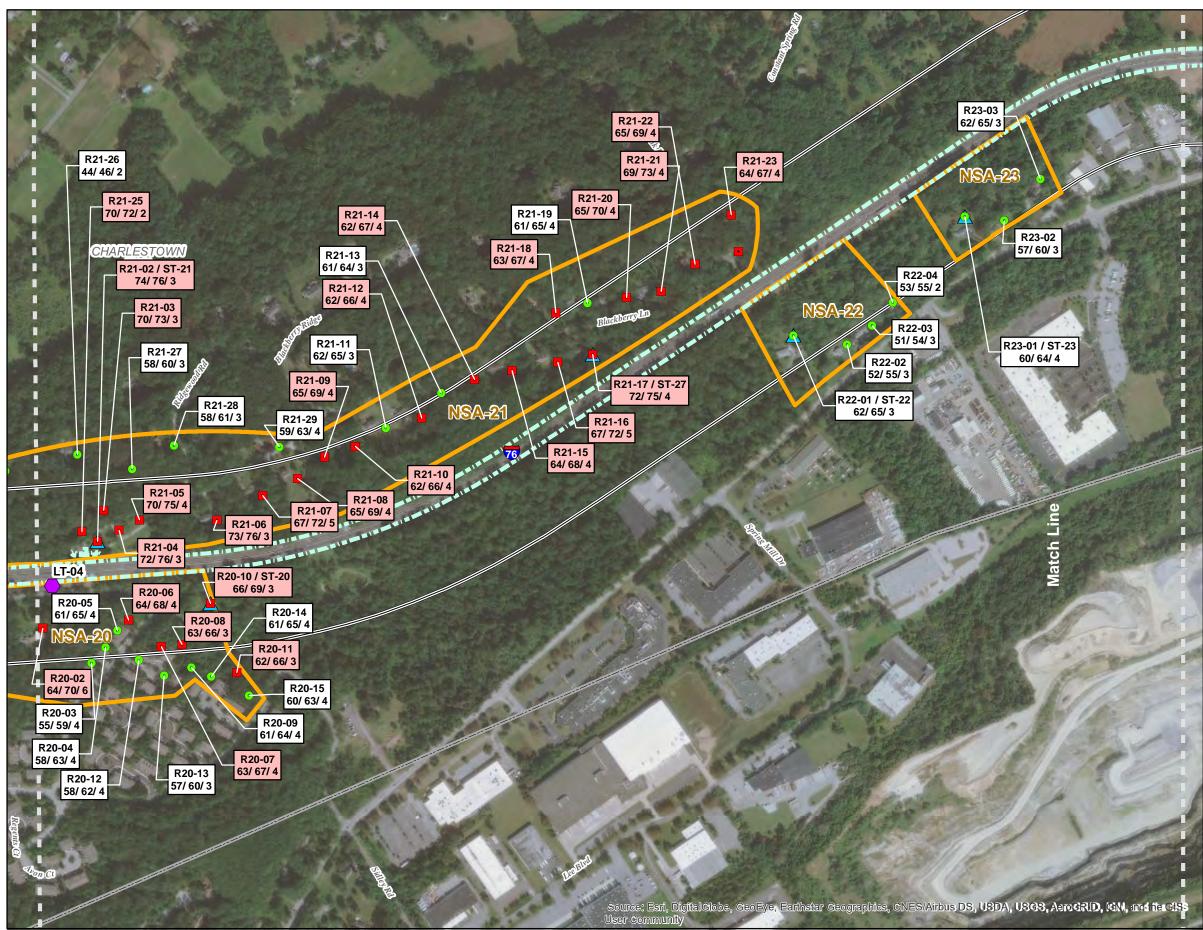
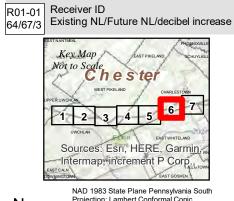

Reference Toll Plazas & Municipal Boundaries provided by PennDOT TeleAtlas North America (2003) URS Custom Data

Figure 4 - 5 Future Build Noise Levels Noise Sensitve Areas 15 to 21

Prepared By: PJL	Checked By: SRS
Job: 21387581.00029	Date: 6/5/2020

- Noise Receiver ≥ 66 dBA
- Noise Receiver <66 dBA
- PA Turnpike Toll Plaza
- Short-Term Measurement Location
- Long-Term Measurement Location
- Future Roadway
- Buffer: 500 Feet (either side)
- Noise Sensitive Area (NSA)



Ν

FINAL

Municipal Boundary

Note: Noise Levels (NL) in dBA (A-weighted decibels)

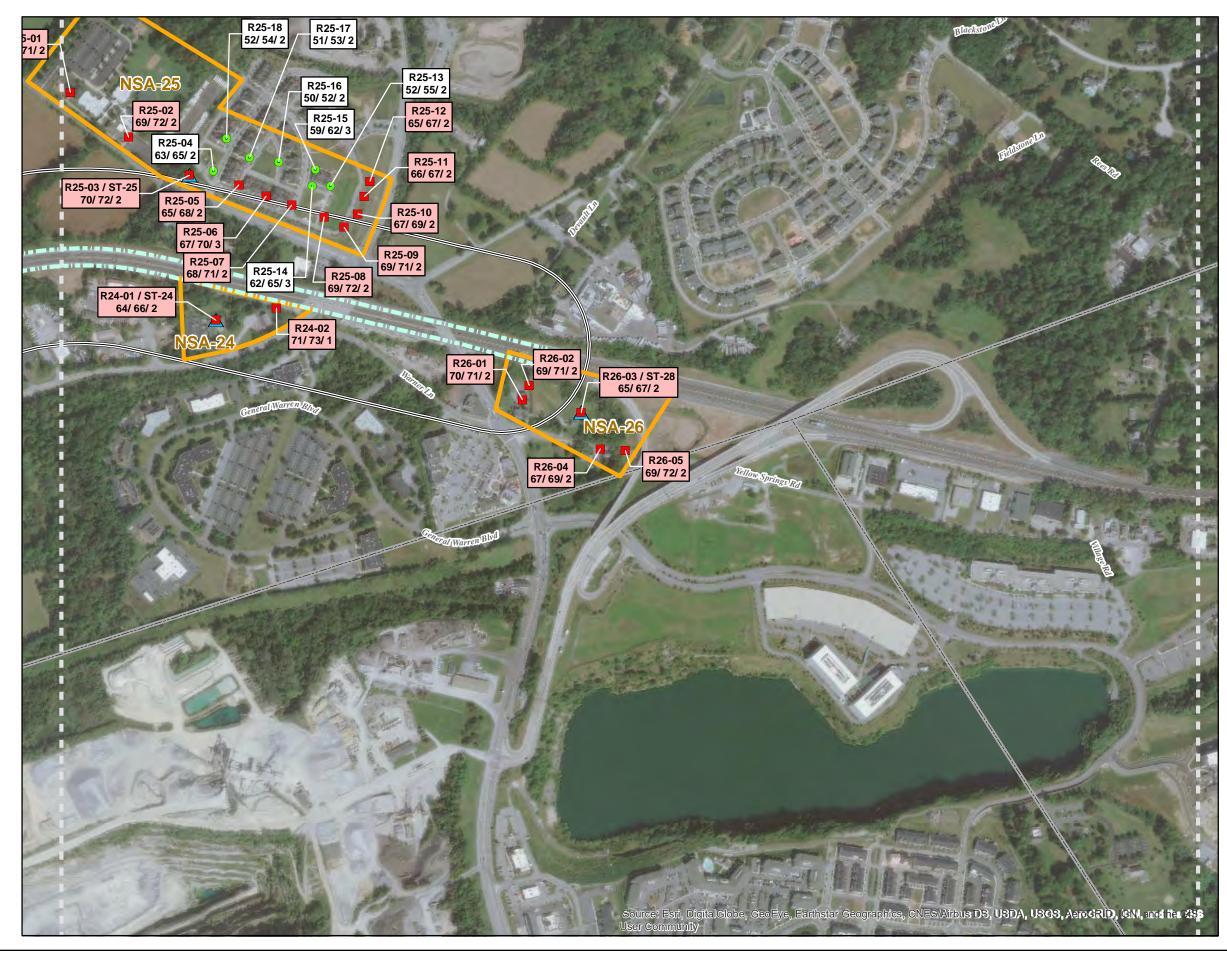
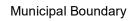
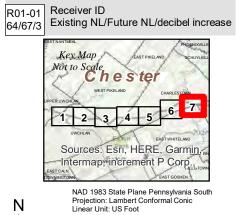

Projection: Lambert Conformal Conic Linear Unit: US Foot References: Toll Plazas & Municipal Boundaries provided by PennDOT TeleAtlas North America (2003) URS Custom Data

Figure 4 - 6 Future Build Noise Levels Noise Sensitve Areas 20 to 23

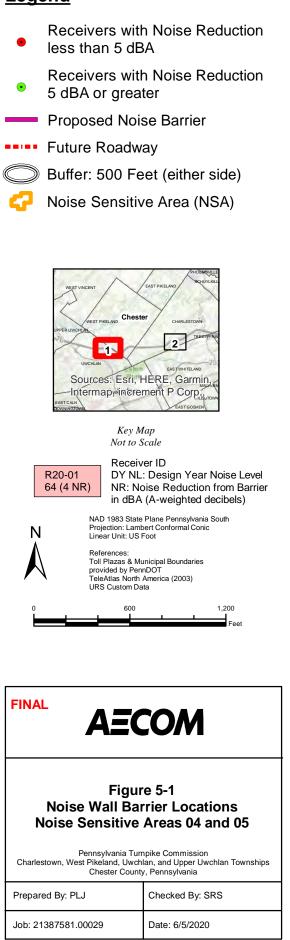

	Prepared By: PJL	Checked By: SRS
	Job: 21387581.00029	Date: 6/5/2020

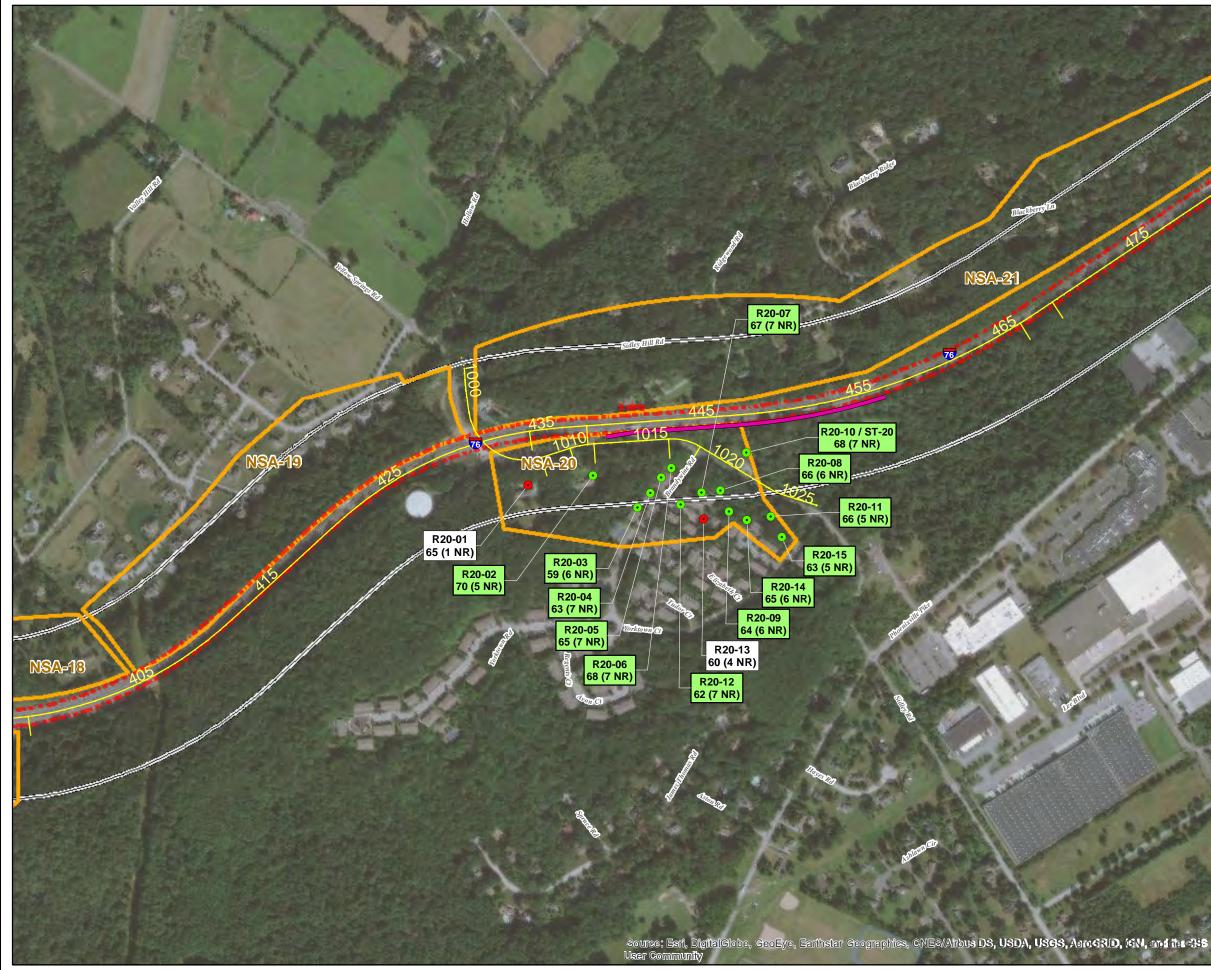

- Noise Receiver ≥ 66 dBA
- Noise Receiver <66 dBA
- PA Turnpike Toll Plaza
- Short-Term Measurement Location
- Long-Term Measurement Location
- Future Roadway
- Buffer: 500 Feet (either side)
- Noise Sensitive Area (NSA)

FINAL

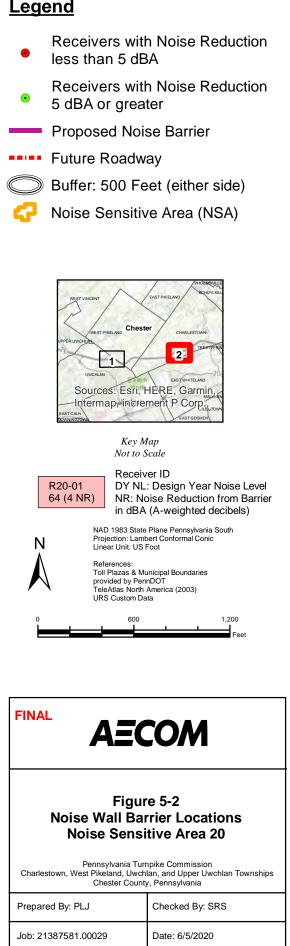
Note: Noise Levels (NL) in dBA (A-weighted decibels)

Linear Unit: US Foot References: Toll Plazas & Municipal Boundaries provided by PennDOT TeleAtlas North America (2003) URS Custom Data


Figure 4 - 7 Future Build Noise Levels Noise Sensitve Areas 24 to 26


	Prepared By: PJL	Checked By: SRS
	Job: 21387581.00029	Date: 6/5/2020

Path: C:\Users\supraja.sundaresan\PennDOT\Acoustical Report\Figure 5 PTC Recommended Noise Barriers_51520.mxd


Legend

Path: C:\Users\supraja.sundaresan\PennDOT\Acoustical Report\Figure 5 PTC Recommended Noise Barriers_51520.mxd

This page intentionally left blank

Appendix A contains a brief discussion on traffic noise fundamentals and control.

Fundamentals of Traffic Noise Assessment and Control

Noise is generally regarded as unwanted sound. Man-made noise is everywhere, from the busiest urban centers to the most remote national park. Excessive noise can interfere with sleep, work, recreation, and even one's health. One of the major contributors of noise in our society, perhaps the greatest contributor in terms of the number of people affected, is highway or traffic noise. In this appendix, we will briefly discuss:

- How noise is measured and defined;
- How highway noise is generated;
- How highway noise can be reduced; and
- Where to get more information.

How Noise is Measured and Defined

Sound, Noise and Acoustics

Sound is a disturbance created by a moving or vibrating source in a gaseous or liquid medium or the elastic stage of a solid and is capable of being detected by the hearing organs. Sound may be thought of as the mechanical energy of a vibrating object transmitted by pressure waves through a medium to a hearing organ, such as the human ear. For traffic sound, the medium of concern is air. *Noise* is defined as sound that is loud, unpleasant, unexpected, or undesired.

Sound transmission is a process that consists of three components: the sound source, the sound path, and the sound receiver. All three components must be present for sound to exist. Without a source to produce sound, there is no sound. Likewise, without a medium to transmit sound pressure waves, there is also no sound. Finally, sound must be received; a hearing organ, sensor, or object must be present to perceive, register, or be affected by sound or noise. In most situations, there are many different sound sources, paths, and receptors rather than just one of each. *Acoustics* is the field of science that deals with the production, propagation, reception, effects, and control of sound.

Frequency and Hertz

A continuous sound can be described by its *frequency* (pitch) and its *amplitude* (loudness). Frequency relates to and is expressed as the number of pressure oscillations, or cycles, per second. Low-frequency sounds are low in pitch, like the low notes on a piano, whereas high-frequency sounds are high in pitch, like the high notes on a piano. Cycles per second are commonly referred to as Hertz (Hz). A frequency of 250 cycles per second is referred to as 250 Hz. High frequencies are sometimes more conveniently expressed in units of kilo-Hertz (kHz, *i.e.*, thousands of Hertz). The extreme range of frequencies that can be heard by the healthiest human ear spans from 16-20 Hz on the low end of the audible spectrum to about 20,000 Hz (or 20 kHz) on the high end.

Sound Pressure Level and Decibels

The amplitude of a sound determines its loudness. Loudness of sound increases and decreases with increasing and decreasing amplitude, respectively. Sound pressure amplitude is measured in units of micro-Newton per square meter (N/m^2) , also called micro-Pascal (µPa). The pressure of a very loud sound may be 200 million µPa, or 10 million times the pressure of the weakest audible sound (20 µPa). Because expressing sound levels in terms of µPa could therefore be very cumbersome, sound pressure level (SPL) is used instead to describe, in logarithmic units, the ratio of actual sound pressures to a reference pressure squared. These units are called bels, named after Alexander Graham Bell. To provide a finer resolution, a bel is subdivided into 10 decibels, abbreviated dB.

Addition of Decibels

Because decibels are logarithmic units, sound pressure levels cannot be added or subtracted by ordinary arithmetic means. For example, if one automobile produces an SPL of 70 dB when it passes an observer, two cars passing simultaneously would not produce 140 dB; they would, in fact, combine to produce 73 dBA. When two sounds of equal SPL are combined, they will produce a combined SPL 3 dBA greater than the original individual SPL. In other words, sound energy must be doubled to produce a 3-dBA increase. If two sound levels differ by 10 dBA or more, the combined SPL is equal to the higher SPL; in other words, the lower sound level does not increase the higher sound level.

A-Weighted Decibels

Sound pressure level alone is not a reliable indicator of loudness. The frequency, or pitch, of a sound also has a substantial effect on how humans will respond. Although the intensity (energy per unit area) of the sound is a purely physical quantity, the loudness or human response is determined by the characteristics of the human ear.

Human Response to Changes in Noise Levels

Under controlled conditions in an acoustics laboratory, the trained, healthy human ear is able to discern changes in sound levels of 1 dBA when exposed to steady, single-frequency signals in the mid-frequency range. Outside such controlled conditions, the trained ear can detect changes of 2 dBA in normal environmental noise. It is widely accepted that the average healthy ear, however, can barely perceive noise level changes of 3 dBA. A change of 5 dBA is readily perceptible, and an increase or decrease of 10 dBA is perceived as being twice or half as loud, respectively. As discussed above, a doubling of sound energy results in a 3-dBA increase in sound, which means that a doubling of sound energy (*e.g.*, doubling the volume of traffic on a highway) would result in a barely perceptible change in sound level. **Table A.1** illustrates sound pressure levels in dBA of various sound sources between 0 dBA (threshold of hearing) and 140 dBA (threshold of pain). A relationship between changes in noise level and loudness is indicated in **Table A.2**.

Common Outdoor Noise Levels	Noise Level (A-weighted decibels)	Common Indoor Noise Levels
	110	Rock Band
Jet Flyover at 1000 feet	100	Inside Subway Train (NY)
Gas Lawn Mower at 3 feet		
Diesel Truck at 50 feet	90	Food Blender at 3 feet
Noisy Urban Daytime	80	Garbage Disposal at 3 feet
Gas Lawn Mower at 100 feet	70	Vacuum Cleaner at 10 feet
Commercial Area		Normal Speech at 3 feet
	60	
		Large Business Office
Quiet Urban Daytime	50	Dishwasher Next Room
Quiet Urban Nighttime	40	Small Theater
Quiet Suburban Nighttime		Library
	30	
Quiet Rural Nighttime		Bedroom at Night
	20	
		Broadcast & Recording Studio
	10	Threshold of Hearing
	0	

 Table A.1

 Common Indoor and Outdoor Noise Levels*

¹ Adapted from <u>Guide on Evaluation and Attenuation of Traffic Noise</u>, AASHTO-1974.

 Table A.2

 Relationship Between Changes in Noise Level and Perceived Loudness

Increase (or Decrease) in Noise Level	Loudness Multiplied (or Divided) by
3 decibels	1.2
6 decibels	1.5
10 decibels	2
20 decibels	4

Noise Descriptors

Noise in our daily environment fluctuates over time. Some of the fluctuations are minor; some are substantial. Some noise levels occur in regular patterns; others are random. Some noise levels fluctuate rapidly, others slowly. Some noise levels vary widely; others are relatively constant. Various noise descriptors have been developed to describe time-varying noise levels. The following is a list of the noise descriptors most commonly used in traffic noise analysis.

- Equivalent Sound Level (L_{eq}) L_{eq} represents an average of the sound energy occurring over a specified period. L_{eq} is, in effect, the steady-state sound level that, in a stated period, would contain the same acoustical energy as the time-varying sound that actually occurs during the same period. The 1-hour A-weighted equivalent sound level, L_{eq}(h), is the energy average of the A-weighted sound levels occurring during a 1-hour period and is the basis for noise abatement criteria (NAC) used by Caltrans and FHWA.
- *Percentile-Exceeded Sound Level* $(L_x) L_x$ represents the sound level exceeded for a given percentage of a specified period. For example, L_{10} is the sound level exceeded 10% of the time, and L_{90} is the sound level exceeded 90% of the time.
- *Maximum Sound Level* $(L_{max}) L_{max}$ is the highest instantaneous sound level measured during a specified period.
- Day-Night Level $(L_{dn}) L_{dn}$ is the energy average of the A-weighted sound levels occurring during a 24-hour period with 10 dBA added, as a nighttime penalty, to the A-weighted sound levels occurring between 10 p.m. and 7 a.m.

Sound Propagation

When sound propagates over a distance, it changes in both level and frequency content. The manner in which noise reduces with distance depends on the following factors.

- *Geometric Spreading* Sound from a small, localized source (*i.e.*, a point source) radiates uniformly outward as it travels away from the source in a spherical pattern. The sound level attenuates (or drops off) at a rate of 6 dBA for each doubling of distance. Highway noise is not a single, stationary point source of sound. The movement of the vehicles on a highway makes the source of the sound appear to emanate from a line (*i.e.*, a line source) rather than a point. This line source results in cylindrical spreading rather than the spherical spreading that results from a point source. The change in sound level from a line source is 3 dBA per doubling of distance.
- *Ground Absorption* Most often, the noise path between the highway and the observer is very close to the ground. Noise attenuation from ground absorption and reflective wave canceling adds to the attenuation associated with geometric spreading. Traditionally, the excess attenuation has also been expressed in terms of attenuation per doubling of distance. This approximation is done for simplification only; for distances of less than 60 meters (200 feet) prediction results based on this scheme are sufficiently accurate. For acoustically hard sites (*i.e.*, those sites with a reflective surface, such as a parking lot or a smooth body of water, between the source and the receiver), no excess ground attenuation is assumed. For acoustically absorptive or soft sites (*i.e.*, those sites with an absorptive ground surface, such as soft dirt, grass, or scattered bushes and trees, between

the source and the receiver), an excess ground attenuation value of 1.5 dBA per doubling of distance is normally assumed. When added to the geometric spreading, the excess ground attenuation results in an overall drop-off rate of 4.5 dBA per doubling of distance for a line source and 7.5 dBA per doubling of distance for a point source.

- Atmospheric Effects Research by Caltrans and others has shown that atmospheric conditions can have a significant effect on noise levels within 60 meters (200 feet) of a highway. Wind has been shown to be the most important meteorological factor within approximately 150 meters (500 feet) of the source, whereas vertical air temperature gradients are more important for greater distances. Other factors such as air temperature, humidity, and turbulence also have significant effects. Receptors located downwind from a source can be exposed to increased noise levels relative to calm conditions, whereas locations upwind can have lower noise levels. Increased sound levels can also occur as a result of temperature inversion conditions (*i.e.*, increasing temperature with elevation).
- Shielding by natural or human-made features A large object or barrier in the path between a noise source and a receiver can substantially attenuate noise levels at the receiver. The amount of attenuation provided by this shielding depends on the size of the object and the frequency content of the noise source. Natural terrain features (*e.g.*, hills and dense woods) and human-made features (*e.g.*, buildings and walls) can substantially reduce noise levels. Walls are often constructed between a source and a receiver specifically to reduce noise. A barrier that breaks the line of sight between a source and a receiver will typically result in at least 5 dBA of noise reduction. A taller barrier may provide as much as 20 dBA of noise reduction.

How Highway Noise is Generated

Highway noise is generated from three primary sources: tire/pavement noise, engine noise, and exhaust noise. Tire/pavement noise is the noise generated by the rubber tires rolling over the pavement surface and may vary in intensity and character depending on the type and condition of both the tires and the pavement. For automobiles and light trucks traveling at typical highway speeds (over 50 MPH), tire/pavement noise is generally the dominant noise source. For medium and heavy trucks (like large commercial delivery vehicles and long haul tractor-trailers) engine and exhaust noise also contribute to the noise that they produce. At typical highway speeds one large truck can produce as much noise energy as ten automobiles. How highway noise is experienced at nearby homes is controlled by a number of factors, including: the total number of vehicles on the highway, the percentage of large trucks, the average speed of the vehicles, the distance to the highway, obstructions blocking the view of the highway, and meteorological conditions. Generally speaking, the more vehicles, the higher percentage of large trucks or the closer one is to the highway, the greater the noise will be. Intervening obstructions, either manmade (buildings, walls, berms) or natural (such as intervening terrain) will reduce noise levels. Foliage and vegetation can reduce noise levels, but it must be dense (completely obscuring the view of the highway) and thick (on the order of 50 to 100 feet) in order to make a significant difference.

How Highway Noise Can Be Reduced

Highway noise can be reduced in a number of ways. Here are some of the most commonly recognized:

Land Use Controls

Perhaps the most common sense and fiscally responsible solution to highway noise, and one favored by most highway agencies, is to restrict the development of lands near highways. Restricting development of land near new highway corridors to non-noise sensitive land uses, such as commercial or industrial activities, can eliminate most noise problems. However, this approach is not suitable for circumstances when land near existing of future highways has already been developed for residential land use.

Quieter Vehicle Noise Sources

Quieter vehicles mean less highway noise. For automobiles this means quieter tires (since tire/pavement noise is the dominant noise source). For large trucks the EPA has established standards for maximum noise levels for new and in-use trucks. The maximum noise levels for new trucks are lower than those for existing trucks, so as old trucks are phased out and replaced with newer ones the noise produced by the average truck may go down.

Noise Barrier Walls and Berms

Noise barriers, both structural walls and earthen berms, are often constructed specifically for the purpose of reducing highway noise levels. Noise barrier can be very effective for reducing noise levels at nearby homes. Because of their cost, the construction of noise barriers is often restricted to large highway improvement or construction projects.

How Noise Barriers Work

Noise barriers reduce noise levels by interrupting or lengthening the path that the noise takes between the source and the receiver. In order to be effective at reducing noise, noise barriers must be able to block the "line of sight" between the object producing the noise (like vehicles on the highway) and the person subjected to the noise (like residents living near the highway). The amount that the noise will be reduced is related to the path length difference between the "direct path" that the uninterrupted sound would take between the source and receiver (with no barrier) and the "diffracted path" that the sound must take going over or around the barrier, as illustrated in **Figure A.1**.

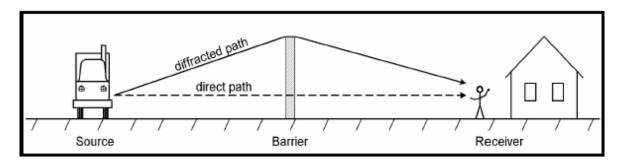


Figure A.1 Simple Noise Barrier Geometry

Noise barriers may work better for some homes than for others. In **Figure A.2**, below, home "A" is relatively close to the highway where the noise barrier can provide a large path length difference between the direct and diffracted paths, resulting in a substantial noise reduction (perhaps as much as 10 to 15 decibels). Home "B" is further from the barrier and the path length difference is not as great, resulting in less noise reduction (perhaps 7 to 10 decibels). Home "C" is even further from the highway, and also elevated above the highway level, providing an even smaller path length difference (resulting in a noise reduction of perhaps 3 to 5 decibels). In general, for a given barrier height and location, the further the receiver is from the barrier or the higher the receiver is elevated, the smaller the path length difference (or angle of diffraction) and the smaller the resulting noise reduction.

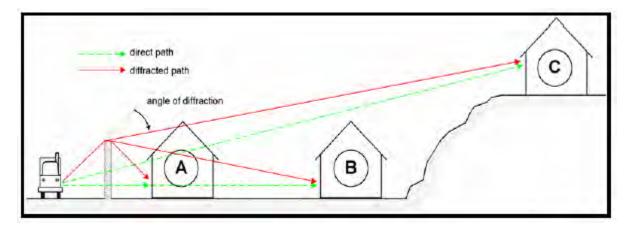
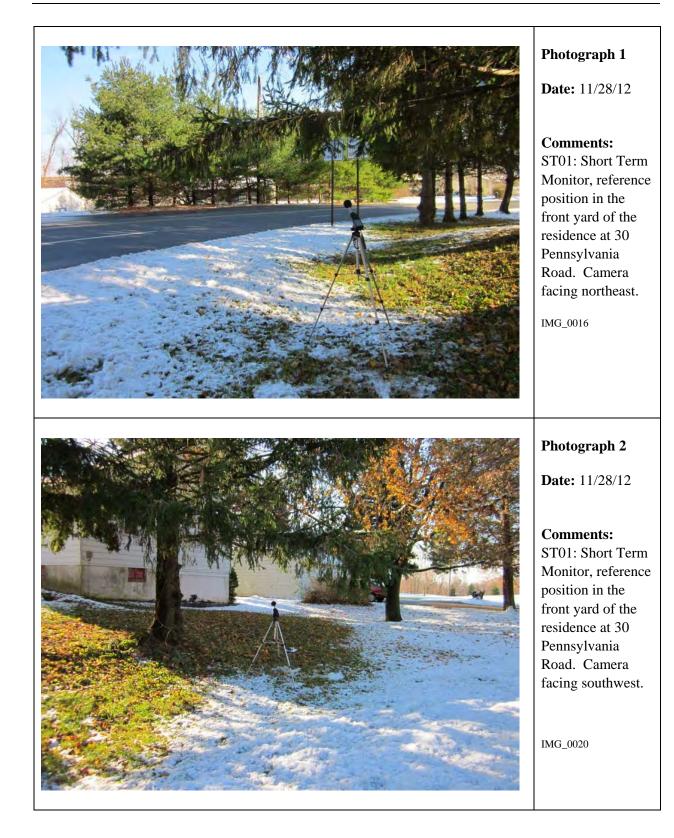


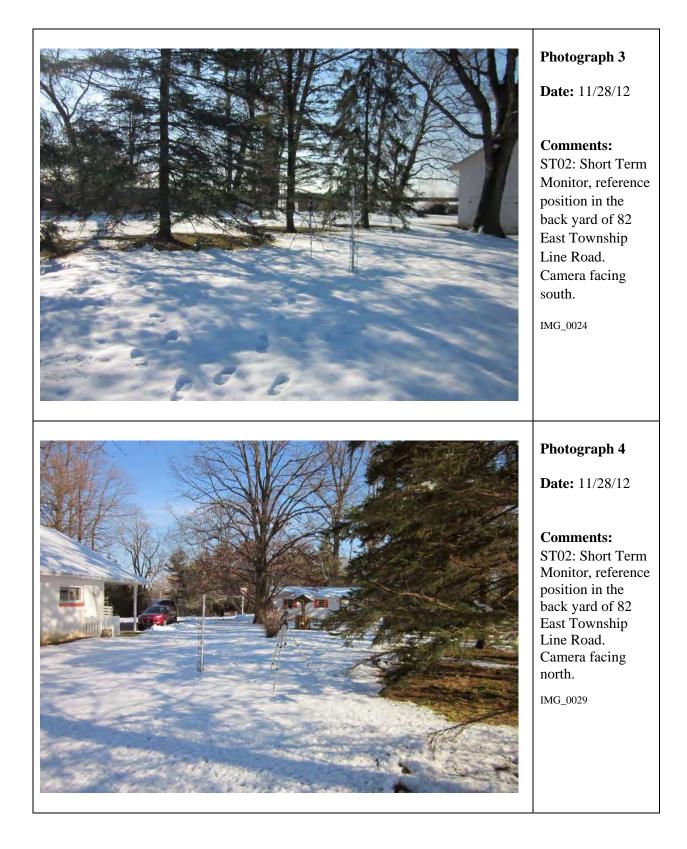
Figure A.2 Path Length Difference for Varying Receiver Geometry

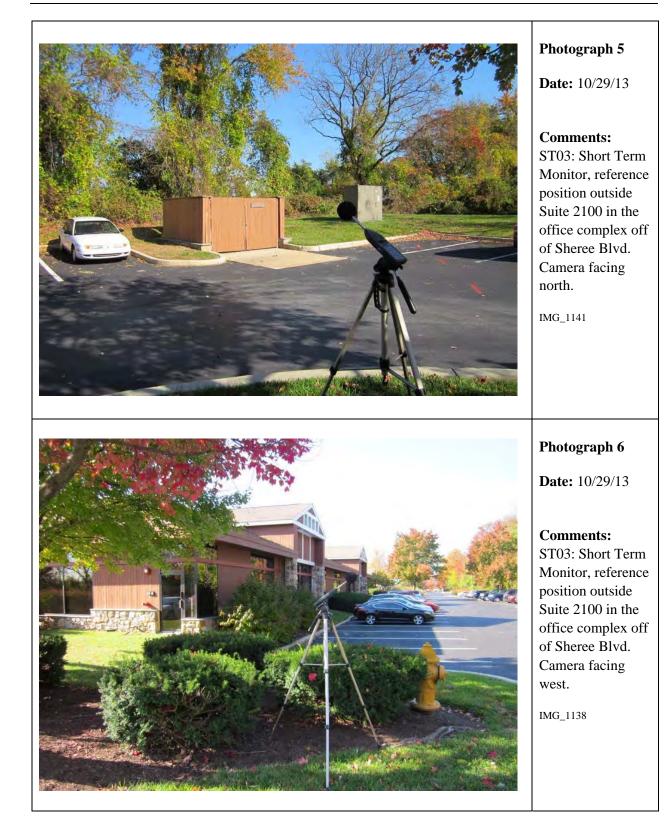
References

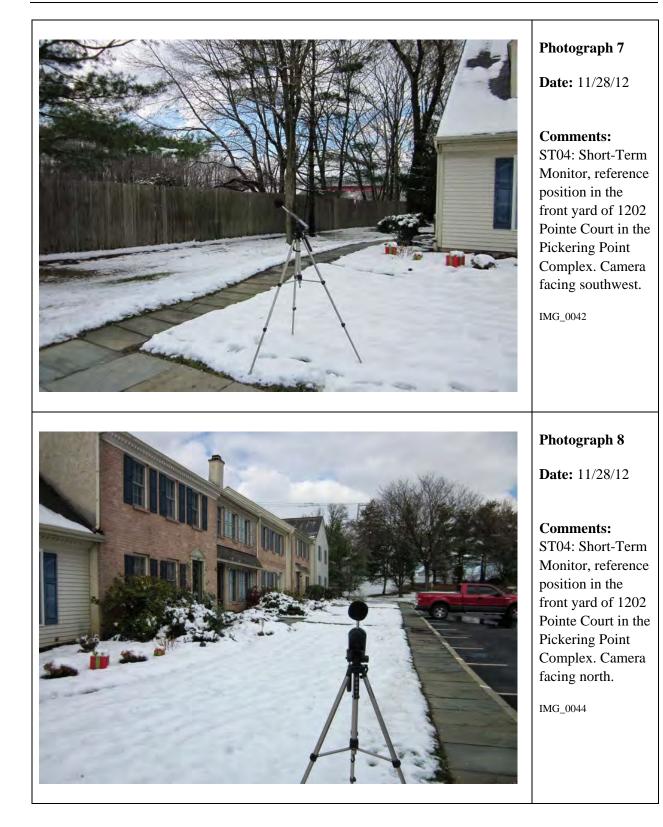
1. Fundamentals and Abatement of Highway Traffic Noise, Bolt Beranek and Newman, 1973.

2. Assessment of Noise with Respect to Community Response, ISO R1996, International Organization for Standardization, Switzerland.

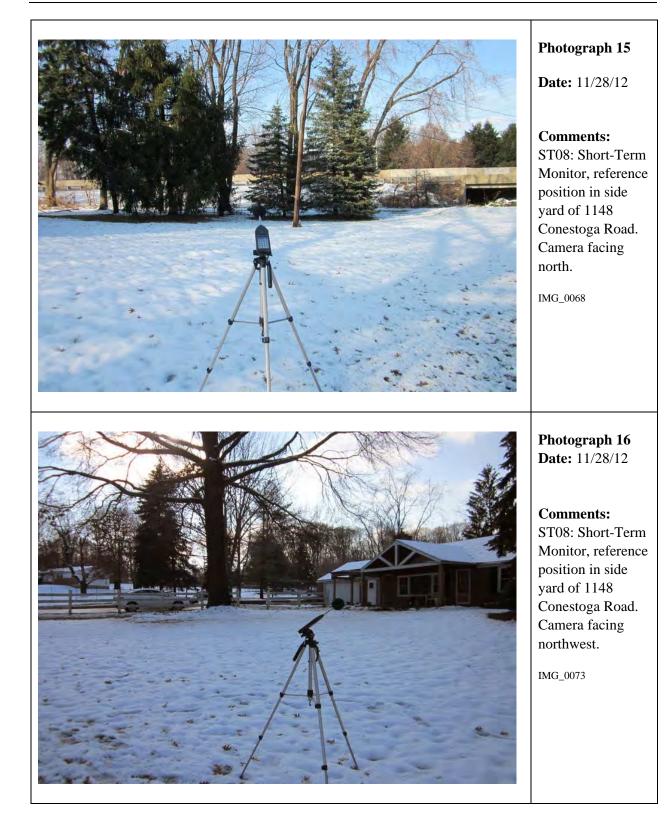

3. Federal Highway Administration, *Procedures for Abatement of Highway Noise and Construction Noise*. 23 CFR Part 772, Final Rule, effective 9 August 1992.

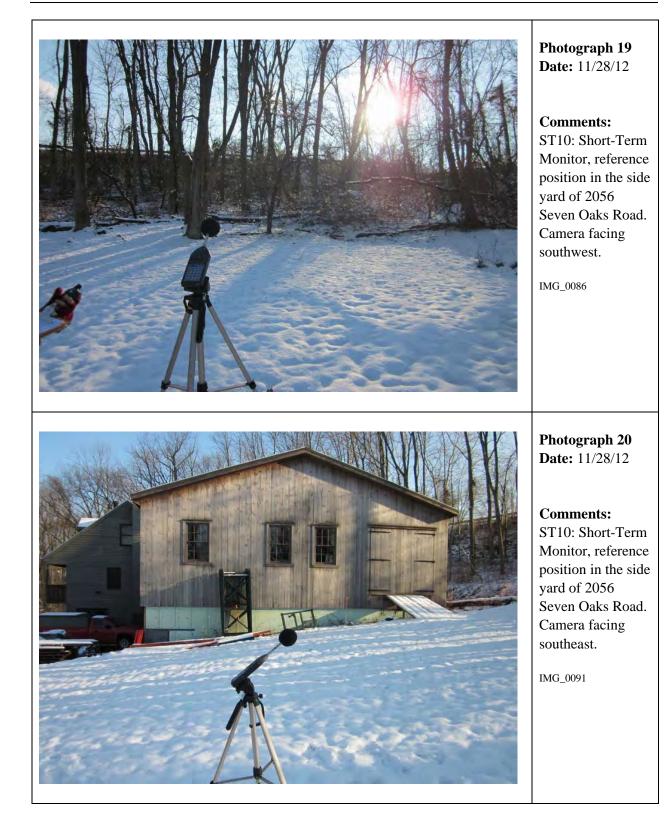

4. Office of Environment and Planning, Memorandum HEP-41 December 1993.

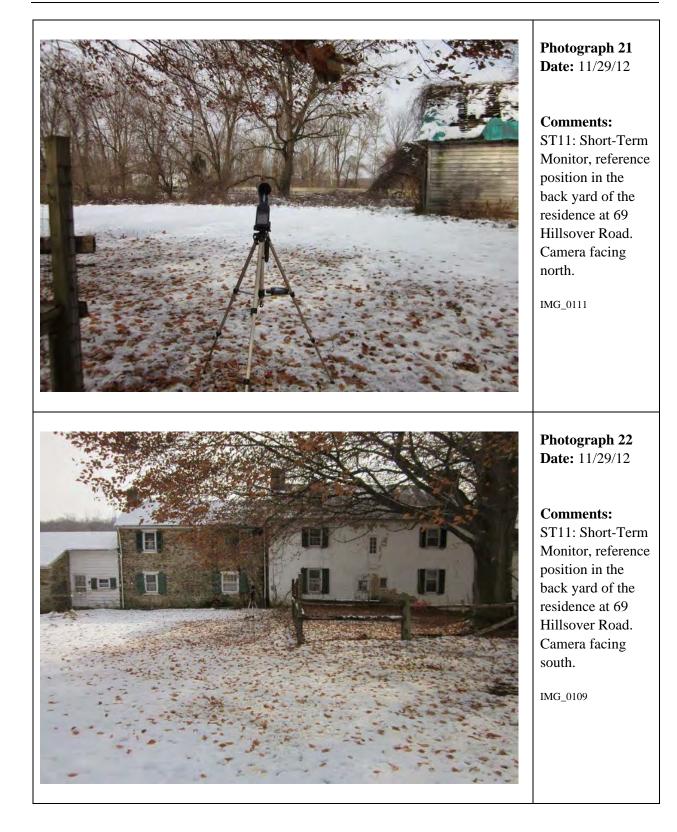

This page intentionally left blank

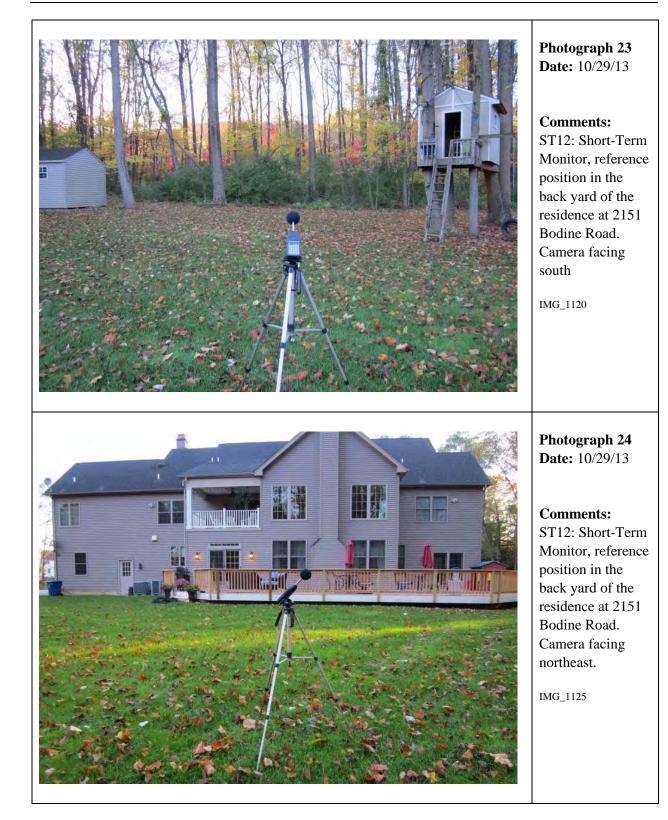

Appendix B contains the following noise measurement data collected while conducting field noise measurements as part of the noise analysis:

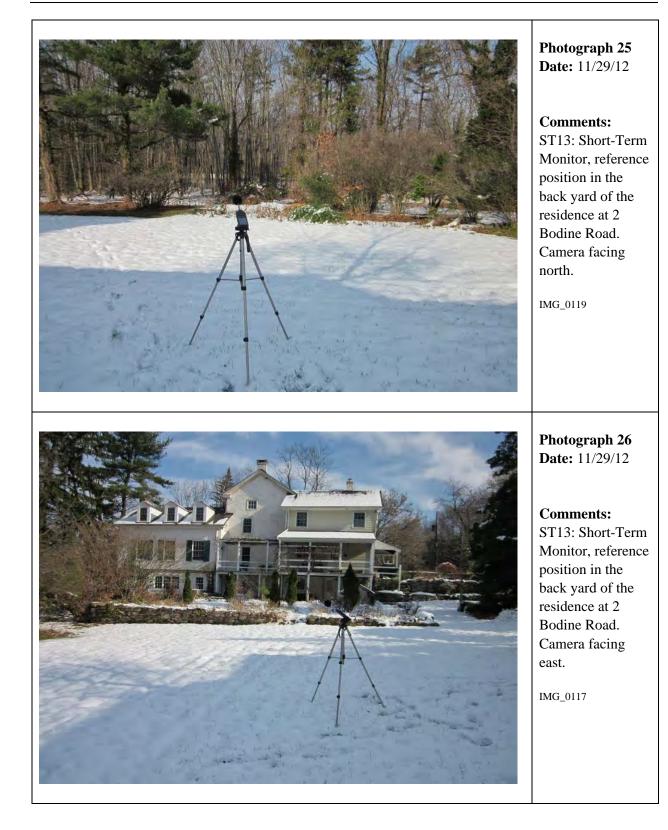
- Photographs and descriptions of measurement locations;
- Hand-written field measurement data sheets containing sketches, noise levels, weather data, traffic information, and other data pertinent to the noise measurement process;
- Traffic counts observed in the field while measurements were being conducted. Classified traffic counts were generally taken from video shot during the noise measurements. Speeds used for validation runs were values indicated on the field data sheets as "Observed" speeds. Existing speeds were estimated by driving through the project roadway during periods with similar traffic conditions and noting vehicle speed. The observed speed was the posted speed limit.
- o Sound Level Meter (SLM) data;
- o Long Term Measurement Data Charted Time vs. Decibel Level; and
- o Calibration certificates for each SLM used to conduct field measurements.











Photograph 27 Date: 10/29/13

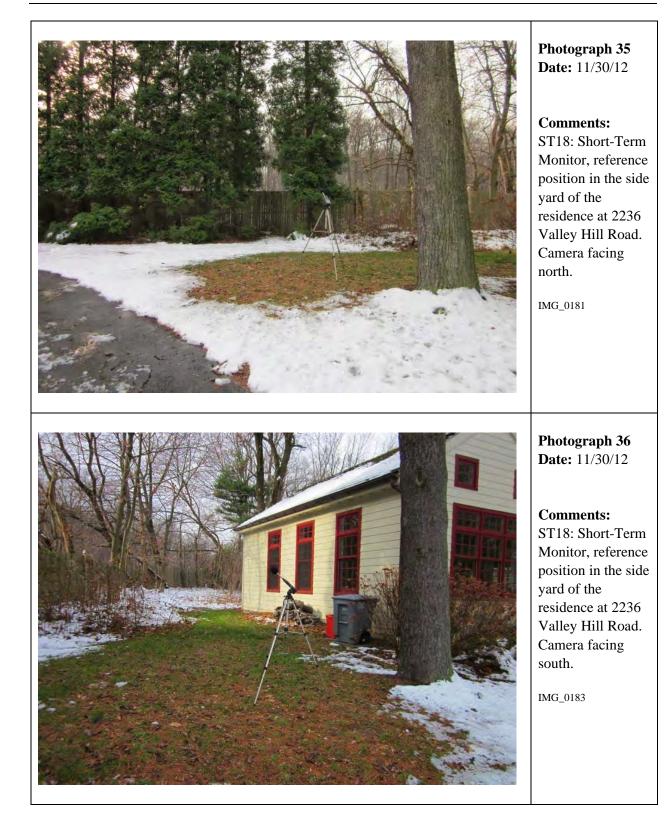
Comments:

ST14: Short-Term Monitor, reference position in the side yard of the residence and commercial business (Horticultural Center) at 2148 Bodine Road. Camera facing south.

IMG_1182

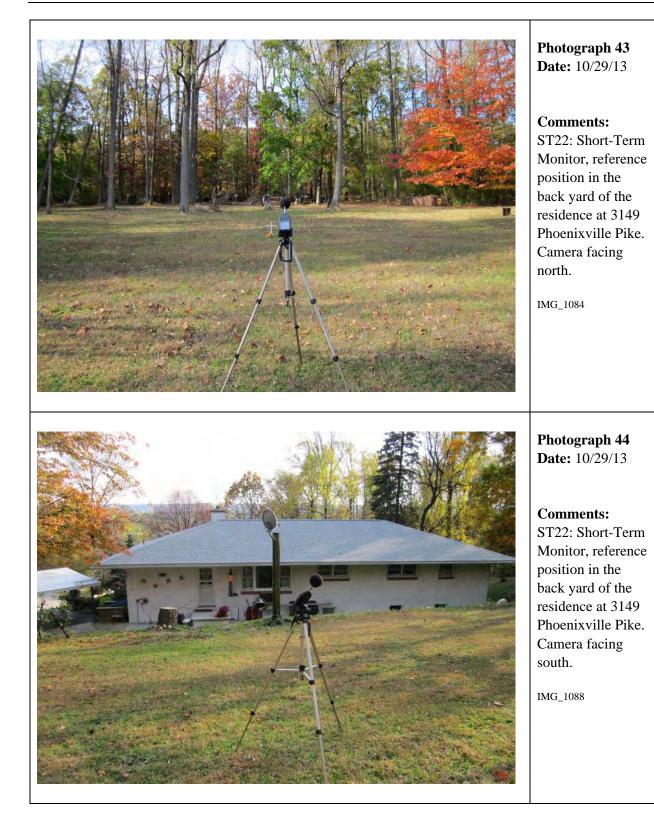
Photograph 28 Date: 10/29/13

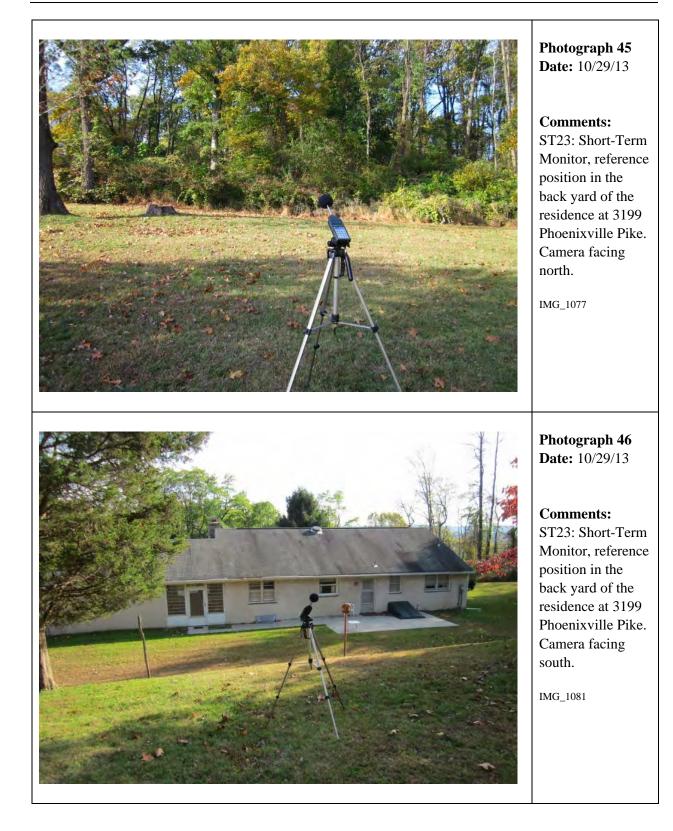
Comments:


ST14: Short-Term Monitor, reference position in the side yard of the residence and commercial business (Horticultural Center) at 2148 Bodine Road. Camera facing east.

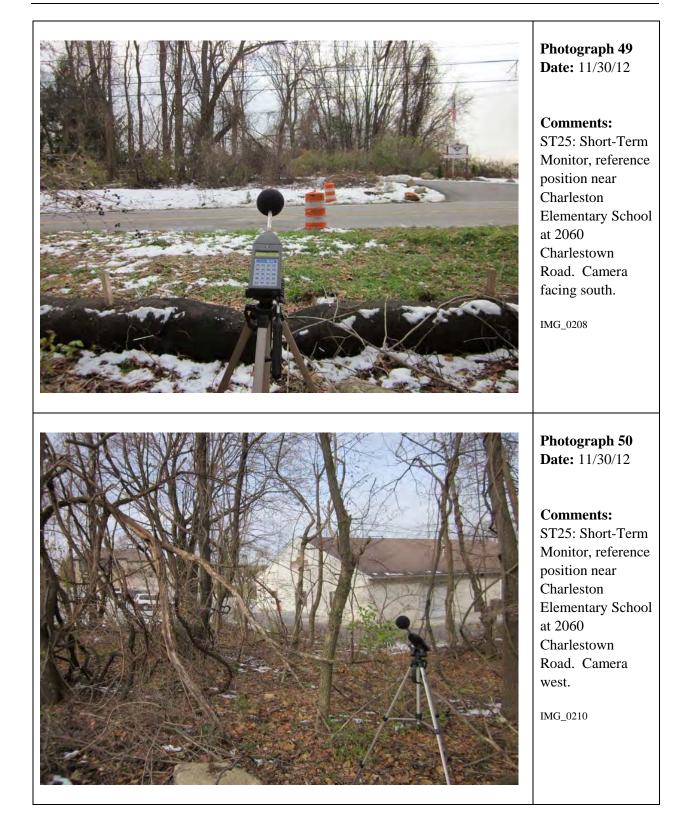
IMG_1188



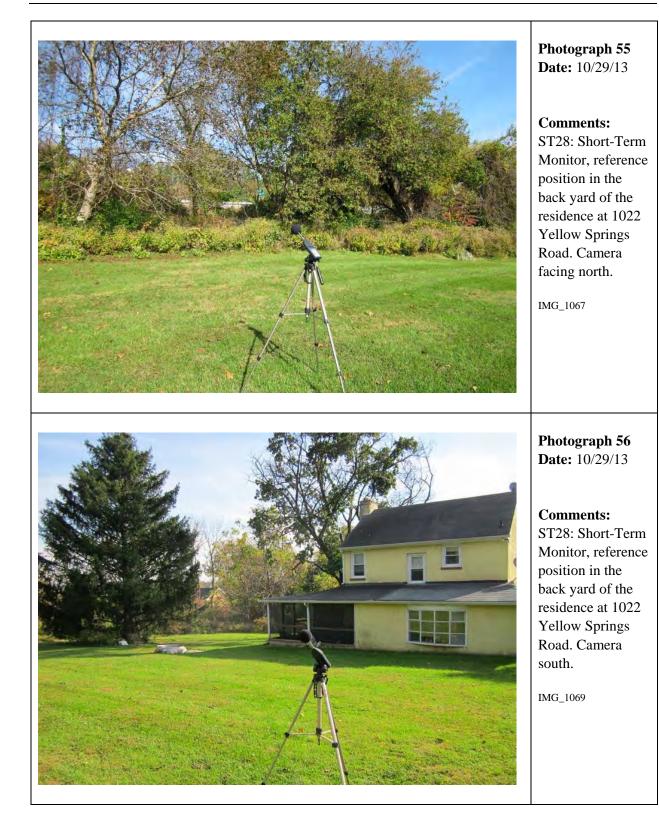


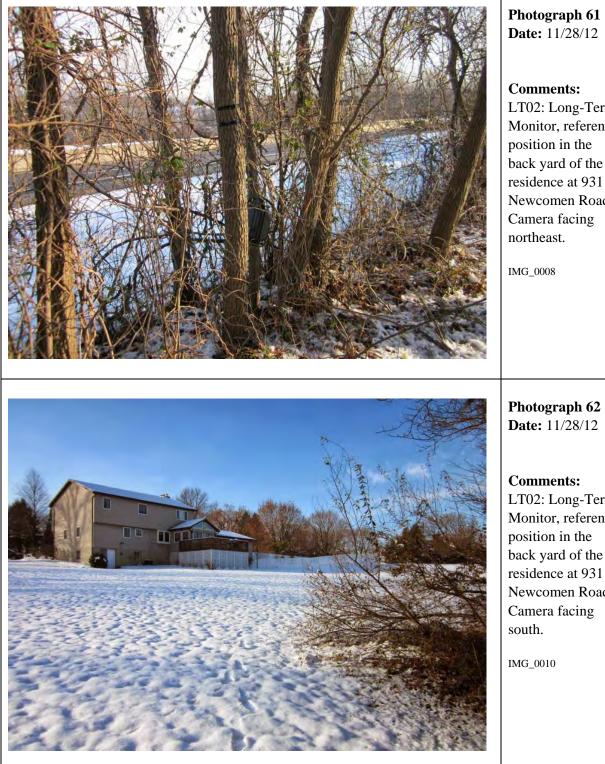

Photograph 38

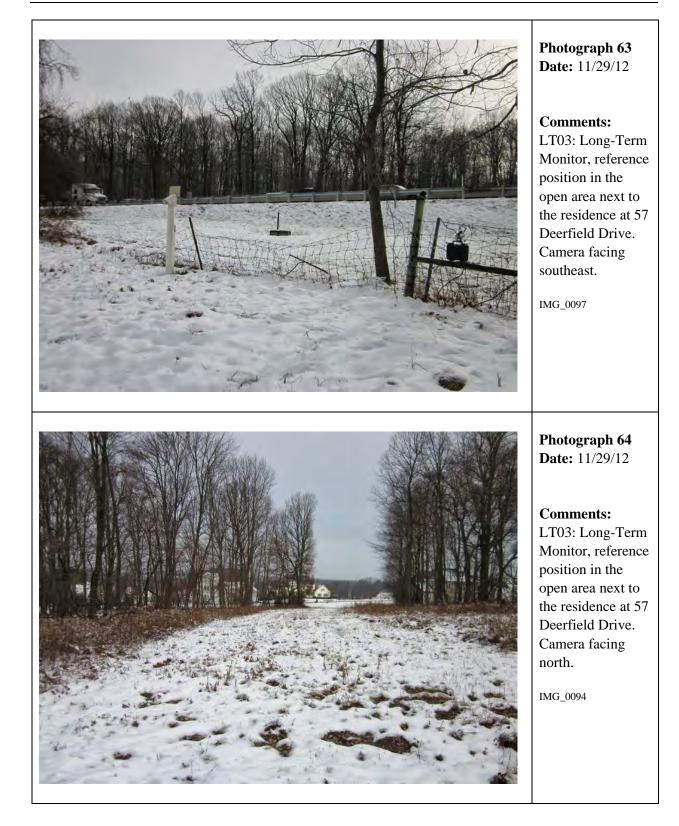
ST19: Short-Term Monitor, reference position in the back yard of the residence at 29 Hollow Drive. Camera facing

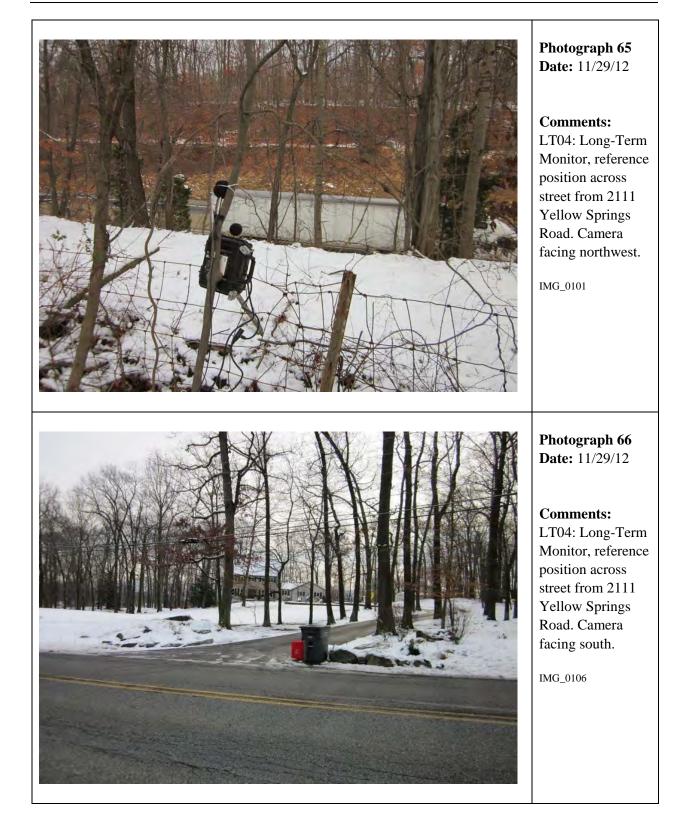












LT02: Long-Term Monitor, reference back yard of the residence at 931 Newcomen Road. Camera facing

Date: 11/28/12

LT02: Long-Term Monitor, reference position in the back yard of the residence at 931 Newcomen Road. Camera facing

									ontrol Practice
Droio	ct Name	· OTC							Date: ۱۱/که/کوریکی Page of
	oring Lo			01					Comm Analyst: JDD
		evel Mete				d Calibra			Weather Data
Model		NOR		Model #	#: 	Non	1251		Model #: 4 3500
Serial	#:	1402	1984	Serial #	! :	266	29		Serial #: 1703474
Weigh	ting: AC	/ Flat		Calibra	tion Leve	el (dBA):	94(1	14	Wind: Steady/Gusty/Calm
	nse: Slow		-	Pre-Te		<u> </u>	0	dBA	Precipitation: Yes Jexplain) / No Ular Show
	creen. Ye		(plain)	Post-Te			•	dBA	Avg Wind Speed/Direction: <u>2-3MPN</u> SW
Торо:		-	}		Coordina				Temp (°F): <u>33,4</u> RH (%): <u>100%</u>
Terrai	n: Hard/S		/Snow	10 40	<i>ว" 0</i> 3.9, Г	WO	1) Da -	<u> </u>	Bar Psr (Hg): /06 .7 Cloud Cover (%): 70%
ID -	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L_{50}	L ₉₀	Notes/Events
	08:34	11/28/13	24-	nour	MEASU	ÆMEN	T		
					<i>.</i>			·	
	15:56	CHEU	ING (SATTE	PIES "				· · · · · · · · · · · · · · · · · · ·
	he in a		\ \						
	2107	Cher	reg a	bot	erve	5			
12	18:30	0FTO	EVEN	METE	RLA	DEVADU	SAN	-OFF	(INHNOUM DATA AMOUNT)
	00.00	100110	CUCYS	1			500	0//	
						1			
· · ·			· · · ·						*
R	badway N	lame/Dir	T	U		Λ		pass	<u>Site Diagram:</u>
		·	~~~	$\frac{1}{1}$	•	/-	N N		
	Speed (po Number o		<u>557</u> 4	65					
	Width (pa		~ ~]	A		/	ан (т. 1997) 1.		
<u> </u>		or 2- way	^			/	· ·		
		Grade	· · · ·	97		<u> </u>	42		<u> </u>
	Βι	us Stops	Ć)	1		/=		-> 2
	S	toplights	C)					η.
	Motorcyc	cles					BARR	IER	APPEax 40'
	Automot	oiles			/		•		
	Medium		/-		/			X 1.	V ROW FENCE
	Heavy T	rucks			/			x - x	N (S)
	Buses Count du	ration	/		<u> </u>		2		LT-OI ON FENCE
			<u>/</u>						
	oordinate syste s Taken 7		estimated b	y Hadar / D	riving / Obse	ervation	1		RASHETBALL
	nal Notes		ts:				· . _	14	BASHETISAL
I	Other Noise	e Sources: c	listant: airc	craft/roadv	-	rains/land		-	ves/children playing/dogs barking/birds vocalizing/hsects
					,		2 01.01		

1 T

				/	ontrol Practice
					NT DATA FORM
	-312 WIDENIA				Date: <u>11/38/2013</u> Page of
Monitoring Location: 17	<u>-07 931</u>	NEWCAM	EN R	latD	Analyst: 500
Sound Level Meter	Fiel	ld Calibrati			Weather Data
Model #: <u>40720</u>	Model #:	CAL	200		Model #: <u>13500</u>
Serial #: 0436	Serial #:	578	39		Serial #: <u>1703474</u>
Weighting: AC / Flat	Calibration Lev	el (dBA):	94 /1	14	Wind: Steady/Gusty/Calm
Response: Slow/ Fast / Impl	Pre-Test	<u> </u>	0	dBA	Precipitation: Yes (explain) / No UGWT SNOW
Windscreer Yes No (explain)	Post-Test	-	-	dBA	Avg Wind Speed/Direction:
Topo: Flat / Hilly	GPS Coordin	ates (at SI	_M loca	tion) [#]	Temp (°F): 34,0° RH (%): 5/,8
Terrain: Hard/Soft/Mixed/Snow	NY0 03.90	ol'wa	75°36.	622'	Bar Psr (Hg): 0060 Cloud Cover (%): 50%
ID Start Stop L _{eq}	L _{min} L _{max}	L ₁₀	L ₅₀	. L ₉₀	Notes/Events
09:04 11/28/12 21	4- KOWR MEN	SUREME	WT.		· · · · · · · · · · · · · · · · · · ·
15:08 checkin	& batte	ries			
2122 changes	1 batte	ris			
ê					
≈ 08:45 RETRIEVED	METER			-	
			1	\$	
	-			•	
				-	
	5. 5	•		·	
Roadway Name/Dir J-	76		<u>com</u> r	<u>bass</u>	<u>Site Diagram:</u>
Speed (post/obs)*	165			\mathcal{V}	
Number of Lanes	1 65	·/		1	
	51A				
	$\frac{1}{2}$				<u> </u>
	AT /				
	0 1	•			
	0 /		1-		SO AFPROX * *
Motorcycles			- (-		W FENCE 50 ATTING
Automobiles				-**	B Could
Medium Trucks				ARRIE	LT.OZ ON FENCE
Heavy Trucks			ß	ARRE	L
Buses					
Count duration				•	
# - note coordinate system * Speed estimated b	by Radar / Driving Obs	ervation			
Photos Taken? Yes/No					
Additional Notes/Comments:					931
Other Noise Sources: distant: air		'trains/landsc onal Notes a		-	ves/children playing/dogs barking/birds vocalizing/insects

Proje	ct Name	PTC	319-3	12			Date: \\ 29/12 Page of		
Monit	oring Lo	cation: 4	7-0.	3 5	7 022	RFIELD	Dewi	ŧ	Analyst: 500
	Sound Lo	evel Mete	<u>r</u>		<u>Fiel</u>	d Calibra	ation		Weather Data
Model	#:	_LD77		Model #	#:	CAL			Model #: <u>K3500</u>
Serial	#: ろ	0434	,	Serial #			789		Serial #: 1703474
-	ting			Calibra	tion Lev	el (dBA):		14	Wind: Steady/Gusty/Calm
	nse: Slow			Pre-Tes	st	<u>_// 4</u>	$l_i \mathcal{O}$	dBA	Precipitation: Yes (explain) (No
Winds	creen : Ye	<u>A</u>	(plain)	Post-Te				dBA	Avg Wind Speed/Direction: 0-2mgh
Topo:	Flat /		L		-	ates (at s			Temp (°F): <u>34° F</u> RH (%): 50 %
Terrair	n: Hard/S	Soft/Mixed	Snow	N40	<u>03.91</u>	<u>9' W</u>	75°34.	<u>737'</u>	Bar Psr (Hg): /006 Cloud Cover (%): 100 73
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	10:14	11/29/	12	24.1	ion	MEAS	RENE	NT	
				a sak Galacia	na stati Kongo zasta				
			a .				······································		
			400.4						
	æ	10:00	"/30/1	<u> </u>	DADED	METEY	-		
		· .			1.4 V				
			00			L/			Cito Diagrami
R	badway N	lame/Dir	P A TO VAN	spike		/	<u>com</u>	pass 入	<u>Site Diagram:</u>
	Speed (po	ost/obs)*				-+		/)	
	Number			$\frac{2}{1}$					
	Width (p		N	A					1 Elected
		or 2- way		,			1 1	-22	<u>s</u> Ebound
		Grade	· · · · ·	a L					W bound ->
	B	us Stops		5			bach	Juin.	
	_S	toplights		6	1		Len	duin ce-	* * * * * * * *
	Motorcy	cles	(1			T		Pipeline 1800 747 3375 - Lasement
	Automobiles								pipeline /
	Medium Trucks								1800 747 3375
	Heavy Trucks								feasement
	Buses				/				
· ·	Count du	uration	/		Ļ				57
	oordinate syste s Taken?								
	nal Notes	\smile	· • • • •	K			Deefreld Drive		
	Other No	oise Sources	: distant: ai	ircraft/roac	ves/children playing/dogs barking/birds vocalizing/insects Reverse				

roject Name: TC 319-312 Project #: Date: 10/28/13 Page of Ionitoring Location: LT-04 Across from 311 yellows SPUNds RD Analyst: Date: 10/28/13 Page of Sound Level Meter Field Calibration Weather Data odel #: LD 712 SUM Model #: CAL2000 erial #: O4/8 Serial #: 5789 'eighting: D'C / Flat Calibration Level (dBA) 94 (114) esponse: Slow Fast / Impl Pre-Test 114,0 'response: Slow Fast / Impl Post-Test dBA 'opo: Flat frilly GPS Coordinates (at SLM location)* Temp (°F): GPS Coordinates (at SLM location)* N 40° 641.100* N 15° 34.105 Bar Psr (Hg): Bar Psr (Hg): 000.2 Cloud Cover (%): 076 14			FIELD					ontrol Practice NT DATA FORM
Contenting Location: LT-Of Actass Frame Jill by trace spectrum (SC PC) Analyst: Spot Sound Lavel Meter Field Calibration Field Calibration Weather Data odel #: LD 712 SCM Model #: CALE occ odel #: CHIR Serial #: State odel #: CHIR Serial #: State odel #: CHIR Serial #: State odel #: CHIR Calibration Level (BAN) 94 (TD) Wind: Steady/Gust/Calibration (Sec explaid) indscreen Model #: CALE Model #: CALE pro: Field Calibration Level (BAN) 94 (TD) Wind: Steady/Gust/Calibration (Sec explaid) pro: Field TD Calibration Level (BAN) 94 (TD) pro: Field TD Oce GE Coordinates (at St Model #: COOL pro: Field TD CBE Coordinates (at St Model #: COOL Avg Wind Speed/Direction: #O/L pro: Field TD CBE Coordinates (at St Model #: COOL Could Cool Could Cool pro: State Calibration (St Cool Could Cool Could Cool Could Cool pro: Cool Cool Cool Cool Cool Cool pro:		PTC 31	9-312		Pr	oject #:		Date: 10/28/13 Page of
Sound Level Meter Field Calibration Weather Data odel #: LD 7/12 StM Model #: CALLOC Serial #: CALLOC eighting D C / Flat Calibration Level (dBA) 94 (TD) Precipitation: Yes (explain)//M seponse Cition Fast / Impl Calibration Level (dBA) 94 (TD) Precipitation: Yes (explain)//M pro: Flat (TIMP) Pre-Test If Hu 0 dBA pro: Flat (TIMP) Pro: Mu (St) Temp (TF): Cold (Cold Cover (%): Dot 1.00 pro: Flat (TIMP) Inn (Inn (Cold Cover (%): Dot 1.00 Cover (%): Dot 1.00 Cover (%): Dot 1.00 pro:	Aonitoring Loca	ation: LT-04	ACRI	iss fra	M all	YELLOUS	SPRING	is RD Analyst: JDD
erial #: C4//// eighting@ C / Flat Serial #: J3987 ceighting@ C / Flat Calibration Level (dBA)? 94 (TD) Whick Steady/Gust/Calibration: Yes (explain) / No processor Fast / Impl Pre-Test Har Ø dBA indscreen (FS) No (explain) Pre-Test Har Ø dBA Arg Wind Speed/Direction: No (explain) No Ag Wind Speed/Direction: No pro: Flat CTID GFS Coordinates (at SLM location) Temp (*F): GL O RH (%): SD U primar: Har GSD/Mixed/Snow N 0'SUI.180'N Notes/Events CLS ID Start Stop Lin Lin Lin Lin Notes/Events CLS ID Start Stop Har Allow Notes/Events CLS CLS Notes/Events CLS ID Start Stop Har Allow Notes/Events CLS Notes/Events CLS ID Start Stop An codinad Pre-tails / Allow Notes/Events CLS ID Stop An codinad Pre-tails / An codinad Pre-tails / Allow Notes/	Sound Lev	el Meter						
eighting C / Flat Calibration Level (dBA) 94 (TD) Vind. Steady/Gust/Calm esponse (TD) Fast / Impl Pre-Test If 40 dBA port Flat / Impl QPS Coordinates (als El Mozation)* Temp (*F): Court (*): SO_4 errain: Harc Stop Last Link Link <td< td=""><td>1odel #: <u>L</u></td><td>D 712 SIM</td><td>Model i</td><td>#:</td><td>CAL</td><td>200</td><td>· · · ·</td><td>Model #: K3500</td></td<>	1odel #: <u>L</u>	D 712 SIM	Model i	#:	CAL	200	· · · ·	Model #: K3500
esponse (m) Fast / Impl indscreen (MS) No (explain) Post-Test /// 0 dBA Arg Wind Speed/Direction: MOAL pro: Flat (m) // 0 bl. 180 // 168 // 100 // 169 //	erial #:		Serial #	!:	5	789	-	Serial #: 1703474
indscreen (1920) No (explain) Post-Test dBA Ary Wind Speed/Direction: UNAL pro: Flat_CTTD			Calibra	tion Lev	el (dBA)	94 🏒	14	Wind: Steady/Gusty/Calm
ppp: Flat CTIN GPS Coordinates (at \$1 M location!' Temp (*F): \$0.10 FH (%): \$00_Y_Y prain: Hard Sill Miked/Snow N 40.541.100 N 15 1, 1, 05 Bar Psr (Hg): [00012 Cloud Cover (%): 107.5 1.10 ID Time Time Lun Cloud Notes/Events Cloud 11:03 1925/13 Cloud Advance/Areaseverence PAtrice plus On Mell mundates Cloud Cloud Advance/Areaseverence PAtrice plus Cloud			and the second	st		1,0	dBA	Precipitation: Yes (explain) / No
errain: Hard Studikad/Snow N 40'84/.80' N 12' 14.05 Bar Par (Hg): [OOC): Cloud Cover (%): 10'2 16 ID Start Time Stop Time Loa Loa Notes/Events Clos ID: 03 Hobel c GEGIN 24' Hour Areas indexinent PA that A pill commandes of 3 r3 10/27/15 One to bollenes (replaced batterus Fabric and close services PA that A pill commandes of a rail (b) the commandes of a rail (c) the commandes			Post-Te	est	-		dBA	Avg Wind Speed/Direction: NO NL
ID Start Stop Time Lm			GPS	Coordin	ates (at	<u>SLM loc</u>	ation) [#]	Temp (°F):
ID Start Stop Time Lm	errain: Hard Sof	Mixed/Snow	N 40	64.18	00° N	ns°n	4.105	Bar Psr (Hg): 000.2Cloud Cover (%): 106 14
08.52 19/27/15 check balleres training the one of the optimized of th								05
08.52 19/27/15 check balleres training the one of the optimized of th	17.03 1	0/28/13	REAN) 24-	Ump 1	A BASING	SALEA	PALS. I.
ITOA 10/19/k end a coding Good avoilble when ITOA 10/19/k end a coding present Recuptor a boure during to a coding gramme gramme Speed (post/obs)* (\$1/70 integram: Number of Lanes Y Integram: gramme Ito a coding gramme ito a coding gramme Ito a coding gramme gramme gramme Ito a codingra <t< td=""><td></td><td></td><td>1 A A A A A A A A A A A A A A A A A A A</td><td></td><td>1 1 1 1 1 1 1 N</td><td>1HOM</td><td>CIVICN</td><td></td></t<>			1 A A A A A A A A A A A A A A A A A A A		1 1 1 1 1 1 1 N	1HOM	CIVICN	
Roadway Name/Dir Roadway Name/Dir TURNPHIE Speed (post/obs)' (ST20 Number of Lanes 4 Width (pave/row) Number of Lanes 4 Number of Lanes 4			Ser			SHORES / A		
Roadway Name/Dir PA TukuPME Speed (post/obs)* Speed (post/obs)* Site Diagram: Speed (post/obs)* Site Diagram: Site Diagram: Site Diagram: Site Diagram: Site Diagram: ClawN	1701 K	hau	1. Sec. 2.	1	Á.		nes	God Avoldke whin
Roadway Name/Dir PA TURUPME Compass Site Diagram: Speed (post/obs)* 65/20 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 7 <td></td> <td></td> <td>en</td> <td>α_^</td> <td>Led</td> <td><u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u></td> <td><u></u></td> <td>present</td>			en	α_^	Led	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	<u></u>	present
Roadway Name/Dir PA TURUPME Compass Site Diagram: Speed (post/obs)* 65/20 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 7 <td></td> <td></td> <td>n N</td> <td></td> <td></td> <td></td> <td></td> <td></td>			n N					
Roadway Name/Dir PA Tuwprif Compass Site Diagram: Speed (post/obs)* 65/20 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Midth (pave/row) N/A Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diag								
Roadway Name/Dir PA Tuwprif Compass Site Diagram: Speed (post/obs)* 65/20 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Midth (pave/row) N/A Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diagram: Image: Site Diag								
Roadway Name/Dir PA TURUPME Compass Site Diagram: Speed (post/obs)* 65/20 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Roadway Name/Dir PA TURUPME Compass Site Diagram: Speed (post/obs)* 65/20 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Roadway Name/Dir PA TURUPME Compass Site Diagram: Speed (post/obs)* 65/20 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Number of Lanes 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 4 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 6 Image: Site Diagram: Image: Site Diagram: Image: Stops 7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Noadway Name/Dir Turwprife Speed (post/obs)* (as//70 Number of Lanes 4 Width (pave/row) N/A . 1- or 2- way 2 Grade FLAT Bus Stops 6 Motorcycles				e y y y National de la companya de la company La companya de la comp				Receptor above turnplue gro
Speed (post/obs)* 65/70 Number of Lanes 4 Width (pave/row) N/A . 1- or 2- way 2 Grade FLAT Bus Stops 6 Stoplights 0 Automobiles 0 Medium Trucks 0 Heavy Trucks 0 Buses 0 Count duration 0 Ste coordinate system* Speed estimated by Radar / Driving Descrution	Roadway Nan	ne/Diri			1	<u>com</u>		<u>Site Diagram:</u>
Number of Lanes Here Width (pave/row) N/A I - or 2- way Image: Control of Lanes Grade FLAT Bus Stops Image: Control of Lanes Stoplights Image: Control of Lanes Motorcycles Image: Control of Lanes Automobiles Image: Control of Lanes Medium Trucks Image: Control of Lanes Heavy Trucks Image: Control of Lanes Buses Image: Control of Lanes Count duration Image: Control of Lanes Dete coordinate system - Speed estimated by Radar / Driving Conservation Image: Control of Lanes	Speed (post					(')))	
Width (pave/row) N/A 1- or 2- way 2 Grade FLAT Bus Stops 6 Stoplights 0 Motorcycles 0 Automobiles 0 Medium Trucks 0 Heavy Trucks 0 Buses 0 Count duration 0 Decoordinate system * Speed estimated by Radar / Driving Deservation Otos Taken? X							\mathbf{V}_{\perp}	
1- or 2- way 2 Grade FLAT Bus Stops 0 Stoplights 0 Motorcycles 0 Automobiles 0 Medium Trucks 0 Heavy Trucks 0 Buses 0 Count duration 0 Dete coordinate system * Speed estimated by Radar / Driving Observation 0	and and ware extended as a second		A		+			
Grade FLAT Bus Stops Ø Stoplights Ø Motorcycles IT-04 Automobiles IT-04 Medium Trucks Image: Court duration Buses Image: Court duration Ote coordinate system Speed estimated by Radar / Driving Observation					+			W Bound
Bus Stops Ø Stoplights Ø Motorcycles Image: Common sector Automobiles Image: Common sector Medium Trucks Image: Common sector Heavy Trucks Image: Common sector Buses Image: Common sector Count duration Image: Common sector Dete coordinate system * Speed estimated by Radar / Driving Observation Image: Common sector Otos Taken? Yes No							and the second design of the	
Stoplights Ø Motorcycles IT-04 Automobiles Image: Construction Medium Trucks Image: Construction Heavy Trucks Image: Construction Buses Image: Construction Count duration Image: Construction Dete coordinate system * Speed estimated by Radar / Driving Observation Image: Construction	6 10 10 10 10		1			Name of Street, or other	nandeli sternovadku	EBOWND ->
Motorcycles Automobiles Medium Trucks Heavy Trucks Buses Count duration Dete coordinate system * - Speed estimated by Radar / Driving Observation otos Taken? Yes No			1	-+		And States		
Automobiles Medium Trucks Heavy Trucks Buses Count duration Dete coordinate system * - Speed estimated by Radar / Driving Observation otos Taken? Yes No	The state of the s			\uparrow				LT-04
Medium Trucks Image: Construction Heavy Trucks Image: Construction Buses Image: Construction Count duration Image: Construction Dete coordinate system * - Speed estimated by Radar / Driving Image: Construction Otos Taken? Yes No	the second s						• •	x x x Row
Heavy Trucks Buses Count duration Dete coordinate system *- Speed estimated by Radar / Driving Observation otos Taken? Yes No					and the second se	*-		
Buses Count duration Dete coordinate system * - Speed estimated by Radar / Driving Observation otos Taken? Yes No	a second second second		<u> </u>	+-	9 			· JIII MAILGOX
Count duration De coordinate system - Speed estimated by Radar / Driving Observation otos Taken? Yes No	part of the second s		<u></u>	 		ہیں۔ ا	YEL	LOW STRINKS RD
otos Taken?	and the second sec	tion					and the second se	
otos Taken? Yes No & h h				—				
			y Radar / Driv	ing Obser	vation		Paratella	
			platos				21	2 0111
	uuunai Notes/Col	<u>inments:</u>	1		1000 1000 1000		011	d'i'

Additional Notes and Sketches on Reverse

1

ć

									ontrol Practice
									NT DATA FORM
Proje	ct Name	: <u>PtC 3</u>	<u>519-3</u>	12W	denin	A Prc	oject #:		Date:11 (28/12 Page of
Moni	toring Lo			<u>01 -</u>				<u>z Ro</u>	
,	••••	evel Meter				Id Calibra		,	Weather Data
Model	#: LD	<u>820</u>		Model #	#: (200	-	Model #: K3500
Serial		1651		Serial #	<i>⊧</i> :	578	39	~	Serial #: <u>17034</u> 74
Weigh	nting: ALC	/ Flat	· •	Calibra	tion Leve	el (dBA):	: 94 (1	14	Wind: Steady/Gusty Calph 0-2 mph
Respo	onse: Slow	🖉 Fast / Ir	npl	Pre-Te	st	114.	0	dBA	Precipitation: Yes (explain) No
Winds	screen : (Ye	es) No (e	(plain)	Post-Te	əst		<u> </u>	dBA	Avg Wind Speed/Direction: 0-2 Mph
Торо:	Flat /			GPS	Coordina	ates (at	SLM loc	ation)#	Temp (°F): <u>36°</u> F RH (%): <u>73 7</u> 0
Terrai	n: Hard/S	Soft/Mixed	/Snow	N40°	04.210	2 W7	5 40.8	59	Bar Psr (Hg): 1084,7 Cloud Cover (%): 2070
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	935	340	65.4	55.5	73.2	69.7	63,1	58.7	
 	940	945	67.2	57.3		70.3	64.2	60.1	
\vdash	945		66.6	54.0	78.4	70.0	64.3		
	950	955		57.0	1	71.0	64.5	60.6	1 1
	1		61.4		10.		6	60.0	
	•				·	<u> </u>	['		
 			· · ·		·'	<u> </u>	<u> </u>		1
	1	+						<u> </u>	1
		 	 	┨────	·	 '	<u> </u>		1
		<u> </u>	'		'	'	├ ────′		+
		<u> </u>	 .	┼───	'	<u> </u>	├ ──′		1
	1				l	 '	 '		
 	<u> </u>	<u> </u>		CH IN (AN)	PA	<u></u>	Com	ipass	Site Diagram:
R	oadway N	Jame/Dir	PENM	AD	TURN	sike		$\sum_{n=1}^{n}$	Ole Diagram.
	Speed (po			3.	1 1 1 1 1	<u>`</u>	(N	$\mathbf{\mathbf{x}}$)	
<u> </u>	Number (35 2	ار بر	165			
	Width (pa				N/	A	1		
			-	<u>*1</u>	<u>+</u> ;	<u>// / / / / / / / / / / / / / / / / / /</u>	1		
	<u> </u>	or 2- way		L'AT		AT	1		
		Grade		<u>NTI</u>	<u>ru</u>	AT	1		and the second
		us Stops					1		
		Stoplights		<u> </u>	EB	-HQ	4		and the second
┣──	Motorcyc		4	<u>)</u>	ø	- P	4		
┣—	Automot		45	•	223	183	l'		
<u> </u>	Medium		$\frac{1}{2}$. [B	13	4		lurnai II
	Heavy T	rucks	3	,	55	54	4		the it
┣───	Buses		Ψ		Ø	, Ø	4		
	Count du	uration	15 M	UN .	15 M	<u>ia</u>	Į	Pe	NNSYLVANIA RD H
1	coordinate syste		~			1	() () () () () () () () () ()		
	os Taken?		<u> </u>	pho	105			12/0	Fired 1-1 Hot Microphone
<u>Additic</u>	onal Notes	/Commen	<u>ıts:</u>	`				JE-	##30 P Forme
	Other Nois	e Sources: c	distant: air	craft/roadv	-		dscaping russ	-	ves/children playing/dogs barking/birds vocalizing/Insects

URS ANCP, Field Noise Measurement Form, Vers. 1.2 111109

<u>Sc</u> Model #: Serial #: Weighting Response	ng Loo bund Le - g A c	DTC cation: vel Meter LD 8	<u>319-</u> 57-0	312		Pro	ASUR oject #:		<u>NT DATA FORM</u> Date:\\ 2 ゆ/12 Page of
Monitori Sc Model #: Serial #: Weighting Response	ng Loo bund Le - g A c	cation: evel Meter LD 8	<u>ST-0</u>	<u>いて</u> のこう	87.6	- FIC	<u>лесі</u> # .		
<u>Sc</u> Model #: Serial #: Weighting Response	$\frac{1}{2}$	LD 8	ŗ	ř <u> </u>		10.11	a elsin		Analyst: JDD
— Model #: Serial #: Weighting Response		LD 8	-			d Calibra	4	5 0000	Weather Data
Serial #: Weighting Response				Model #		<u>a</u> 2			Model #: \<3500
Response				Serial #			89	•	Serial #: 1703474
Response		/ Flat		Calibrat	tion Leve	el (dBA):		14)	Wind: Steady Gusty Calm
Windscre			npl	Pre-Tes	st	114	.0`	dBA	Precipitation: Yes (explain) No
11 III GOOLC	en : Yes	s) No (ex	(plain)	Post-Te	est			dBA	Avg Wind Speed/Direction: 510 mpt
Торо:	Flat /Hi						SLM loca		Temp (°F): <u>35 </u>
Terrain:	Hard/So	oft//Mixed	/Snow	40 00	1.228	W 7	5 40,	496	Bar Psr (Hg): 1004, Cloud Cover (%): 202
11) 1	Start Fime	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
10	05	1010	64.4	56.0	71.9	66.8	63.8	59.8	
		1015		53.5		67.1	62.7	58.1	
		1020		56.2	71.1	68.6	64.5	60.5	
		5							
		ame/Dir	DΔ			1	com	pass	Site Diagram:
Road	iway Na	ame/Dir	TURN	(U)	· ·		K		
Spe	ed (po	st/obs)*	55)	115				<u>۷</u>	
Nu	mber o	of Lanes	- 4					·	
Wi		ave/row)	N/	A		/			PA THA
	1- 0	r 2- way	2	<u> </u>		/			PA TURN PIKE
		Grade		251	/				
· · ·		is Stops	~ /	W	6				MICOPASK TO SE
Mc	otorcyc	oplights	Ľ Ø	<u>~</u>					TEAST TUNCH
	Itomob		181	210	-/				
		Trucks	1Ø	15	- /				IN DISTEI
	avy Tr		77	59	1	-	, ·		PARK
	ises		ø	2			ľ		
Co	ount du	ration	15	MIN					
i - note coordi Photos Ta <u>Additional</u> へのい ott	aken? Notes/	Yes No Commer	11] 1 <u>ts:</u> NousH	photos	ork a	LIOSS) Stree) (ba	ves/children playing/dogs barking/birds vocalizing/insects

									ontrol Practice
Proie	ect Name	. Pr	0 21						NT DATA FORM
Moni	toring Lo	ocation:	5702	- 10	1.200		oject #:		Date: 10/29/13 Page of
		evel Mete		<u>- 4 e</u>		Id Calibr		80 9	Weather Data
Mode		8205		Model			200	· · · · ·	Model #: 123500
Serial #: 1652 Serial #: 5789									Serial #: 1703474
Weigh	nting: A	/ Flat		Calibra	tion Lev	el (dBA)		114	Wind: Steady/Gusty/Calm
	onse: Slov		- 10 - - 11	Pre-Te	st	110	1	dBA	Precipitation: Yes (explain No
Ninds	screen (Y	es/No (e	xplain)	Post-T	est	~		dBA	Avg Wind Speed/Direction:
Горо:				<u>GPS</u>	Coordin	<u>ates (at</u>	SLM loc	ation)#	Temp (°F): 49 F RH (%): 6 7
Ferrai	n: Hard(S	Soft/Mixed	/Snow	N4C	03.8	59'N7	539	3521	Bar Psr (Hg): Cloud Cover (%):
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	1050	1055	60.3	53.2	64.6	62.5	60.1	56.4	
	1055	1100	61.6	55.1	69.6	64.1	61.1	58.3	
	11:00	11:05	60.8	56.3	63.9	627	60.5	58.2	
	11:05	11:10	60.3	52.5	64.9	62.4	60.1	57.3	
	11:10	11:15	61.8	55.5	71.3	63.9	60.7	57.5	
<u></u>									
- 									
			PA-	CO14	(DA)	TPh		2222	
Ro	adway N	ame/Dir	E		175	R		pass	$\frac{\text{Site Diagram:}}{C} \neq \Delta$
S	Speed (pc	ost/obs)*	65	70	651	70))	No Line of sight to Turnarke
	Number o	of Lanes	7		2		WE		
1	Width (pa	ave/row)	K	0	52)			PATYRNPIKE E-
	<u> </u>	r 2- way		1			S	Ne	restration
		Grade	<u> </u>	at-	<u>e12</u>	+		Se	me hard wood thees
		is Stops						6	ush, mostly and
		oplights			1			C	Onwood field Between
	Motorcyc							Z.	phine B All Constant
	Automob Medium ⁻				N 19 N 19		0		Vertication of and
	Heavy Tr				2 		-6/		Tain A DALAA A
	Buses	uuna							office / Reproduce
	Count du	ration	n na sea an			[> R PATURA
- 1, i - 1	ordinate system		stimated/by	Badar / Driv	vin <i>a la 17</i>			MA	Waled & below
	Taken?		7.1		User	vauor *			Stage
hotos			· / Ø				~ D ^))	L L Lecep
	nal Notes/	Comment	<u>s:</u> 1						
ditior				aft/readwa	ay traffic/tra	ains/lands	OFA caping/rus and Sketch	tling leave	s/children playing/dogs barking/bkds vocalizing/bsects

									ontrol Practice	÷		
<u> </u>									NT DATA FORM			
Proje	ct Name	PTC	319-	<u>·312</u>		Pro	oject #:	Ten PA	Date: Page of			
MONI							•	uck , p				
Model		<u>evel Mete</u> LDB2	-	Model #		<u>d Calibra</u> 2017			Model #: K3500			
Serial	-	1651		Serial #		579		-	Serial #: 1703474			
1	ting: A C						: 94 (1	1	Wind: Steady/Gusty/Calm			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Fast / Ir	nol	Pre-Te		dBA	Precipitation: Yes (explain) (No					
		/ No (e>		Post-Te		dBA	Avg Wind Speed/Direction: 0-2 mph					
Торо:	(Flat )		<u> </u>		Coordina	Temp (°F): 32°F RH (%): 76 7						
		Soft/Mixed	Snow				75°38,		Bar Psr (Hg): 1004.7 Cloud Cover (%): 50 7	2		
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events			
<u> </u>	1120		11:0	57.6	22.2	69.6	129	1211				
┣───	1125	1125	66.9 67.2	59.0	73.3 7 <b>3.5</b>	1	65.1	67.4 61.7	· · · · · · · · · · · · · · · · · · ·	$\neg$		
	1130	1135		60.1	73.0	69.5	66.2	62.6				
	11.30	11.50	66.7	60.1	7510	6115	00.0	40.6	······			
							<u> </u>					
Ro	badway N	lame/Dir	PA			· /	<u>com</u>	pass	Site Diagram:			
			TURNA			-+						
	Speed (po	,	55	165		-+			PA TURNPIKE	┝╍╋╸		
	Number		- <b>4</b> ~/	<b>A</b>		$-\!\!/-$	{		PA TURNPIKE			
	Width (pa	ave/row) or 2- way	2	r)					->W M			
	1-0	Grade		at.		/	1			900 ang 12		
	Bi	us Stops		Ø			1		DODGEN SUNT FENCE (PRIVACY-TYPE) F			
		toplights		5	-/		1 -	V	CODEN SLAT FENCE (PRIVACY-TYPE) F			
	Motorcy			P w	- /-		1 · ·	mun	Haises BERN			
	Automol		1.5	 n3			1	1000				
	Medium		8	12			]		PARKING A A			
	Heavy T	rucks	45	46	/		]	AA				
	Buses	•	ø	3				-HIVE	BROSE EN HOUSE			
	Count du	uration	151	NN				, <b>,</b> , ,	PROSE DIVE			
# - note c	oordinate syste	er Speed	estimated b	y Radar / D	riving / Qbs	ervation						
		Yes/No						Fair				
<u>Additio</u>	Additional Notes/Comments:											
	Other Nois	e Sources: c	listant: air	craft/roadv	-			<b>e</b>	wes/children playing/dogs barking/oirds vocalizing/hisects			

									ontrol Practice		
Ducia	-+ NI								NT DATA FORM		
Proje	ct Name	Cation S	319 TDC	<u>XL</u>	L. Tr		ject #:		Date: $1/28/12$ Page of Analyst: $JDI$		
		evel Mete		HOI		d Calibra		laygi	Weather Data		
Model		LD82		Model #		- 1	200	0			
Serial		1651		Serial #		57			Serial #: 170 3474		
	Veighting: A A / Flat Calibration Level (dBA):								Wing. Steady Gusty/Calm		
-	nse: Slov	1	npl	Pre-Te			4,0		Precipitation: Yes (explain)		
	creen	<u> </u>		Post-Te				dBA	Avg Wind Speed/Direction: 0-2 Mpk		
Торо:						ates (at s			Temp (°F): <b>39°F</b> RH (%): <b>67%</b>		
Terrair	n: Hard/S	oft/Mixed	Snow	NYO	°03.9	34' W	75'38	5.149	Bar Psr (Hg): 1007 Cloud Cover (%): 50 7.		
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events		
	1145	1150	69.7	61.2	78.8	73.1	67.8	63.5			
1	1150		68.4				66.8				
		12:00 N			75.6		66.4	62.3			
									· · ·		
					•						
									· · · · · · · · · · · · · · · · · · ·		
									· · · · ·		
			PA			L/	com		Site Diagram:		
Ro	padway N	lame/Dir	TURNE	ate.		1		pass	Sile Diagram.		
	Speed (po	ost/obs)*	55			-+		()			
	Number (			1			/				
I	Width (pa	·····		N		1		_	E.		
		or 2- way		ン		1			W		
		Grade	fle	at.		/					
	Bi	us Stops		<u>Ø                                    </u>					ROW OF EVGLORIENS		
	S	toplights		Ø					PLAY   V   MAN		
	Motorcy	cles	El	2 W					PLAY GROUND TOWN HOMES		
	Automot		181	168	$\square$				LANG PRONE		
	Medium		10	8	ļ./				PARKING LOT		
	Heavy T	rucks	45	55	<i> </i>				PARKING LOT		
	Buses	wation		2	/				Et		
# - note c	Count du		estimated b	• •		ervation			TOWNHOMES IF TOWNHOMES		
	Photos Taken? Ves No. 1										
Additional Notes/Comments: DAVIS ST											
	Other Nois	e Sources: d	listant: air	craft/roadv	vay traffic/	rains/land	scaping/ru	ustling leav	ves/children playing/dogs barking/birds vocalizing/insects		
L			1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1		Additi	onal Notes	and Sket	ches on R	everse		

			•						ontrol Practice
Proje	ect Name	): PT	0 2		<u>512</u>				NT DATA FORM
							oject #	Name	Date: 10/29/13 Page of endrur Analyst: JDD SQS
	Sound L	evel Mete				ld Calibr		ra (Ger	
Mode	#: LDS		-	Model				<b>)</b>	Model #: K3500
Serial			V	Serial			Serial #: 103474 OCASSIONAL		
Weigh				-		el (dBA)	<u>89</u> : 94/(	114	Serial #: 103474 OCassional Wind: Steady/Gusty/Calm) Land gusts
	onse: Slov		mpl	Pre-Te		Precipitation: Yes (explain( / No			
Vinds	screen. Ye	es No (e	xplain)	Post-T	est	/		_dBA dBA	Avg Wind Speed/Direction: 0 - 2 u.Oh
Горо:	Flat	Hilly		GPS	Coordin	ates (at	SLM loc	ation)#	Temp (°F): 55°F RH (%): 64,7 2
errai	n: Hard/s	Soft/Mixed	/Snow	N400	3.605		15°37		Bar Psr (Hg): 1011.7 Cloud Cover (%): Cu of
ID	Start- Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	1320	1325	60.1	54.3	65.3	62.9	59.5	55.8	
	1325	1330	60.7	51.2	65.5	63.7		54.4	
e de la composición d La composición de la c	13:30	13:35	60.4		63.3	63.8		55.5	
	13:35	13:40		52.3		61.9	58.5	54.8	
	13:40	13.45	59.4	51.8	65.0	61.8	58.8		
j.									
Rc	adway N	ame/Dir	PA-		PA ·		com	pass	portral Site Diagram;
	hood /ma	-*/-1>*	E	<u>S</u>		<u>08</u>	E	2	them offer 1333
	Speed (po Number o		65	70	65	170	2	フ	tunp: 1-305
	Width (pa	1.1.1.1.1.1.1.1.1.1		2		2	TAT	2	
		r 2- way	~~~>	$\mathcal{O}$	<u> </u>		VY		PATULNOIKE ->E
	<u> </u>	Grade	रि		17			000	Auguill needs all
	Bu	is Stops		27			· Cj	gra	Jup Man
		oplights					The second secon		arroad PD yes
	Motorcyc	2					L7		- De dian
	Automob						$\square$	1 weater	and land
	Medium ⁻	Trucks					Sur I		+ pose >
	Heavy Tr	ucks	n an				63.4	r	estdenie
	Buses				<u></u>	and a second second			a round of Microphan
(	Count du	ration ···			in a series An <u>series</u>			٨Į	Steps-F. Lusing
	ordinate syster			Radar / Driv	ing/ Obser	vation			esidence acound of Microphane Steps toond of Microphane antipinto antipinto antipinto
	Taken?			not	05		<b>, 1</b>		
	nal Notes/			N-1-	ан ^{са} са	Δ	price +	nees	pond / w
anu	Other Noise	5 QOD Sources: di	rt gra stangatroi	de to aft/roadwa	(CCE pt	ains/lands	aping/rus	tling leave	es/children playing/dogs baring/birds vocalized/Insects
-					Additior	nal Notes a	and Sketch	nes on Rev	Verse
				that s	Addition	nal Notes a	and Sketch	nes on Rev	werse NNCP, Field Noise Measurement Form, Vers. 1.2 111109

1.				URS	Acous	stics a	nd No	oise C	ontrol Practice
				FIELD	NOIS	SE ME	ASU	REME	NT DATA FORM
Proje	ect Name	PTC	319	-31	2	_ Pr	oject #		Date: 10/29/13 Page of
Moni	toring Lo			7 5	511 h	lorth	inato	n Ral	Analyst:
	Sound L	evel Mete	<u>er</u>		Fie	ld Calibr			/ Weather Data
Mode	#:	STO	7	Model	#: C		Model #: \$3500		
Serial	#:	6	52	Serial #	<b>#:</b>	Serial #: 1703470			
Weigh	nting: A	/ Flat		Calibra	tion Lev	Wind: Steady/Gusty/Caim			
Respo	onse: Slow	/ Fast / Ii	mpl	Pre-Te	st	Precipitation: Yes (explain) // No			
Winds	creen	es) No (e	xplain)	Post-T	est			_dBA dBA	Avg Wind Speed/Direction:
Торо:	Flat	HILLY		GPS	Coordin	ates (at	SLM loc	ation)#	Temp (°F): 40°F RH (%): 41.4
Terrai	n: Hard	Soft/Mixed	/Snow		0363		15 37.		Bar Psr (Hg): 00.4 Cloud Cover (%): Che Or
	Start	Stop							
ID	Time	Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	1255	12/60	101	1110	1 - 0	1.1	100		
	1355		58,6	46.3		61.5	5/.8	53.5	
<u>, , , , , , , , , , , , , , , , , , , </u>	1400	11		51.0			57.4	54.8	
<u>.</u>	14:05	14:10	60.0		17 L	62.7		55,8	
	14:10	14:15	59.2	51.4	64.0			55.5	
	14:15	14:20	60.0	54.1	64.5	62.4	59.6	56,4	
							·		
						1 .			
					المراجع المراجع				
		(							
Ro	adway N	ame/Dir	PA -	tpu	PA ·	tP4	<u>com</u>	pass	Site Diagram:
			<u> </u>	B	Ŵ	ß			partial view of two piles
	peed (po		65	170	651	70	X	$\mathcal{D}$	in bound =======
	Number c	of Lanes		2-	2			3 حتي منبرين	PATURNPIKE E bound -
1	Width (pa	ave/row)	5	0	50	>		- Contraction of the second	
· ·	1- o	r 2- way		1	1				nordwood trees and brush
		Grade	fla	$\lambda + 1$	$f_{e}$	2 + 1		. Jos	and the second
	Bu	s Stops		F				And the second	LA ET SI
	St	oplights					5	1,5	Moust Microphine [barn]
	Motorcyc	les					32	<b>9</b>	Microphine Thoral E
	Automob	iles			· · · · ·		Cor 3		mosopune barn c
	Medium 7	Trucks					~ /	1 360	
	Heavy Tr	ucks				х. ¹	· •	hops	
	Buses				· · · · · · · · · · · · · · · · · · ·		]		10 me 11 183
	Count du	ration	<u> </u>	<u> </u>					(B) / 0-5
	ordinate syster		stimated by	Bader / Driv	ind Ohan	Vation	Z	lery.	
	Taken?	/ · · · · ·				valion		- AL	Star I Star
	al Notes/		. L P	5	$\sim$			· •	superior 11 >
			<u></u>						
1	Other Noise	Sources: dis	stam: aircr	aft/roadwa	y traffic/tra	ains/lands	caping/rus	tling leave	s/children playing/dogs barking/birds vocalizing insects
					Addition	nal Notes a	and Sketcl	es on Rev	verse

	URS Acoustics and Noise Control Practice FIELD NOISE MEASUREMENT DATA FORM													
	ct Name					•	oject #:		Date:///28/12Pageof					
Monit	oring Lo			1148				(Rt u						
	Sound Le	evel Mete	-			d Calibr			Weather Data					
Model	#:			Model #			200	<u>.</u>	Model #: <u>K3500</u>					
Serial	-	165	<u> </u>	Serial #	<b>!</b> :	.578	89		Serial #: 1703474					
Weigh	ting: A) C	/ Flat		Calibra	tion Leve	əl (dBA)	: 94/(1	14	Wind: Steady/Gusty/Calm					
Respo	nse(Slow)	/ Fast / Ir	npl	Pre-Te	st	<u>)14</u>	Ó	dBA	Precipitation: Yes (explain / No					
Winds	creen (Ye	<u>s / No (e</u> )	(plain)	Post-Te	est	/	~	dBA	Avg Wind Speed/Direction: 0-2mph					
Торо:	Flat /			<u>GPS</u>	Coordina	ates (at	SLM loc	ation) [#]	Temp (°F): 41°F RH (%): 707					
Terrair	n: Hard/S	oft Mixed	Snow	N40°	03.90	UW-	15°30.	914	Bar Psr (Hg): /005 Cloud Cover (%): 20%					
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events					
	1345	1350	68.8	59.2	74.9	722	67.7	62.3						
	1350				73.7		1							
	1355			59,0	75.4	71.8	67.6	63.1						
				5/10										
					· · · ·									
			1.											
					· ·		<u> </u>							
					1									
Ro	badway N	l lame/Dir	PA	NIKE		-51064	com	pass	Site Diagram:					
				-		<u>d</u>	(_							
	Speed (po	<u> </u>	22	165	OBS	35		<u>ン</u>						
	Number o		2	4		<u></u>	4		PA The second se					
	Width (pa			YA	2	<b>4'</b>	4	4.15	18 Conestoge Ld					
	1-0	or 2- way	<u> </u>	L.	2		4	{   -	In Int					
·		Grade	-710		· +6	AT	4		(NOUSA) * (2)					
		us Stops	(	$\underline{\nu}_{\underline{k}}$	<u> </u>	<u>)</u> 5	· .		Gullo C					
/		toplights		£—	Ų	) · ·			DEIVEWAY					
L	Motorcyc		E	<u>Øw</u>		<u>p</u>								
	Automot		220	208	13	6								
	Medium		18	12		4								
	Heavy Trucks 48 54 6													
	Buses		$\phi$											
	Count du	uration	151	MIN	$\rightarrow$									
	oordinate syste	· · · · ·	$\sim$	ny Radar / D		ervation								
<u>Additio</u>	nal Notes	/Commen	its: T	rentere en Al,	<u>~</u>		· · ·	n ¹ .						
	Other Noise	e Sources: c	listant: air	craft/roadv	-		lscaping/ru s and Sket		ves/children playing/dogs barking/birds vocalizing/Insects					

									ontrol Practice	
Droig	ot Nome	. Dro	21		NOIS				NT DATA FORM	
	ct Name toring Lo			9-5	$\frac{1}{2}$		oject #:		Date: 10/29/13 Page of	
101011		evel Mete		10			Daks	La	Analyst: 300/Seg	_
Mödel	#: LD	A .		Model		Id Calibr		~	Weather Data	n en Le Anti
Serial		lis	1	Serial i		<u>CAL</u>	200		Model #: <u>K.3500</u>	
	$\frac{\pi}{10}$		<u> </u>	-				/ «	Serial #: 1703474	
	inse Slow		mol	Pre-Te	ation Lev	ei (aBA) 1 1 1	94 /		Wind: Steady/Gusty/Calm	
	creen : Ye	-		Post-T		_dBA dBA	Precipitation: Yes (explain) / No			
Торо:	Flat /F				Coordin		Avg Wind Speed/Direction:			
Terrai	- X	Soft Mixed	/Snow	Nuco	13.968		536.		Temp (°F): 60° F RH (%): 62	
	Start	Stop					<u>&gt; &gt;90</u>	100	Bar Psr (Hg): 1909 Cloud Cover (%): Clean	6
ID	Time	Time	L _{eq}	L _{min}	Lmax	L ₁₀	L ₅₀	L ₉₀	Notes/Events	
	1400	1405	64.6	624	224	141	110			_
· ·	1405	1410	66.4	52.8	73.4	68.6		56.1		
	14:10	14:15	65.7	55.0	75.4	69.7	65.0	59.0		
	14:15	14:20		55.2		69.5		59.2		
	14:20	14:25	66.5	54.6	<u>73.0</u> 73.3	69.5	64.1	59.6		-
	14:25	14:30	66.1	54.9	74.1	70.5	64.5	58.4		
	14130	14135		54,8	74.2		67.0	57.8		
	11.50	11.73	60,0	21,0	1.0	70.0	64.0	1017		_
										_
										_
-	-									
										_
			1PA	три	PA	TPh	com	naee	above Site Diagram:	
Ro	adway N	ame/Dir	E		1 <b>1</b>	ß		1	turnpilu limited vuis	
S	peed (po	st/obs)*	65	In	65	170		(h)	E4	
	Number c		12 *	2/	2				PATURDAKE W-	≥
1	Width (pa	ve/row)	<	n	50	21			hall A	
	1- o	r 2- way		1 I	1			بتصنيفت الشنتي وسيعاد مليان		
		Grade	\$10	4	fla	+	(مل ه ۵	make	Lop way tere	
) J	Bu	s Stops				/	10th	11.2	diff thouse	
	St	oplights	/						Stor B The way of	
	Motorcyc	les	n en Anne an Rock					1		
	Automob	iles					the		no de los	
	Medium 7	<b>Frucks</b>					X		a catser	
	Heavy Tr	ucks				1.1	/	~9		
	Buses							and the second second		
(	Count du	ration					-			
- note coo	ordinate system	-Speed ex	stimated by	Radar / Driv	ving, Obser	vation			5	
	Taken?		GP	hat	v =					
Addition	al Notes/	comment	<u>s:</u> \							
	Other Moine	Sources de	10			. <u>.</u>		a an		
		Cources: dis		alvroadWa	ay traffic/tra Addition	ans/lands al Notes a	caping/rus and Sketch	tiing leave	es/children playing/dogs barking/birds vocalizing/insects	

Proje	ct Name	: PTC	319	-317			oject #:		Date: 1/28/12 Page of		
Monit	oring Lo			0	205	6 50	len C	aks	Road Analyst: JDD		
		evel Mete	-			d Calibr	ation		Weather Data		
Model		LDB	Ø.	Model	#:		200		Model #: <u>K3S00</u>		
Serial		165	1	Serial #		57		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Serial #: 1703474		
-	Veighting: ALC / Flat Calibration Level (dBA							14	Wind. Steady/Gusty/Calm		
•	nse: Slow	11	•	Pre-Te		<u>_!!ч</u> ,	0	dBA	Precipitation: Yes (explain) / No		
Windscreen (Yes No (explain) Post-Test								dBA	Avg Wind Speed/Direction: 6-2uph		
Topo:	Flat /						SLM loc		Temp (°F): <u>38°F</u> RH (%): <u>587</u>		
lerrai	n: Hard/S		N/Snow	N 40°	03,93	7 W7	5° 30,5	25	Bar Psr (Hg): <b>/006</b> Cloud Cover (%): 20 7,		
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events		
	1435	1440	61.2	51.9	67.9	64.7	59.9	56.1			
	१५५०	1445	61.4	53.5	67.4	64.9	59.6				
	1445	1450		50.8	69.0	63.9	58.6				
									-		
					-						
	,		ļ								
									· · · · · · · · · · · · · · · · · · ·		
			·								
					·	ļ					
						l					
Ro	adway N	lame/Dir	PA	PIKE		/	<u>com</u>	pass	<u>Site Diagram:</u>		
	Speed (po	ost/obs)*									
	Number of			$\frac{1}{4}$			×	· .	Ebond		
	Width (pa			ÎA					Wound		
		or 2- way		2		1		•	1 large will 1		
		Grade	fle	J+					1 20520 Smill of the		
	Βι	us Stops		Ø					1= 20520 T (B) (		
	S	toplights	(	Ø	7		•				
	Motorcyc			_/_					$\sim$ 1/		
	Automot		<u></u>	/	_/_				UI.		
	Medium		*	/	⊢/				1		
	Heavy Trucks										
	Buses Count du	iration			<u> </u>			seer	a rade from house 15		
Photos Additio	ordinate syste Taken? nal Notes/	Yes/No	80	Radar / Dri	ving / Obser	vation	Steep grade from house up to turnpike. Turnpike above z-story house				
*0	Other Noi	L +O C ise Sources	distant: a	H JU			dscaping/ru	Hed ustling leav ches on Re	ves/children playing/dogs barking/birds vocalizing/Insects		

		: <u>PTC</u> cation: 5				_ FIC	oject #: :	1/502	Date://29/(2_Pageof 7 Ro Analyst: 300
		evel Mete				d Calibra			Weather Data
Model #		LD 82		Model i		<u> </u>			Model #: \$3500
Serial #		165		Serial #	```		89	•	1000,101
	r. ing: ALC		1				: 94 /(1		Serial #: 17D 5479 Wind: Steady/Gusty/Calm
÷	$\epsilon \mathbf{Z} \curvearrowright$	/ Fast / Ir	nnl	Pre-Te:		ים (UDA) 11 ירן		dBA	Precipitation: Yes (explain)
		No (ex		Post-Te		<u></u>	$\frac{0}{2}$	dBA	Avg Wind Speed/Direction: 0-8 MpW
Горо:	(Flat)		piany				SLM loc		Temp (°F): $38^{\circ}F$ RH (%): $54^{\circ}V$
•		Soft/Mixed	Snow				<u>3611100</u> 15°36		Bar Psr (Hg): $000$ Cloud Cover (%): $1007_2$
					1			501	
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	11 00	1105	66.4	55,8	73.2	69.4	65.2	61.1	
	1105	1110	66.6	55.3	73.3	69.8		62.0	
	1110	11/5	66.8	-	72.9	69.8	1	61.0	
		·							
	-4								
					1				
Ro	adway N	lame/Dir	PATI	JRNAKE		1	com	pass	Site Diagram:
S	need (no	ost/obs)*	55	65		-+		N)	
	· · ·	of Lanes		<u>u</u>					
_		ave/row)				1		Ang	bain
		or 2- way	<b>v</b>	2		+-		-ori q	
	<u>,                                    </u>	Grade	fl	c AF		t -	1		the second se
•	Rı	us Stops		<u>N</u>		1	1		+ 56
		toplights	× /	6	├──/		1		the the
	Motorcyc			ÔW	_ /		التي ومحمد ال		The microphane barn
	Automot		190	187		<u>`</u>			house to barn
	Medium	· · · ·		10			an a		III
	Heavy T		59	11					11/1/2 7/1
	Buses		1	L L	$H^{-}$				Lan L
	Count du	uration	15	MIN	/				
		mSpeed e			vinti / Obser	vation	• /		hase
		Yes/No						14 HOLAC	drucument (242)
	100	/Commen	- A					<b>۲۹۵۵ کا استاع</b> محمد محمد محمد محمد محمد محمد محمد محمد	
								α-1 + ² 29 − ^{− − − − ²}	
									ves/children playing/dogs barking/birds vocalizing/insects

•

.

									ontrol Practice
<b></b>	-					<u>SE ME</u>	ASU	REME	NT DATA FORM
		= 170		1-31			oject #		Date:10/29/13 Page of
		ocation:		<u>- 219</u>		odine		2	Analyst: JDO /SRS
1	1	evel Mete			<u>Fie</u>	<u>ld Calibi</u>		• • • • •	Weather Data
Model #		8/20	ZLM	Model			200	<u>)</u>	Model #: X 3500
Serial #	$( \land )$	165	2	Serial #	#:	_5	789	$\sim$	Serial #: 17034734
Weighti		/ / /at		Calibra	tion Lev	(14)	Wind: Steady/Gusty/Calm		
and the second		/ Fast / II	•	Pre-Te	st		<u> </u>	dBA	Precipitation: Yes (explain) (No
Windsc	reep	es <b>)</b> No (e:	xplain)	Post-T	est		/	dBA	Avg Wind Speed/Direction:
Торо:	Elatit	Hity		GPS	Coordin	ates (at	SLM loc	ation)#	Temp (°F): 41.5 RH (%): 77.7
Terrain:	Hard	Soft/Mixed	/Snow	N 400	03.93	1' W-1	535	.963	Bar Psr (Hg): 1009. Cloud Cover (%):
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	ng 15	08720	121	410	1n 2	100	10.		
	0820	TRE		61.7			67.0		
			66.1	59,5		68.5	65.6		
	8.25	08:30	66.2	61.2	71.2		65.7	63.5	
<u> </u>	08:30	<u>(6135)</u>	66.2	60.8	70.0	68.5	65.8	63.0	
n an an an an								-	
	N 81 1								
-									
				- ··· ·					
<u>14</u>					<b>.</b> .				
Roa	dwav N	ame/Dir	PA 7	PU		три	com	pass	<u>Site Diagram:</u>
	10 July 1		E	3	<b>l</b>	vB.		1	PAtur npike is minimally visual
		st/obs)*	15	70	651	70	X	$\mathcal{D}_{\cdot}$ .	2 F
<u> </u>	umber c	of Lanes		$\sim$	2				- heavily wooded whord wood treas trush
W	/idth (pa	ve/row)	5	<u>,                                    </u>	50	21	Contraction of the local data	13	- heavily wooded u/hardwood
	1-0	r 2- way		1					- heavily wooded of there to
		Grade	R	at	Fla	X		赵.	Tind Truhover - brosh
	Bu	s Stops						er.	2 Incroghant 1
	St	oplights	/		/			ET.	33 Ormon Otrompoline
M	lotorcyc	les	l					99	3
A	utomob	iles			· · · · · ·				5 Fosiden eq
	ledium 1							1 5	12151
	eavy Tr	· · · · · · · · · · · · · · · · · · ·						1000	
	uses								, red
	ount du	ration	<u> </u>	Ī	<u></u>				Contraveway 1
		n * - Speed e	stimated by	Badar / D-	ing to be	$\sum$			81 C
		Yes/No	-	1				15	Mr. Shadan "Allow bar In
	· · · · · · · · · · · · · · · · · · ·	Somment				And	out-		I'want sand walls a roborts want leave
<u></u>			<u>o.</u>	DU	e 83	for a	alk	•	I a provide the second the
Ot	ther Noise	Sources: di	stant. aircr	aft/roadwa	ay traffic/tra	ains/lands	caping/rus	stling leave	es/children playing/dogs barkirg/pirds vocalizing/hysects
	<u>a an an a</u> r a'				Addition	nal Notes	and Sketcl	hes on Re	Verse

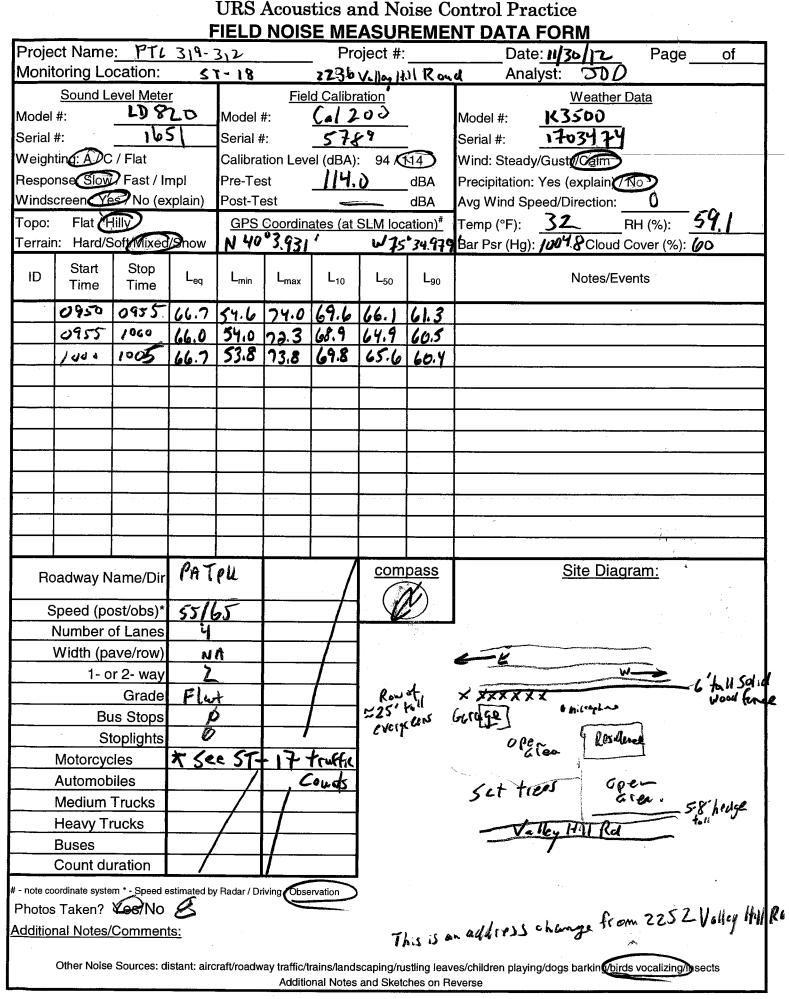
Sele-

	FIELD NOISE MEASUREMENT DATA FORM												
	ct Name				<u> </u>		oject #:		Date: 11 29/12 Page of				
Monit	oring Lo	cation:	57-13	<i>ग</i> र		din			Analyst: 500				
	Sound Lo	evel Mete	r 		<u>Fiel</u>	d Calibra			Weather Data				
Model	#: 1	LD 87		Model #	<b>#</b> :	Cal	200	2	Model #: <u>K3500</u>				
Serial	#:	<u> </u>	1	Serial #	<b>:</b>		87	-	Serial #: 1703474				
Weigh	ting: ALC	/ Flat	-	Calibra	tion Leve	el (dBA)		14	Wind Steady/Gusty/Calm				
Respo	nse: Slow	/ Fast / Ir	npl	Pre-Te	st	114	0	dBA	Precipitation: Yes (explain)/_Ne				
Winds	creen (Ye	es <mark>)</mark> / No (e)	(plain	Post-Te	est	_		dBA	Avg Wind Speed/Direction: $0-2$ Mp h				
Торо:				<u>GPS</u>	Coordina	ates (at	<u>SLM loc</u>	ation)#	Temp (°F): 38 °F RH (%): <u>67 7</u> 2				
Terrai	n: Hard/S	of /Mixed	Snow	N 40°	03.83	38' h	175°33	59.01	Bar Psr (Hg): 008 Cloud Cover (%): 50 70				
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events				
	1130	1135	66.4	54.1	80,1	68.5	64.6	59.7					
	1135	1140	64.7	55.9	71.1		64.0	59.8					
	1140	1145	66.3	l .	71.7		65.3						
	1145	1150	66.7	58.8		-	15.7	61.7					
						÷.							
					• •								
								<b> </b>	· · · · · · · · · · · · · · · · · · ·				
			PA			/	com	pass	Site Diagram:				
R	badway N	lame/Dir		PIKE				3	<u></u>				
	Speed (po	ost/obs)*					Ŵ	/)					
	Number (		<u> </u>	4		-1-			PATICOOL				
	Width (pa		· N	In		-i		والمراجع والمتارك ومسترك والمراجع	A Turnpike				
		r 2- way		7	•	1							
		Grade		at		1		مهرور المراجع ا مراجع المراجع ال	Ebound				
	Bi	us Stops	· · · ·	Ø		/		l	mer x x x x 1				
		toplights		ø	/			-1					
	Motorcyc		E	D W	- /								
	Automot		172						hause hause p				
	Medium		10	<u> 70</u> %	$\vdash f$				MIL #2 6				
	Heavy T		46	1.2	$\vdash$				[house]				
	Buses	uono .	0	<u> </u>		;			DEVIEWAN				
	Count du	Iration	150		/				2				
	oordinate syste	em - Speed	estimated b		riving Obs	ervation			house born for				
	nal Notes/		i i 🖌 🖷	s pro	ros	×							
	Other Noise	e Sources: d	listant: airc	craft/roadw		trains/land onal Notes		-	ves/children playing/dogs barking/birds vocalizing insects				
	_						and Onel						

. .

-

0


. .

	URS Acoustics a		
FI Contraction	IELD NOISE ME		NT DATA FORM
Project Name: PTC 319	<u>)-312</u> Pri	oject #:	Date:10/29/13 Page of
Monitoring Location: ST) 4 Sound Level Meter			Analyst: JDD/SRS
In Bancard	Field Calibr	And the second	<u>Weather Data</u>
		200	Model #: <u>K3500</u>
	Serial #:57	189	Serial #: 1703474
	Calibration Level (dBA)		Wind: Steady/Gusty/Calm
	Pre-Test	dBA	Precipitation: Yes (explain) No
Topo: Flat (Hilly)		dBA	Avg Wind Speed/Direction:
Terrain: Hard Soft Mixed/Snow	GPS Coordinates (at	SLM location)"	Temp (°F):
	<u>N 10 0,176 W  </u>	15 55,824	Bar Psr (Hg): 1007 Cloud Cover (%):
ID Start Stop Time Time ^L eq	Lmin Lmax L ₁₀	L ₅₀ L ₉₀	Notes/Events
1555 1600 65.0	58.9 70.8 67.1	64.7 60.9	
1600 1605 65.8		65.5 62.0	
16:05 16:10 66.6		65.3 61.4	
		65.8 62.4	
16:15 16:20 66.5	60.8 70.5 68.5		
Roadway Name/Dir		<u>compass</u>	Site Diagram:
<b>E</b> B	s wo	(A)	no line of sight to turopike the
Speed (post/obs)* 651	7065170		
Number of Lanes	- 2	_5<=	Ta FINITONE THE
Width (pave/row)	2, 20,		PATURNPIKE W=
1- or 2- way	$\frac{1}{n}$	year CAS	
Grade Cla	it that	P CAS	Upul Some hard soos
Bus Stops		/ Gardes	1 garden 70
Stoplights		Cente	1 Microphine sate
Motorcycles		<b>1</b>	- Bu Bi
Automobiles			- doverning steep
Medium Trucks			a lation will
Heavy Trucks Buses		he	The bood wood
Count duration	<u> </u>	and a second	small brosh
* - note coordinate system Speed estimated by Ra Photos Taken? Yes/No 7	Radar / Driving Observation	malce is a	bove grade to reception and
Additional Notes/Comments:	'Cansu	u tops of he	a small area of space foll
Other Noise Sources: distant aircraft	CAS	= Create caping/rustling leaves and Sketches on Rev	A Scene "Jura physical solution of the second state of the second state of the second state of the second s

Droio	ct Name		019	217			Datas 11/20117 Daga of		
-	oring Lo			15	LH	Date: \\ <b>30/</b> 17_PageOf			
		evel Mete			1.1	d Calibr		1.511	
Model		LD 82	-	Model #			200		<u>Weather Data</u> Model #: <b>K 3500</b>
Serial		165		Serial #			89	-	Serial #: 1703474
1 · · · · ·	ting: A		1		r. tion Leve			111	Wind: Steady/Gusty/Calm
-	nser Slow	<b>\</b>	nnl	Pre-Tes			. ₃₄, 4,0	dBA	Precipitation: Yes (explain) / No
	creen : Ye		-	Post-Te			<u>7,0</u>	dBA	Avg Wind Speed/Direction:
Торо:	Flat /	7~	(piairi)		Coordina	ates (at	SI M loc		Temp (°F): 31° RH (%): 69.4
	n: Hard/S		/Snow		3.85		75°35		Bar Psr (Hg): 1005. Cloud Cover (%): 80
				1	3.00		<u>ەر دە</u>		
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events <<
	0855	0900	66.4	60.7	71.2	68.6	66.0	63.3	
	0900	0905	66.3	60.1	73.4	68.5	65.7	62.6	
	0905	0910	66.5	59.1	74.6	69.2	65.6		
			-						
									·
				<u> </u>					
		···							
,			-						
	1			ļ					
Ro	adway N	lame/Dir	PA	TPH		/		pass	<u>Site Diagram:</u>
<u> </u>						-	(([		PATPh Dewalt Maint Facility
	Speed (po Number	· · · ·		165				<u>ب</u>	
	Width (pa			<u>`</u>		+			PATen
		or 2- way	NA			+-		W	
	1 0	Grade		et.		/			
	Bi	us Stops		0				×	Arees
		toplights		2	-/		101	oile	Red
	Motorcy		w	1 6			shed	1.0	Resulter
	Automot		220	357				oper	Kezzhea
	Medium	Trucks	13	11			1	yare	
	Heavy T	rucks	56	47			1	1	
	Buses		0		7	_	1	X	suded - ) Shim
	Count du	uration	15 m	INS	1		1	<i>C</i>	
# - note co	ordinate syste	em * - Speed e	stimated by	Radar / Dri	ving Obser	vation			
	s Taken?			Phot			<del>.</del>		Jalley HIL Ro
<u>Additio</u>	nal Notes	/Commen		•	·			· · · ·	- delleg mini-
	*	, 454 . 2							
	Other No	ise Sources:	distant: ai	rcraft/road				ustling leav	ves/children playing/dogs barking birds vocalizing/Insects

Proje	ct Name	: P	1(3)	9-31	2	Date: 1129/12 Page of			
Monit	oring Lo		ST-			Wood	Valley	Lune	Analyst: 700
	Sound Le	evel Mete	<u>r</u>	•		d Calibr	فلان		Weather Data
Model	#: J	Dero	υ	Model i	<b>#:</b>	(1)	260	-	Model #: K3500
Serial	#:	165		Serial #	ŧ:	57	89	~	Serial #: <u>1703474</u>
Weigh	ting	/ Flat	:	Calibra	tion Lev		: 94 /	1A	Wind: Steady/Gusty/Calm
· ·	nse.Slow		•	Pre-Te	st	114	0	dBA	Precipitation: Yes (explain)
Winds	creen		(plain	Post-Te			-	dBA	Avg Wind Speed/Direction: <u><b>NB VBL</b></u>
Торо:	Flat / 🖡	~					SLM loc		Temp (°F): <u>45</u> RH (%): <u>53</u> ,3
Terrair	n: Hard/S	oft/Mixed	/Snow	JUNO 2	3.945	W75"	35.15	4'	Bar Psr (Hg): 1004   Cloud Cover (%):
ID	Start Time	Stop Time	L _{eq}	L _{min} L _{max} L ₁₀		L ₅₀	L ₉₀	Notes/Events	
	1-125	7430	66.8	60.8	72.3	69.4	66.4	62.6	
	7430	1435	65.5	57.4	72.8	67.9	64.9	61.0	
	1435	M 40	66.6	56.3	73.4	69.6	1.5.9	61.7	
		·							
				-					
									· · ·
Ro	badway N	lame/Dir	199 1	elc .		1	<u>com</u>	pass	<u>Site Diagram:</u>
	)		~7	1				$\boldsymbol{\Delta}$	
	Speed (po		<u> </u>	•					
	Number ( Width (pa		N						
		or 2- way							PA Tok
	1-0	Grade				+-		ها،	Westburg
	Bi	us Stops				<del> </del>		t	Berger 2 2 3 studo. Gerger 2 2 5 studo. X Miliophie = bird Feeder
	· ·	toplights		<u>, , , , , , , , , , , , , , , , , , , </u>					L X Milliphie
	Motorcyc		Et		$\vdash$			100	Hunge = bild
	Automot		Z48	47.5				žß	J Jecaer
	Medium		8	15				2	
	Heavy T		44	69	$\square$				
·	Buses		21	0	1				
	Count du	uration	15	mins	1				
	oordinate syste			Radar / Dri		vation	-		
<u>Additio</u>	nal Notes	/Commen							
	Other No	ise Sources	distant: ai	rcraft/roac			dscaping/restand sket		ves/children playing/dogs barking/birds vocalizing/insects everse

	ct Name toring Lo	cation:	NST-		2	96 √	allent		,
Model Serial	#:	evel Mete LD 824 165	2	Model # Serial #	ŧ:	d Calibra <u>(</u> ul 5		•	<u>Weather Data</u> Model #: <u>1&lt;3560</u> Serial #: 1703474
Weigh Respo Winds Topo:	nting: ADC onset Slow creen : Me Flat n: Hard/S	) / Flat / Fast / Ir S No (e) Hilly	npl (plain)	Calibra Pre-Tes Post-Te <u>GPS</u>	tion Leve st est <u>Coordin</u> a	el (dBA): Il 4 ates (at s	94 ( 94 ( SLM loc	dBA dBA ation) [#]	Wind: Steady/Gusty/Calm Precipitation: Yes (explain) No Avg Wind Speed/Direction: Temp (°F): <u>32</u> RH (%): <u>62</u> Bar Psr (Hg): 1004 Cloud Cover (%): 90
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	0925	0930	62.0	(7.3	67.4	64.1	61.5	58.9	
i	0930	0935	61.3		65.3		61.0		
	15935	09.40	62.2			64.7			
-									
									-
R	L oadway N	I Name/Dir	PA-	[plu		/	com	pass N	Site Diagram:
	Speed (p	 ost/obs)*	55	165				T	
		of Lanes		4		+		ν	PATPIL
	Width (p	ave/row)	Ń	A		1			K
-	1- (	or 2- way		~		1			Valley Hill Vee
		Grade	Flo	4					22.06
_	B	us Stops		<u>ې</u>					House House
		Stoplights	-	)					10 odcd (2198) 10t galage Michaphana 10t galage Michaphana 10 frontident.
	Motorcy	•		<u>。 上</u>				v	1 st gaage Millophine with
	Automo	_	188	297					n when a
	Medium	-	12	13	$\square$				to floridan.
	Heavy T	rucks	57	50					
	Buses Count d	uration	3	2	/				· · · ·
	oordinate systems Taken?	em * - Speed e	stimated by	1.00					
	onal Notes		7, ₩^ ts:	2100			06 61 C	ate	lesation above the PA Tok read for #2206 (unable to reach resident at 2206.
						Hom		Latita	ted for #7206/ Unable to Forman



Proje Moni	ect Name toring Lo	∋ <u>: PTC</u> pcation:	- 219	1-31	2	Pr	oject #		Date:10/28/13 Page of
		evel Mete		17		Id Calibi		ive	
Mode		LD82		Model			_20	$\mathcal{D}$	<u>Weather Data</u>
Serial	:	1651		Serial			789		Model #: <u>K3500</u>
	nting: A/ C			- <b>1</b>		el (dBA)	· · · · ·		Serial #: 1703474
-	onse Slov		mnl	Pre-Te		ei (uBA)	; ⁹⁴ C		Wind: Steady/Gust/Calm/Light Gusts
	screen (Y			Post-T			<u> </u>		Precipitation: Yes (explain)
	opo: (Flat) Hilly SUSM					ates (at		dBA	Avg Wind Speed/Direction: 0-3 wiph 009550
	n: Hard/				00010m	<u>ales (al</u> 5' W7	SLIVI IOC		Temp (°F): 62.0 RH (%): 54.1
		-		10 -10	0 1110	<u>~ W /</u>	<u>&gt; &gt;~1.</u>	403	Bar Psr (Hg): 1000 Cloud Cover (%): 0 /10/14-
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	16:25	16:30	61.5	54.8	65.3	63.5	61.4	58,1	
	16:30	16:35	61.8	56.9	65.3	63.7	61.7	59.5	
	13:35	16:40	61.4	57.9	65.1	63.2	61.1	58.7	
	16:40	16.45	62.0	57.2	65.0	63.8	61.8	59.3	
	16:45	16:50	60.9	55.3	64.6	627	60.8	57.9	
	16:50	16:55	61.5	52.5	65.3	63.1		59,1	
	16:55	17:00	61.1	56.2	64.1	62.9	61.0	57.5	
	17:00	17:05	61.8	57.2	64.9	63.6	61.5	59.4	
	17:05	17:10	61.5	56.4	64.8	63.3	61.4	59.2	
Ro	adway N	ame/Dir		TPh PA TPh B B WB			com	pass	NO <u>Site Diagram:</u> Uni of -signato RA Jurnpille
1.0	peed (pc		65	170	63	5/70		$\mathcal{D}_{\mathbb{C}}$	turnpille
	Number o			4	L	1			
	Width (pa	ave/row)	Ņ	lð 🛛		A	F	2	
-	<u> </u>	r 2- way		2	2	)	Ľ		A TUENPIRE
		Grade	_ Fl	AT	FU	17		Elu	hard sood
	5.55 C	s Stops	1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (	Ď	- 9				vartegolation
		oplights	(	Ø		<u> </u>		همین بهری و	The luncohan
	Motorcyc							, ferre	player of the P
	Automob		<u></u>					1 yer	
	Medium Trucks							1	$T_{a}$ $T_{a}$ $T_{a}$
	Heavy Trucks				1				Residence
	Buses								
	Count du	ration	15mi	N	15 A	MN			and the second sec
	ordinate system		stimated by	Radar / Driv	ving / Obser	vation			
hotos	Taken?	Yes/No		202					( and the second s

Other Noise Sources: distant: aircraft/roadway traffic/trains/landscaping/rustling leaves/children playing/dogs barking/birds vocalizing/Insects Additional Notes and Sketches on Reverse

· .	2 <b></b>					- <u> </u>			ontrol Practice NT DATA FORM
Proje	ct Name	Ptc	219	~ 31			Dject #:		
Moni	toring Lo	ocation:	55-7	20	201				Date: 10/28/13 Page of Analyst: JDD /SRS
		evel Mete				d Calibr		the wat	Weather Data
Model	#: LD	820		Model		CAL		)	
Serial		1651		Serial		57		-	Serial #: 1703474
Weigh		ي السالي ال		-	ition Lev			14	Wind: Steady/Gusty/Calm
Respo	onse Slow	Fast / I	mpl	Pre-Te	1 C	110	1		Precipitation: Yes (explain) No
Winds	creen	es) No (e	xplain)	Post-T	est	1		- dBA	Avg Wind Speed/Direction: None
Торо:	Flat /	じ し		<u>GPS</u>	Coordin	ates (at	SLM loc	ation)#	Temp (°F): (60.0 RH (%): 53.2
Terrai	n: Hard/	Soft/Mixed	l/Snow	NYOC	14.165	Was	33.9-	31	Bar Psr (Hg): 102.6 Cloud Cover (%): 17 194
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	1635	1640	64.4	59.4	68.5	66.7	64.1	61.3	
	1640	1645		59.4	69.9				
	16:45	16:50		· · · · · · · · · · · · · · · · · · ·	67.7			A ST ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	
	16:50	16:55	(.3.5		68.5	65.3		60.4	
				-			0010		
				- ( ⁻					
				ананананананананананананананананананан					
						···· · · · · · · · · · · · · · · · · ·			YELLOW STRINGS ROAD
						e e S			15 MW COWT
									Autos = 40
Rc	adway N	lame/Dir	PA E		1. S.	TPU NB		pass	Site Diagram:
S	peed (pc	ost/obs)*	1.51	70	1.5	170	A	$\mathcal{D}$	
	Number o	of Lanes	σsi,	2	Ż				PA TIMADILE
	Width (pa	ave/row)	\$	D	57	>		lim	ited view of turnpike
	1- o	r 2- way		1	•				
		Grade	FI	at	Fla	H.	1		hardwood
2010 - 1997 	Bu	is Stops							hardwood vegetation, brush,
	St	oplights							brush,
	Motorcyc							1	
	Automob							Milli	phare B
	Medium				<u> </u>			1	Residence
	Heavy Tr	ucks							2062
	Buses					<u></u>			
1	Count du								
	ordinate syster	Yes/No	. 5	Radar/Dri	ving Obser	vation	~	· · · · · · · · · · · · · · · · · · ·	
Addition	nal Notes#	Comment	ts: V	۰.			•	Y	ellowsprings Rol
	Other Noise	Sources: di	stant	avroadwa		ons/lands		tling leave	s/children playing/dogs barking/hirds vocalizing/hisects

									ontrol Practice
Droid	oct Nam	0: DT	( 7)6		<u>) NOIS</u>				NT DATA FORM
	ect Nam				- T-ZI		oject #		Date: 11/2 9/12 PageOf
		_evel Met						K 90(1)	
Mode		LD8		Model		ld Calibi	200		Weather Data
Serial			51	Serial			789	-	Model #: <u>K3500</u>
1	ntin <b>c: AD</b> (	·	- 1	-			: 94 <b>7</b>	3	Serial #: 1703474
ľ	onse: Slov		Impl	Pre-Te				dBA	Wind: Steady/Gusty/Calm
	screen 🗹			Post-T				dBA	Precipitation: Yes (explain)
Торо:					_	ates (at	SLM loc		
Terrai		Scrt/Mixe	d/Snow	14000	1227	w75	034.0	L6	Temp (°F): <b>45</b> Bar Psr (Hg): <b>1003 4</b> Cloud Cover (%): <b>1</b>
	Start	Stop	T		T				
ID	Time	Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	1555	1600	68.1	57.7	75.2	71.1	67.3	62.3	
	1600	1605	69.5	62.9	74.5	71.9	69.1	65.9	
	1605	1610	68.4	60,1	72.9	71.0	68.0	1	
		ļ							
		ļ							
		· · · · · · · · · · · · · · · · · · ·							
			<b> </b>						
		<u> </u>	<u> </u>						
			<u> </u>						
			<u> </u>						
				<b>j</b> -					
Ro	adway N	lame/Dir	PAT	pr			com	oass	<u>Site Diagram:</u>
s	peed (pc	ost/obs)*	551	65		/-		/)	
	Number o			54	<u> </u>	-/-		ŕ	
	Width (pa			A			7		
	1- o	r 2- way	2			+			
		Grade	flut	-		1			A A A
	Bu	is Stops	0						Uphill + wooded
	St	oplights	0		/				
	Motorcyc	les	No	E					Garage Residence
	Automob	iles	411	301				Resid	live Mikrophen
	Medium ⁻	Trucks	21					L-182	· Blackhand Bl Elstando
	Heavy Tr	ucks	42	33	1		Bambe	o human	MA Blackeron in pis will
	Buses	<u>.</u> .	2	1	<u> </u>		7A 10	11-	roud.
	Count du			Mint	L		· · · ·	Wism	SEbor d
- note coo	ordinate system	n * - Speed e	stimated by	Radar / Driv	ving / Obser	vation			ly overhead is low altitude j in a well the airplane well
	Taken		1		41	n80) ]	lots fla	1 Auron	ly overhead is low altitude ; includible (was and b)
Julition	al Notes/(	<u>_ommen</u>	<u>IS:</u>			ν	leve	lase to	ly overhead is low altitude ; in a well the (was and) it Tple + on some grade. Very norsy.
(	Other Noise	Sources: di	stant: aircr	aft/roadwa	ay traffic/tra	ins/lands	caping/rus	tling leave	s/children playing/dogs barking/birds vocalizing/lijseets
					Addition	al Notes a	and Sketch	neś on Rev	/erse

URS ANCP, Field Noise Measurement Form, Vers. 1.2 111109

				URS	Acous	stics a	nd N	oise C	ontrol Practice
				FIELD	NOIS	SE ME	ASU	REME	NT DATA FORM
	ect Name		C 31	9-3	12	Pr	oject #	•	Date 10 120 / Page of
Moni	toring Lo	ocation:	<u>572</u>	<u> 2 31</u>	49P	hornis	wilk	Pile	Analyst: JDDTSRS
		evel Mete			-	ld Calibi			Weather Data
Mode		820.		Model	#: C	AL		_	Model #: <u>K3500</u>
Serial		1652	2	Serial			89	~	Serial #: 1703 474
		/ Flat		4. 147	tion Lev	el (dBA)	: 94 /	114	Wind: Steady/Gust/Calm OCOSS 10102 9035
	onse: Slov			Pre-Te			<u>4</u>	dBA	Precipitation: Yes (explain) / No
	creen (Y		xplain)	Post-T				dBA	Avg Wind Speed/Direction: 1-3 Moh
Торо:	L 1			<u>GPS</u>	Coordin	<u>ates (at</u>	SLM loc	ation)#	Temp (°F): 69. RH (%): 52.4
Terrai	n: Hard	Soft	d/Snow	<u>N 40</u>	04.3	18 W	<u>15°3</u>	3,209	Bar Psr (Hg): 1005 Cloud Cover (%): 10 (1 1941- clo
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	15:45	15:50	62.9	57.3	66.2	15.1	62.6	59.7	
	15:50	15:55		57.8		64.2		59.3	
	15:55			55.0		1.3.9		· · · · · · · · · · · · · · · · · · ·	
	16:00	16:05	61.5	55.7	65.4			58.4	
11 14	16:05	16:10	62.8		75.2		62.4	1	
						3 // 0			
								· · ·	
•					a in the second s				
Bo	adway N	ame/Dir	PA -	три	PA	TPh	com	oass	Site Diagram:
			``₹	ß	W	B			actual two-of-sight
	peed (po		651-	70	651.	70	U		partial pur of -sight to turn pike
	Number o	of Lanes	2		2				
	Width (pa	ave/row)	5	8	50		W	6	
	<u> </u>	r 2- way		<u>`</u>					PA TUCADILE DE
		Grade	<u></u>	at	4	at		00	5000000000
		s Stops				/	100	etat	ver vierne 1 2
	ta da terra da servici	oplights			$_$		V-)	etat	B Inill A
	Motorcyc						1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	6	13149
	Automob							7	resilar
1.00	Medium		<u> </u>		<u> </u>			7	
	Heavy Tr	ucks						7	A A
	Buses	ration			<u></u>			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	STREET W
100	Count du				<u>رونی کې کې</u> <u>د د د د د</u>			7	(( )
	ordinate system		stimated by	Radar / Driv r	ving / Obser	vation		6	$\langle \langle \rangle$
	Taken?	· /	<b>1</b>	rotor			-	and the second s	phoeningille eile
JULION	al Notes/	<u>-omment</u>	<u>s:</u> \						and the second
. (	Other Noise	Sources: di	stant: aircri	<b>Throadwa</b>	y traffic/m	ains/lands/	aping/rus	tling leave	s/children playing/dogs barking oirds vocalizing/Insects
					Addition	al Notes a	and Sketch	ies on Rev	/erse

									ontrol Practice
		<u> </u>		FIELD	NOIS				NT DATA FORM
Proje	ect Name	PTC	2319	-31	7.	Pr	oject #		Date: 10 (28) B Page of
IVION				<u>23 2</u>				<u>uli</u>	Plu Analyst: JDO /SRS
		evel Mete	SLM			ld Calibr			Weather Data
Mode			1251	Model		CAL			Model #: <u>K3500</u>
Serial	- / N	1621		Serial		57		$\sim$	Serial #: 1703474
	nting: A / C		·			el (dBA)	94 /		Wind: Steady/Gusty Calm'
	onse: 6low			Pre-Te		1	<u> </u>	dBA	Precipitation: Yes (explain) No
	screen : Ye		xpiain)	Post-T				dBA #	Avg Wind Speed/Direction: 6-3 Mph
Topo: Torrai	Flat <b>F</b> n: Hapole		1/Cnow	<u>GPS</u>	Coordin	<u>ates (at</u>	SLM loc	ation)"	Temp (°F): 640°F RH (%): 54.5%
Terrai			1/Show	N - N	09.31	2' W	15-32	1'0'1	Bar Psr (Hg): 1008. Cloud Cover (%): 106 114 -
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	1530	1535	60.6	56,9	63.4	622	60.5	58.1	
	1535	1540	60.3	551	64.4	62.3	60,1	56.9	
	15:40	15:45	60.7	56.2	64.6	62.5	60.4	58.1	3
	15:45	15:50	61.0	55.4	64.2	63.2	60.7	58.6	
	15:50	15:55	60.2	56.5	63.7	62.3	60.0	57.5	
	15:55	16:00	60.1	55.5	63.6	62.0		57.4	
	16:00	16:05	60.0	57.4	62.7		59.7	58.1	
1				n de la servici La straction	· · · · · · · · · · · · · · · · · · ·		•••• Vigit offer of		
							n Alfan an ar		
R	badway N	ame/Dir	PA-	гри	PA	TPh	<u>com</u>	pass	<u>Site Diagram:</u>
			E	ß	N.	ß			Do durit uni-of Signal
	Speed (po		65	20	651	70		$\mathcal{Y}_{\perp}$	to turnpike
	Number c	The second second	9.6	2	Ž	•			
	Width (pa	ave/row)	_	50	50				
	1- 0	r 2- way							W PATION ES
		Grade	P	at	PI	at			FATUINE C
		s Stops			2070				and from therdwood trees)
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	oplights							Vestin
<u> </u>	Motorcyc							Č N	vegelation (nerowood trees)
<u> </u>	Automob								residence
	Medium								#3199
144 (14 (14 (14 (14 (14 (14 (14 (14 (14	Heavy Tr	ucks	<u>y 188</u>						LT31111 ( ( )
	Buses						a Aliante de la compositione de la Aliante de la compositione de la co		
N 4 1	Count du	7				<u>A</u>			
- A	ordinate syster	· · · · · · · · · · · · · · · · · · ·	stimated by	Radar / Dri	ving / Obsei	vation			
e qui i	Taken?		A P	rotos	C	/			
Addition	nal Notes/	comment	<u>s:</u> T	-					( )
	Other Noise	Sources: di	stant airc	att/madu	av trafficit	aine/landa	canine/		es/children_playing/dogs-barking/birds vocalizing/hsecte
				Curre		nal Notes			
									ANCP, Field Noise Measurement Form, Vers. 1.2 111105
						1. A. S. A.			,

									ontrol Practice
Proie	ect Nam	e: PIC	319-	312	NOIC		oject #:		Date: 11/30/12 Page of
		ocation:			SI Phi	- X	le Pike	• <u></u> p.	Date: 11/30/12 PageOf Analyst: 500
	Sound L	evel Mete	er			ld Calibr			Weather Data
Mode		1082	0	Model			200		Model #: <b>K3500</b>
Serial	#:	1651		Serial #			189	-	Serial #: 1703474
Weigł	nting. Ale			1			: 94	TA	Wind Steady Gusty/Calm
		Fast / I	mpl	Pre-Te		114	_	dBA	Precipitation: Yes (explain)
		es No (e		Post-T				dBA	Avg Wind Speed/Direction: 1.8 from East
Topo:				GPS	Coordin	ates (at	SLM loc	-	Temp (°F): 43 RH (%): 55,2
Terrai	n: Hard/S	Soft	now /	1400	4.543	W75	° 32.5	33	Bar Psr (Hg): 10105 Cloud Cover (%): 100
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	1225	12,30	58.6	(20	63.7	108	58.4	55.0	
	1230	12 35		54.7	67.6		1		
	1275	12 00	58.7	539		61.2		55.6	
	1240	1245	60.1		69.2			56.8	
				30.0	91.5	60.0	51.1	20.0	
	<u> </u>								
							-		
Ro	adway N	ame/Dir	PAT	rpil		/	com	oass	Site Diagram:
S	peed (po	st/obs)*	557	65		-+		<b>(</b> )	PA TOL
	Number o			65 1	·····	1		<u>、</u>	
	Width (pa		NI	<b>a</b>		-			Treeline
		r 2- way	2			/			1 1 1 1 Jan T VP MILL
		Grade	Flu	+					
	Bu	s Stops	0	·				Æ	UT MICC
		oplights	.0					1	Wed. Church
	Motorcyc		WO	モ	1			10	illing Church
	Automob		181	213	_/			ŀ	frent
	Medium ⁻		/0	13	1-				
	Heavy Tr		74	43	1				
	Buses		1	0	1			Sector Standing	
(	Count du	ration	ismi	ins 1					and the second
- note coo Photos Addition	ordinate syster Taken? ` al Notes/(	n *- Speed es es/No Comment	stimated by	Radar / Driv	ving / Qoser Apo	vation Stola	Christin	Char	ch Slight grade from church to Phicniculle Pille. (2 Junes) Steeper grade from church to Tpk.
			<i>a</i>	*) <i>VETZ</i>	y traffic/tra	ains/lands	KP( QA	tling leave	c how than it was at previous finder the previous to the previ

URS ANCP, Field Noise Measurement Form, Vers. 1.2 111109

		· •							ontrol Practice NT DATA FORM
Proj	ect Nam	e: PTC	319-31	2	HOR		oject #:		
Mon	itoring Lo	ocation:	5725	· · · · ·	near		Chaiks!		Date:////////// Pageof Analyst:
		_evel Mete		Г		ld Calibr			Weather Data
Mode		LD82		Model	#·	Col 2	<u>00</u>		Model #: K3500
Seria	l #:	1651		Serial		57	89	-	Serial #: 1703474
	hting: A			4			: 94 🤇		
	onse: Slov		mnl	Pre-Te		יאטאין <b>וו</b> ץ.	-	dBA	Wind: Steady Gusty/Calm
	screen 🖉			Post-T			_	dBA	Precipitation: Yes (explain/No Avg Wind Speed/Direction: <b>2.1</b> E
Торо:				· · · · · ·		atoo (at	SLM loc	_	
	in: Hard/		Bnow			J'T TA		allon	Temp (°F): <u>44</u> Bar Psr (Hg): <b>1407.6</b> Cloud Cover (%): <b>9</b> 0
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	1255	1300	11.11	110 2					
	1300	1303	61.4	49.3	72.7		54.2		
	1303	13.0	61.7	49.3	74.9	66.3		51.3	
	1310	1315	60.4	49.7	72.1	65.1	54.5		
	1.	10.0	64.7	367	78.1	68.7	57.7	53.4	
		<u> </u>							
		<u> </u>							
	<u> </u>	<u> </u>					· · ·		
<u> </u>									
			• <del>•</del> • •						
Ro	badway N	lame/Dir	pAtp	14	Churk	ejten d	<u>com</u>	pass	<u>Site Diagram:</u>
ç	Speed (po	ost/obs)*			UN 75	4001			D
	Number (				7 ( 7	une 15m			Bus Parlicing
	Width (pa		<u> </u>		×25-		When It. Not Flu	Shing,	Parling
		r 2- way			2	π		samping	Motions
		Grade			crest o	CALII	. •	-	al sound grans Trach
<u> </u>	Bi	is Stops			· 2				playaround trans fees
<u> </u>		oplights				)			playeround Trans Trees Blog. Wooded Area
	Motorcyc				/	· <u>}</u>			
	Automob		<u>–96</u>					5	cLuol
	Medium		<del></del>	<b>6</b> )	<u> </u>	<del>]</del>		be _{rner} en	Parking Parkin Kmicksphor
	Heavy Tr		for			$\frac{1}{2}$			lata di stati su anti-
	Buses		551	<del>v  </del>					Checkstern Red
	Count du	ration	<u> </u>	-	15.	nins			Cificia woods In
			atimet-11	Dealers ( D. 1				-	-W PATPK
	ordinate syster		A	Radar / Driv	/ing Obser				E-3
	nal Notes/			17 <b>W</b> 1 W		Tpk	barel	yand	ible . (it's a lower grade chese then the sumpling pt.) Cutto
	Other Noise	Sources: dis	stantaircr	aft/roadwa	y traffic/tra	ains/lands	caping/rus	tling leave	s/children playing/dogs barking/brds vocalizing/insects
		·				ial Notes a	and Sketch	nes on Rev	verse R.s.

т

URS ANCP, Field Noise Measurement Form, Vers. 1.2 111109

									Control Practice
Duck	+ Nlama	Dre	210	FIELD	NOIS				NT DATA FORM
Proje	ect Name	<u>e pic</u>	317-	<u>312</u>	0	Pr	oject #	•	Date: 10/29/13 Page of
NON	itoring Lo			(NSA4)	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			1	Analyst: JOD SRS
		evel Mete	<b>-</b>			Id Calibr		-	Weather Data
Mode	-	2820	-			CA	20	20	Model #: <u>K3500</u>
Seria		1652	<u> </u>	Serial I		_5	<u>189</u>	$\sim$	Serial #: 1703474
	hting: A				•	el (dBA)	: _94 (	114	Wind: Steady/Gusty/Calm
	onse. Slov		•	Pre-Te			4	dBA	Precipitation: Yes (explain / No
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	screen : Ye		xplain)	Post-T	est	<u> </u>	$\leq$	dBA	Avg Wind Speed/Direction:
Topo:						<u>ates (at</u>			Temp (°F): 42.0 RH (%): 75%
Terra	in: Hard	Soft Mixed	/Snow	N40	0394	<u>7' N</u>	<u>75°38</u>	554	Bar Psr (Hgion C. Cloud Cover (%): CICO
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	1005	1010	66.8	59.0	73.8	69.5	66.5	61.4	
	001	1015					-	60.5	
	1015	1020		55.9		68.2		60.0	
	1			56.0		68.8			
	10:25	10:30	1	55,0		68.5			
				7210	<u> </u>	0		<u></u>	
			<u> </u>						
P/	badway N	amo/Dir	PA :	TP4	PA	TPU	com	pass	Site Diagram:
	Jauway N	ame/Dir	E		u	rB \	A		clear lime of sight FOPATURAPILE
5	Speed (pc	ost/obs)*	651	10	651	70	C	$\mathbf{Y}$	IS CONTRACTOR
	Number c	of Lanes	4	2	2	-	,		E DATURNAKE WE
	Width (pa	ave/row)	5	ol	SO	1			Fa A orrection
	1- 0	r 2- way		1	1		É.	cie	er 1 Mali
		Grade	fl	at	fla	+	Ver C		my will 7 boskut
	Bu	s Stops		/	an din siya Antis ana ang	/	F		
	St	oplights	1		/		Vege	tation	Tere The creek Thousand
	Motorcyc	les							briese !-
	Automob	iles			est port de La constance			Thom	SHS 301 OMILION
	Medium ⁻	Trucks					T		to tear 13
	Heavy Tr	ucks					2	ſ.	the second and a
	Buses						53	1 85	300 1 7 7 to the 13 1 3
	Count du	ration	· · · · · · · · · · · · · · · · · · ·				33		2 mul El Z
# - note co	ordinate system	p <b>*-S</b> peed e	stimated by	Radar / Driv	vino/ Obser	vation	Ľ	) ]	
	Taken		- C	rotos	9			M	
Addition	nal Notes	Comment	<u>s:</u> (		080			11	
					porgn		us.	40/05/	
	Other Noise	Sources: dis	stant. aircr	aft/roadwa	ay traffic/tra	ains/lands	caping/rus	stling leave	es/ehildren playing/bogs barking/birds vocalizing/insects
			<u> </u>	0105	~		and Sketc	hes on Re	
U	ongo	Com n	in L	-	341	E.		URS A	ANCP, Field Noise Measurement Form, Vers. 1.2 111109

	• • •	· ·							ontrol Practice
Proje	ect Name	PTC	210	-IELD	NOIS				NT DATA FORM
Moni	toring Lo	cation:	512-	<u>(N</u> 5)		- 19 . · · · ·	oject #		Date: 10/29/13 Pageof
		evel Mete				d Calibr		K B R	y Lane Analyst: JDD /SRS
Mode	#: LD		—	Model		ALZ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Model #: K3500
Serial		115	1	Serial #		S7			
	iting A/C	- <b>- (6 - 5</b> - 27 Flat		-	π. Ition Lev				Serial #: 1703979
· ·	onse Slow		mnl	Pre-Te			. 94 /\   U	dBA	Wind: Steady/Gusty/Calm
	creenYe			Post-T			//	dBA	Precipitation: Yes (explain) /No
Горо:			<u> </u>		Coordin	atos (at	SI M loc	14.4 A	
	n: Hard/S		/Snow	N40°	04.39	Z NA	75°23	ung 1	Temp (°F): Bar Psr (Hg): 1009 Cloud Cover (%): Chear
ID	Start	Stop	L _{eq}	L _{min}	L _{max}	۲L ₁₀	L ₅₀	L ₉₀	Notes/Events
	Time	Time						-90	
· · ·	1510	1515			73.4	70.9			REAL AND SAME AND
· · · · ·	1512	1520			71.6	69.9	67.7	63.8	
	15:20	13:25	67.8	58.5	72.8	70.0	67.4	63.5	
	15:25	15:30	67.8	58.6	73.3	70.0	67.5	64.0	
<u> </u>									
		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -							
н									
			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19						2) 
Rc	adway N	ame/Dir	PA		PA	TPh	<u>com</u>	pass	Site Diagram:
				2.0	<u> </u>	NS	()	X)	Line of sight to Turnpike Juga
	peed (po		651	70	651	70	V	2	
	Number c		7		2		E		PA TURNPIKE W
	Width (pa			50'	52	)	بالمعصيصة	A	
<u></u> 	1-0	r 2- way			$\frac{1}{\sqrt{1}}$				levery reachation
	D	Grade	<u></u>	at	Ha	+		1	A PARA MELLINA
<u></u>	1. A.	s Stops					(	2009D	partwood trees and
<u> </u>	N.S.	oplights						V	prush
	Motorcyc Automobi	1			· · · · · · · · · · · · · · · · · · ·		m		Microphones Stud
	Medium 1						U n	Jun	fruit stud
	Heavy Tr		<u></u>				your	1	HOUSA
1	Buses	UUNS	1				<b>a</b> .		# RI4D
	Count du	ration	<u> </u>		<u></u>		<u></u>	······	
note coo	ordinate system		stimated by	Radar / Driv	ving / Obser	vation		3	
	Taken?			2012		$\mathcal{I}$			Qa
	al Notes/C				5	1			Blackberry
rag	y down	Will &	rowle	DUSC	Ner		and and a second se		residence
			Signt. aircr	alvioauwa	y-tranic/tra Addition	uns/lands al Notes a	caping/rus and Sketch	tling leave	s/children playing/dogs barking/birds vocalizing/insects
- Continues of the			_						NCP, Field Noise Measurement Form, Vers. 1.2 111109

•		л.							ontrol Practice
Droio	ct Name	Pro	710						NT DATA FORM
Monit	toring Lo	cation:	<u></u>	- ) B 10	19		oject #:	:	Date: 10/8/13 Page of Ahalyst: JDD/SRS
		evel Mete						ngs K	
Model						Id Calibr			Weather Data
Serial		A State of the second sec				CAL	10.00 get	<u>,</u>	Model #: <u>K3500</u>
1.1.1	#. ting	-165	L	Serial i		57			Serial #: 1703474
	nse: Slow				tion Lev				Wind: Steady/Gusty Calm Light Mas -
	creen Ye		•	Pre-Te		$-\underline{0}$	4	dBA	Precipitation: Yes (explain) No
Topo:	Flat /		(piain)	Post-T				dBA	Avg Wind Speed/Direction: 0-3 uph
	n: Hard/2		il Room		Coordin				Temp (°F): 65,3°F RH (%): 54,3%
		$\mathcal{P}^{}$		11401	04.502	<u>~ W7.</u> 1	> 32.0	086	Bar Psr (Hg): 1008.4 Cloud Cover (%): Light
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	14:50	14:55	59.9	54.4	65.6	62.6	59.0	56.4	
	14:55	15:00	59.2	53.3		Sec. and Sec. Sec.	58.3		
	K:00	15:05	61.5	54.3		64.3	59.7		
	15:05	15:10	59.5	52.4	67.3	and the second second	58.7	55.7	
	15:10	15:15	60.8	54.3	and the second second second	62.2	10.0	1	
									YELLOW SPRINGS RAND
									15 MW Count
									AUTOS 66
									MED 3
									LEANY 3
Ro	adway N	ame/Dir		TPU	PA	TPU_	<u>com</u>	pass	fur plu Site Diagram:
			<u> </u>	<u>B</u>	150	VB		$\overline{\mathbb{N}}^{-}$	turnettic visible from
	peed (po		65	10	65	70		$\mathbb{N}$	Hastrement location
indra en la su	lumber o		- 7-		2		WZ		
	Nidth (pa		<u></u> 51	2,	51	<b>5'</b>	Ē		PA turnpike>-
	<u>1- o</u>	r 2- way						$\overline{1}$	petation
		Grade	Fla	7	$\mathcal{H}$	at		I I	~ mllama
		s Stops			/			101	///www. Baressanders (19)
	1999 N. 1999 N. 1999	oplights		$\leq$				161	B Querophone 32
	Motorcyc							10	
	Automob							14	Tresidence 23
	Medium 1							$\sim 1$	1 1022 A R
	<u>leavy Tr</u>	ucks						11 I I	1 [-+ 11] ) · · · · · · · · · · · · · · · · · ·
	Buses Count du	rotion					· ·	*	Vertowsprings rd
						$ \bigcirc$		• • • • • •	
	Takes2		timated by	Radar / Dri	ving / Obser	vation		1997 - 1999 1997 - 1999 1997 - 1999	
	Taken?		10	hatos					EN
	al Notes/C	Jomment	<u>s:</u>		ι,	•		1 	$\mathbb{E} \left\{ \sum_{i \in \mathcal{N}} \sum_{i \in \mathcal{N}} \sum_{i \in \mathcal{N}} \left\{ \sum_{i \in \mathcal{N}} \sum_{i $
(	Other Noise	Sources:	mant: aircr	afi/hadwa	ay traffic/th Addition	ains/lands	caping/rus and Sketch	tling leave	s/children playing/dogs barking/birds vocalizing/insects

Fright Strange

									ontrol Practice
Droid	ot Nom	DAC			NOIS				NT DATA FORM
Moni	ect Name toring Lo	erron:	-319 ETA	-51			oject #:		Date: 10/29/13 Page of
IVIOIII	· · · · · · · · · · · · · · · · · · ·	evel Mete				14. · · ·	evin	UAKS	
Mode	#: LD		_	Model		Id Calibr		an a	Weather Data
Serial				Serial a			200	2	Model #: <u>K3500</u>
alla de la	nting A	/ Flat					89	3	Serial #: 1703474
	onse: Slow		mnl	Pre-Te			: 94 / <b>C</b>		Wind: Steady/Gusty/Calm
	screen Y			Post-T				_dBA	Precipitation: Yes (explain) /
Торо:			<u>Apiain)</u>				SLM loc	dBA	Avg Wind Speed/Direction:
Terrai		soft/Mixed	l/Snow	N 40	°03.95		75°2(		Temp (°F): <u>49°F</u> RH (%): <u>65.6%</u> Bar Psr (Hg): <b>1009.7</b> Cloud Cover (%): Clear
ID	Start Time	Stop Time	L _{eq}	L _{min}	L _{max}	L ₁₀	L ₅₀	L ₉₀	Notes/Events
	P175	120	125	57.1	240	144	111	140	station of the state of the st
	1730	125	61.8			64,4	61.6		
	17:35	17.40	62.4	55.8		63.7	1	58.9	
	17:40				1.1	63.9	62.2		
	11.00	17/15	00.0	56.8	6113	64.0	9110	59.4	
	n n n								
		1							
		Δ	n an	landa an an ann Airtean an Airtean Airtean					
		· · · · · · · · · · · · · · · · · · ·							
			0	A-DI,	PA :	три	com	pass	Cito Diagram.
Ro	adway N	ame/Dir	I A	TPh R	1	R			Site Diagram:
5	Speed (pc	ost/obs)*	65	5	15	2	$\mathcal{V}$		limited visibility of turnelke due to beauty reartation
	Number o			10	2	$\frac{n}{2}$		~	
	Width (pa		Ż	0	So	• , (	.5 4		PA TURDAINE
		r 2- way					ne	eget	Aton 1 To heard the getation
· · ·		Grade	CI	ad	CI	at	V	eger	Theo that 200
	Bu	is Stops			<u> </u>		1	N-	Jazo turn prive 1 //
		oplights					S)		Thouse real
	Motorcyc				<b>@</b>		$\left\{ \right\}$		Misking [2068] Keyler J
	Automob								- Consultation
	Medium						1 cl	eer	and Javes is
	Heavy Tr						130	40	> > > > > > > > > > > > > > > > > > >
5 m	Buses						1 512	al-	
	Count du	ration			ender der sollter Nach der sollter	<u></u>	1	AL mail	wards - 180
# - note co Photos	ordinate system Taken	m * - Speed et	82	Radar / Dri	ving / Obse	vation			house 33
	ar 110105/	Somment	<u>o.</u>		he	on ha	MADA	Laha.	= hardwood trees,
·	Other Noise	Sources: di	stantairci	aft/roadwa	ay traffic/tr	ains/lands	caping/rus and Sketch	tling leave	es/children playing/dogs barking/birds vocalizing/insects
	tur	Aprile	15	mgh	- U				ANCP, Field Noise Measurement Form, Vers. 1.2 111109

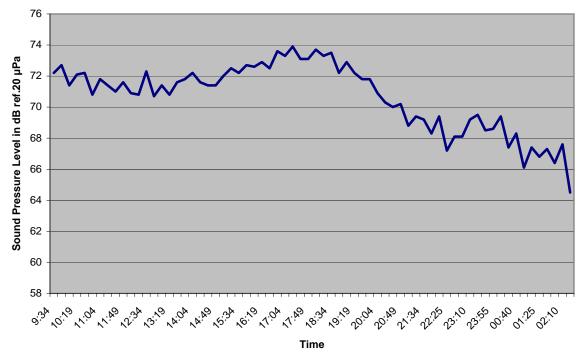
Vien Y *kni* nomer omn, v C

Observed Traffic Count Conducted During Acoustical Surveys Receiver Road Vehicle Type Count Count - Hour Adi, Speed										
Receiver	Road	Vehicle Type	Count	Count - Hour Adj.	Speed					
		Auto	223	892	65					
	PA Turnpike EB	MT	13	52	60					
ST01		HT	55	220	60					
5101		Auto	183	732	65					
	PA Turnpike WB	MT	13	52	60					
		HT	54	216	60					
		Auto	181	724	65					
	PA Turnpike EB	MT	10	40	60					
		HT	77	308	60					
ST02		Auto	210	840	65					
	PA Turnpike WB	MT	15	60	60					
	PA TUTIPIKE WB	HT	59	236	60					
		Bus	2	8	60					
		Auto	185	740	65					
	PA Turnpike EB	MT	6	24	60					
	PA TUMPIKE EB	HT	51	204	60					
ST03		Bus	1	4	60					
0100		Auto	209	836	65					
	PA Turnpike WB	MT	6	24	60					
		HT	70	280	60					
		Auto	165	660	65					
	PA Turnpike EB	MT	8	32	60					
		HT	45	180	60					
ST04		Auto	173	692	65					
		MT	12	48	60					
	PA Turnpike WB	HT	46	184	60					
		Bus	3	12	60					
		Auto	181	724	65					
		MT	10	40	60					
	PA Turnpike EB	HT	45	180	60					
CTOF		Bus	1	4	60					
ST05		Auto	168	672	65					
		MT	8	32	60					
	PA Turnpike WB	HT	55	220	60					
		Bus	2	8	60					
		Auto	215	860	65					
		MT	11	44	60					
	PA Turnpike EB	HT	43	172	60					
	r	Bus	1	4	60					
ST06		Moto	1	4	70					
		Auto	229	916	65					
	PA Turnpike WB	MT	16	64	60					
		HT	75	300	60					

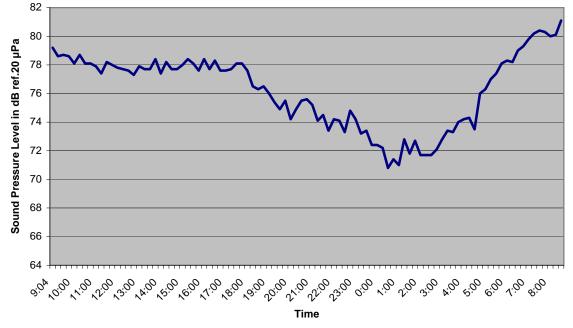
	Observed Traffic	Count Conducted	During Acc	oustical Surveys	
Receiver	Road	Vehicle Type	Count	Count - Hour Adj.	Speed
		Auto	214	856	65
	PA Turnpike EB	MT	13	52	60
		HT	32	128	60
ST07		Auto	236	944	65
	PA Turnpike WB	MT	10	40	60
		HT	49	196	60
		Bus	2	8	60
		Auto	220	880	65
	PA Turnpike EB	MT	18	72	60
		HT	48	192	60
		Auto	208	832	65
	PA Turnpike WB	MT	12	48	60
ST08	PA TUTIPIKE WB	HT	54	216	60
		Bus	1	4	60
		Auto	136	544	35
	Conestoga Rd	MT	4	16	30
	Conestoga Ru	HT	6	24	30
		Bus	1	4	30
		Auto	214	856	65
ST09	PA Turnpike EB	MT	13	52	60
		HT	32	128	60
		Auto	236	944	65
	PA Turnpike WB	MT	10	40	60
	PA TUTIPIKE WB	HT	49	196	60
		Bus	2	8	60
ST10	No tr	affic counted - Red	ceptor repl	aced with ST29	
		Auto	190	760	65
	PA Turnpike EB	MT	11	44	60
	FA TUITIPIKE LB	HT	59	236	60
ST11		Bus	1	4	60
5111		Auto	187	748	65
	PA Turnpike WB	MT	10	40	60
		HT	74	296	60
		Bus	4	16	60
		Auto	604	2416	65
	PA Turnpike EB	MT	12	48	60
		HT	49	196	60
ST12		Auto	283	1132	65
5112		MT	12	48	60
	PA Turnpike WB	HT	30	120	60
		Bus	0	0	0
		Moto	1	4	70

Observed Traffic Count Conducted During Acoustical Surveys Receiver Road Vehicle Type Count Count - Hour Adj. Speed										
Receiver	Road	Vehicle Type	Count	-						
		Auto	172	688	65					
	PA Turnpike EB	MT	10	40	60					
-		HT	46	184	60					
ST13		Auto	170	680	65					
	PA Turnpike WB	MT	8	32	60					
		HT	62	248	60					
		Bus	1	4	60					
		Auto	271	1084	65					
	PA Turnpike EB	MT	13	52	60					
		HT	35	140	60					
ST14		Auto	572	2288	65					
		MT	22	88	60					
	PA Turnpike WB	HT	72	288	60					
		Bus	1	4	60					
		Auto	357	1428	65					
		MT	11	44	60					
	PA Turnpike EB	НТ	47	188	60					
ST15		Bus	1	4	60					
2112		Auto	220	880	65					
	PA Turnpike WB	MT	13	52	60					
		HT	56	224	60					
		Auto	248	992	65					
		MT	8	32	60					
	PA Turnpike EB	HT	44	176	60					
ST16		Bus	1	4	60					
		Auto	237	948	65					
	PA Turnpike WB	MT	15	60	60					
		НТ	69	276	60					
		Auto	297	1188	65					
		MT	13	52	60					
	PA Turnpike EB	HT	50	200	60					
		Bus	2	8	60					
ST17		Auto	188	752	65					
		MT	12	48	60					
	PA Turnpike WB	HT	57	228	60					
		Bus	3	12	60					
		Auto	297	1188	65					
		MT	13	52	60					
	PA Turnpike EB	HT	50	200	60					
		Bus	2	8	60 60					
ST18			188	752	65					
		Auto								
	PA Turnpike WB	MT	12	48	60 60					
		HT	57	228	60					
		Bus	3	12	60					

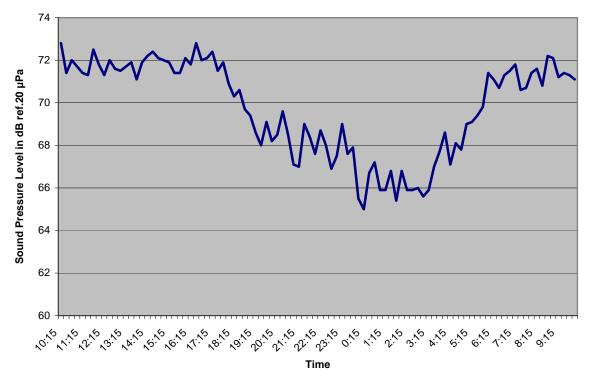
	Observed Traffic	Count Conducted	During Acc	oustical Surveys	
Receiver	Road	Vehicle Type	Count	Count - Hour Adj.	Speed
		Auto	287	1148	65
	PA Turnpike EB	MT	8	32	60
ST19/ST20		HT	24	96	60
5115/5120		Auto	616	2464	65
	PA Turnpike WB	MT	9	36	60
		HT	44	176	60
		Auto	301	1204	65
	PA Turnpike EB	MT	11	44	60
	FA TUITIPIKE LB	HT	33	132	60
ST21		Bus	1	4	60
3121		Auto	411	1644	65
	PA Turnpike WB	MT	21	84	60
	PA TUTIPIKE WD	HT	42	168	60
		Bus	2	8	60
		Auto	253	1012	65
		MT	12	48	60
	PA Turnpike EB	HT	35	140	60
ST22/ST23		Bus	2	8	60
		Auto	409	1636	65
	DA Turppiko M/D	MT	12	48	60
	PA Turnpike WB	HT	52	208	60
		Bus	1	4	60
		Auto	213	852	65
	PA Turnpike EB	MT	13	52	60
		HT	43	172	60
ST24		Auto	181	724	65
	PA Turnpike WB	MT	10	40	60
	PA TUMPIKE WB	HT	74	296	60
		Bus	1	4	60
		Auto	213	852	65
	PA Turnpike EB	MT	13	52	60
		HT	43	172	60
		Auto	181	724	65
	PA Turnpike WB	MT	10	40	60
ST25	PA TUMPIKE WB	HT	74	296	60
		Bus	1	4	60
		Auto	44	176	40
	Charlastown D.	MT	4	16	35
	Charlestown Rd	HT	2	8	35
		Bus	1	4	35


	Observed Traffic	Count Conducted	During Acc	oustical Surveys	
Receiver	Road	Vehicle Type	Count	Count - Hour Adj.	Speed
		Auto	223	892	65
	PA Turnpike EB	MT	9	36	60
ST26		HT	67	268	60
3120		Auto	232	928	65
	PA Turnpike WB	MT	18	72	60
		HT	51	204	60
		Auto	281	1124	65
	PA Turnpike EB	MT	8	32	60
ST27		HT	31	124	60
3127		Auto	345	1380	65
	PA Turnpike WB	MT	21	84	60
		HT	46	184	60
		Auto	250	1000	65
	PA Turnpike EB	MT	6	24	60
ST28		HT	30	120	60
5120		Auto	270	1080	65
	PA Turnpike WB	MT	13	52	60
		HT	64	256	60
		Auto	263	1052	65
	PA Turnpike EB	MT	4	16	60
	FA TUITIPIKE LB	HT	18	72	60
		Bus	1	4	60
ST29		Auto	854	3416	65
		MT	5	20	60
	PA Turnpike WB	HT	25	100	60
		Bus	0	0	60
		Moto	1	4	70

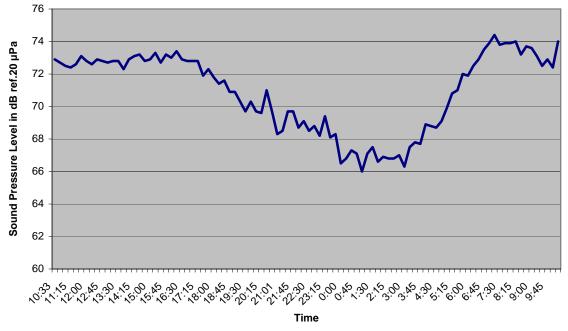
Site	Date	Time	Duration	Duration Leq		Lmin	L(10)	L(50)	L(90)
	 28-Nov-12	9:34:08	51.1	69.3	76.7	61.7	73	66.6	63.4
ST01	28-Nov-12			65.4	73.2	55.5	69.7	63.1	
ST01	28-Nov-12			67.2	79.7	57.3	70.3	64.2	
ST01	28-Nov-12			66.6	78.4	54	70	64.3	
ST01	28-Nov-12			67	76.1	57	71	64.5	
ST01	28-Nov-12			62.2	68.1	58	64.9	60.8	
ST01	28-Nov-12			62.9	69.5	55.8	65.9	61.9	
ST02	28-Nov-12	10:05:00	300	64.4	71.9	56	66.8	63.8	59.8
ST02	28-Nov-12	10:10:00	300	64.1	74.9	53.5	67.1	62.7	58.1
ST02	28-Nov-12	10:15:00	300	65.5	71.1	56.2	68.6	64.5	60.5
ST02	28-Nov-12	10:20:00	99.1	63.8	68.7	57.5	66.7	62.9	59.4
ST02	28-Nov-12	10:46:07	232.9	60.7	67.7	53.9	63	59.8	57.1
ST03	29-Oct-13	10:50:00		60.3	64.6	53.2	62.5	60.1	
ST03	29-Oct-13			61.6	69.5	55	64.1	61.1	
ST03	29-Oct-13			60.8	63.9	56.3	62.7	60.5	
ST03	29-Oct-13			60.3	64.9	52.5	62.4	60.1	
ST03	29-Oct-13			61.8	71.3	55.5	63.9	60.7	
ST03	29-Oct-13			62.5	66.9	57.3	64.4	62	
ST03	29-Oct-13	13:15:31	268.5	59.7	64.9	52.4	62.9	58.8	55.2
ST04	28-Nov-12	11:20:00	300	66.9	73.3	57.6	69.6	65.9	62.4
ST04	28-Nov-12			67.2	73.5	59	70.5	66.2	
ST04	28-Nov-12			66.9	73	60.1	69.5	66.2	
ST04	28-Nov-12			67.9	77.5	60.7	69.2	65.4	
ST04	28-Nov-12	11:44:18	41.7	71.3	75.3	66.8	74.1	70.4	68
ST05	28-Nov-12	11:45:00	300	69.7	78.8	61.2	73.1	67.7	63.5
ST05	28-Nov-12			68.4	75.3	62.4	71.7	66.8	
ST05	28-Nov-12			68.5	75.6	56.9	72	66.4	
ST05	28-Nov-12			68.6	75.9	62.4	72.6	66.4	
ST05	28-Nov-12			60.4	63.8	56	62.5	60.1	
ST06	29-Oct-13	13:20:00	300	60.1	65.3	54.3	62.9	59.5	55.8
ST06	29-Oct-13	13:25:00	300	60.7	65.5	51.2	63.7	60.1	54.4
ST06	29-Oct-13	13:30:00	300	60.4	66.4	51	63.8	59	55.4
ST06	29-Oct-13	13:35:00	300	59.1	63.7	52.3	61.8	58.5	54.8
ST06	29-Oct-13	13:40:00	300	59.4	65	51.8	61.7	58.8	56.2
ST06	29-Oct-13	13:45:00	48.2	63.6	69.4	56.7	68.2	60.7	57.8
ST06	29-Oct-13	13:52:33	146.2	60.3	65.7	54.4	62.6	59.5	57
ST07	29-Oct-13	13:55:00	300	58.6	65.8	46.2	61.5	57.8	53.5
ST07	29-Oct-13	14:00:00	300	58.1	62.5	51	60.4	57.4	54.8
ST07	29-Oct-13	14:05:00			65.3	53.9	62.7	59.2	55.8
ST07	29-Oct-13	14:10:00			64	51.4	61.8	58.4	55.5
ST07	29-Oct-13	14:15:00	300	60		54.1	62.4	59.6	56.4
ST07	29-Oct-13	14:20:00	34.5	60	64.1	57.3	62	59.5	58.1
ST08	28-Nov-12	13:45:00	300	68.8	74.9	59.2	72.2	67.7	62.3
ST08	28-Nov-12						70.8		
ST08	28-Nov-12				75.4				
ST08	28-Nov-12				72.9		70.5		
ST08	28-Nov-12				74.5		68.8		
						2210			


Site	Date	Time	Duration	Leq	Lmax	Lmin	L(10)	L(50)	L(90)
 ST09	 29-Oct-13	 3 13:57:14	165.2	65.1	72.5	50.9	69.3	62.6	57.2
ST09	29-Oct-13			64.6		52.8			56.1
ST09	29-Oct-13			66.4		54.9	69.7		59
ST09	29-Oct-13			65.7		55			59.2
ST09	29-Oct-13			65.8					59.6
ST09	29-Oct-13			66.5	73.3				58.4
ST09	29-Oct-13								57.8
ST09	29-Oct-13	3 14:30:00	300	66	74.2	54.8	70	64	58.4
ST09	29-Oct-13			65.9				64	58.6
ST09	29-Oct-13	3 15:07:54	125.2	68.4	75.5	63.3			64.6
ST10	28-Nov-12	2 14:35:00	300	61.2	67.9	51.9	64.7	59.9	56.1
ST10	28-Nov-12	14:40:00	300	61.4	67.4	53.5	64.9	59.6	54.9
ST10	28-Nov-12	2 14:45:00	300	60.4	69	50.8	63.9	58.6	53.6
ST10	28-Nov-12	14:50:00	13.5	60.2	63.6	56.2	63.2	59.4	56.3
ST10	29-Nov-12	2 10:57:04	175	66.8	71.9	58.1	69.5	66.1	62
ST11	29-Nov-12	11:00:00		66.4		55.8			61.1
ST11	29-Nov-12					55.3			62
ST11	29-Nov-12		300	66.8		57.9			61
ST11	29-Nov-12		11.2	65.1		61.2	66.7	65	62.8
ST11	29-Nov-12	11:27:55	124.8	63.7	67.5	57.5	66	63.4	59.4
ST12	29-Oct-13	8:13:45	74.7	67.1	71.5	63.9	69	66.6	64.7
ST12	29-Oct-13			67.1					64
ST12	29-Oct-13			66.1			68.5		62.7
ST12	29-Oct-13			66.2					63.5
ST12	29-Oct-13			66.2		60.8			63
ST12	29-Oct-13			64.9					60.8
ST12	29-Oct-13			65.7					60.3
ST13	29-Nov-12	11:30:00	300	66.4	80.1	54.1	68.5	64.6	59.7
ST13	29-Nov-12	11:35:00	300	64.7	71.1	55.9	67.5	64	59.8
ST13	29-Nov-12	11:40:00	300	66.3	71.7	56.6	69.3	65.3	60.6
ST13	29-Nov-12	11:45:00	300	66.7	76	58.8	69.4	65.7	61.7
ST13	29-Nov-12	11:50:00	11.7	64.4	68	58.8	67.6	62.4	59
ST13	29-Nov-12	13:19:09	50.3	65.3	68.4	60.6	67.4	64.9	61.9
ST14	29-Oct-13	15:55:00	300			58.9	67.1	64.7	60.9
ST14	29-Oct-13	3 16:00:00	300	65.8	69.9	58.4	68.2	65.5	62
ST14	29-Oct-13	3 16:05:00	300	66.5	83.1	56.5	68.3	65.3	61.4
ST14	29-Oct-13	3 16:10:00	300	66.4	75	57	68.5	65.8	62.4
ST14	29-Oct-13	3 16:15:00	300	66.5	70.4	60.8	68.4	66.3	63.6
ST14	29-Oct-13	3 16:20:00	164	65.6	72.9	59.6	67.6	64.9	62.8
ST14	29-Oct-13	3 17:21:22	217.2	62.3	67.7	57.2	64.4	61.7	59.8
ST15	30-Nov-12	8:55:00			71.2	60.7	68.6	66	63.3
ST15	30-Nov-12	9:00:00	300	66.3	73.4	60.1	68.5	65.7	62.6
ST15	30-Nov-12	9:05:00	300	66.5	74.6	59.1	69.2	65.6	61.9
ST15	30-Nov-12	9:10:00	137	66.7	70	61.9	69.2	66.5	63.4
ST15	30-Nov-12	9:24:24	35.5	60.6	62.8	57.2	61.9	60.8	58.1
ST16	29-Nov-12	14:25:00	300	66.8	72.3	60.8	69.4	66.4	62.6
ST16	29-Nov-12	14:30:00	300	65.5	72.8	57.4	67.9	64.9	61
ST16	29-Nov-12	14:35:00	300	66.6	73.4	56.3	69.6	65.9	61.7
ST16	29-Nov-12	2 14:40:00	262.4	67.1	71.3	62.7	69.4	66.7	63.9
ST16	29-Nov-12	14:58:21	98.3	60.8	62.8	53.1	62.5	61.1	56.6

Site	Date	Time	Duration	Leq	Lmax	Lmin	L(10)	L(50)	L(90)
ST17	 30-Nov-12	9:25:00		62	67.4	57.3	64.1	61.5	58.9
ST17	30-Nov-12			61.3	65.3	54.7		61	
ST17	30-Nov-12	9:35:00	300	62.2	67.2	54.8	64.7	61.6	57.1
ST17	30-Nov-12	9:40:00	163.5	60.8	67.1	52.1	63.7	59.6	54.7
ST17	30-Nov-12	9:48:07	112.7	66.8	72.8	55.5	70.6	65.2	60.4
C <b>T</b> 10	20 Nov 12	0.50.00	200	cc <b>7</b>	74	<b>F</b> A C	<b>CD C</b>	66.4	64.2
ST18 ST18	30-Nov-12			66.7 66	74	54.6		66.1 64.9	
ST18 ST18	30-Nov-12			66.7	72.3	54 53.8		65.6	
ST18 ST18	30-Nov-12 30-Nov-12			67.4	73.8 71.4	53.8 60.9		66.9	
ST18 ST18	30-Nov-12				67.5	57.1			
3110	30-1000-12	11.58.00	115.5	62.1	07.5	57.1	04.5	61.6	56.4
ST19	28-Oct-13	16:25:00	300	61.5	65.3	54.8	63.5	61.4	58.1
ST19	28-Oct-13	16:30:00	300	61.8	65.3	56.9	63.7	61.7	59.5
ST19	28-Oct-13	16:35:00	300	61.3	65.1	57.9	63.2	61.1	58.7
ST19	28-Oct-13	16:40:00	300	61.9	65	57.2	63.8	61.8	59.3
ST19	28-Oct-13	16:45:00	300	60.9	64.6	55.3	62.7	60.7	57.9
ST19	28-Oct-13	16:50:00	300	61.5	65.3	52.4	63.1	61.6	59.1
ST19	28-Oct-13	16:55:00	300	61.1	64.1	56.2	62.9	61	57.5
ST19	28-Oct-13	17:00:00	300	61.8	64.9	57.2	63.6	61.5	59.4
ST19	28-Oct-13	17:05:00	300	61.5	64.8	56.4	63.3	61.4	59.2
ST19	28-Oct-13	17:10:00	60.4	63.3	67.8	56.9	65.9	62.6	60.4
ST20	28-Oct-13	16:35:00	300	64.4	68.5	59.4	66.7	64.1	61.3
ST20	28-Oct-13		300	65.2	69.9	59.4	67.5	64.8	62.2
ST20	28-Oct-13			62.9	67.7	59		62.3	
ST20	28-Oct-13			63.5	68.5	58.6		63.2	
ST20	28-Oct-13	16:55:00	223.3	63.6	67.2	57.4	66.2	63.2	59.4
ST21	29-Nov-12	15:55:00		68.1	75.2	57.7		67.3	
ST21	29-Nov-12			69.5	74.5	62.9		69.1	
ST21	29-Nov-12			68.4	72.9	60.1			
ST21	29-Nov-12			67.9	70.4	62.8			
ST21	30-Nov-12	8:15:38	261.4	62.2	66.9	57.1	63.9	62.1	59.2
ST22	28-Oct-13	15:40:44	255.5	62.1	66.6	57.3	63.8	61.8	59.6
ST22	28-Oct-13	15:45:00	300	62.9	66.2	57.3	65.1	62.6	59.7
ST22	28-Oct-13	15:50:00	300	62.1	66	57.8	64.2	61.7	59.3
ST22	28-Oct-13	15:55:00	300	62.1	66.2	55	63.9	61.9	58.6
ST22	28-Oct-13	16:00:00	300	61.5	65.4	55.7	63.3	61.3	58.3
ST22	28-Oct-13	16:05:00	300	62.8	75.2	57.3	64.6	62.4	60.2
ST22	28-Oct-13	16:10:00	14.4	61.8	62.9	60.4	62.8	62.1	60.6
ST22	28-Oct-13	16:20:15	284.8	61.4	69.9	56.5	62.9	61.2	59
ST23	28-Oct-13	15:30:00	300	60.6	63.4	56.9	62.2	60.5	58.1
ST23	28-0ct-13			60.8					
ST23	28-Oct-13			60.3					
ST23	28-0ct-13			61					
ST23	28-Oct-13			60.2	63.7				
ST23	28-Oct-13			60.1	63.6				
ST23	28-0ct-13			60	62.7				
ST23	28-0ct-13			60.5	63.3				
ST23	28-Oct-13			66.1	70.4	62.4			
	10 000 10	10.00.00	00.7	00.1		0=.1	07.15	00.0	0017


Site	Date	Time	Duration	Leq	Lmax	Lmin	L(10)	L(50)	L(90)
 ST24	 30-Nov-12	12:25:00	300	58.	 6 63.7	52		58.4	55
ST24	30-Nov-12						62.4	59.3	56.5
ST24	30-Nov-12						61.2	58.3	55.6
ST24	30-Nov-12						62	59.4	56.8
ST24	30-Nov-12						63	61	59.7
ST24	30-Nov-12	12:52:53	126.2	63.	2 76.1	52.2	67.4	57.6	53.6
ST25	30-Nov-12	12:55:00	300	61.	4 72.7	49.3	66.5	54.2	50.7
ST25	30-Nov-12	13:00:00	300	61.	7 74.9	49.3	66.3	53.8	51.3
ST25	30-Nov-12	13:05:00	300	60.	4 72.1	49.7	65.1	54.5	51.3
ST25	30-Nov-12	13:10:00	300	64.	7 78.1	51.7	68.7	57.7	53.4
ST25	30-Nov-12	13:15:00	15.5	63.	4 69.3	54.1	67.3	60.1	54.5
ST26	29-Oct-13	10:05:00	300	66.	8 73.8	58.9	69.4	66.5	61.4
ST26	29-Oct-13	3 10:10:00	300	65.	3 71.7	58.3	68.4	64	60.5
ST26	29-Oct-13	10:15:00	300	65.	7 74	55.8	68.2	64.8	60
ST26	29-Oct-13	10:20:00					68.8	65	60.8
ST26	29-Oct-13	10:25:00			3 74.3	55	68.5	63.4	58
ST26	29-Oct-13	10:30:00					68.2	63.2	57.5
ST26	29-Oct-13	10:45:20	280	61.	8 66.1	55	63.9	61.4	59
ST27	29-Oct-13	15:10:00			2 73.4	58.4	70.9	67.7	62.8
ST27	29-Oct-13						69.9	67.7	63.8
ST27	29-Oct-13						70	67.4	63.5
ST27	29-Oct-13						70	67.5	64
ST27	29-Oct-13						70.7	68.1	63.3
ST27	29-Oct-13	15:52:47	132.8	65.	2 70.5	60.1	67.5	65	61.1
ST28	28-Oct-13	14:47:56					63.1	59.8	56.4
ST28	28-Oct-13	14:50:00			9 65.6	54.4	62.6	59	56.4
ST28	28-Oct-13	14:55:00				53.3	61.9	58.3	55.1
ST28	28-Oct-13						64.3	59.7	56.5
ST28	28-Oct-13	15:05:00				52.4	62.2	58.7	55.7
ST28	28-Oct-13						62.2	59.2	56.6
ST28	28-Oct-13			60.			62.7	59.2	56.8
ST28	28-Oct-13	15:29:30	29.7	58.	4 60.5	56.7	59.8	58.4	57
ST29	29-Oct-13						64.4	61.6	58.7
ST29	29-Oct-13						63.7	61.5	58.9
ST29	29-Oct-13						63.9	62.2	60.3
ST29	29-Oct-13			62.			64	61.8	59.4
ST29	29-Oct-13	<b>17:45:00</b>	1.8	61.	2 64.4	60.2	64.3	60.6	60.2




Pennsylvania Turnpike Authority Widening Project 312-319 Long Term Noise Measurement LT1



Pennsylvania Turnpike Authority Widening Project 312-319 Long Term Noise Measurement LT2



Pennsylvania Turnpike Authority Widening Project 312-319 Long Term Noise Measurement LT3



Pennsylvania Turnpike Authority Widening Project 312-319 Long Term Noise Measurement LT4



Certificate Number 2013-180218

Instrument Model 820, Serial Number 1651, was calibrated on 02OCT2013. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

Instrument found to be in calibration as received: YES Date Calibrated: 02OCT2013 Calibration due:

#### Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn/2209	0277 / 0109	12 Months	08MAR2014	2013-171090

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

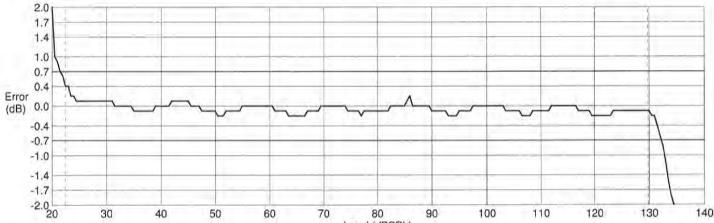
Temperature: 23 ° Centigrade

Relative Humidity: 32 %

#### Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.


The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"AS RECEIVED" data same as shipped data. Tested with PRM828-2581

Technician: Ron Harris

## Sound Level Meter Model: 820A Serial Number: A1651 Log Linearity, Differential Linearity and Range Data

This Type 1 Sound Level Meter (including attached PRM828 preamplifier and ADP005 18 pF input adapter) was calibrated with a reference 1kHz sine wave at a level of 114.0 dBSPL. The instrument's Log Linerarity A-weighted slow response was then electrically tested using a 1kHz sine wave from 18.0 dBSPL to 138.0 dBSPL in 0.5 dB increments.

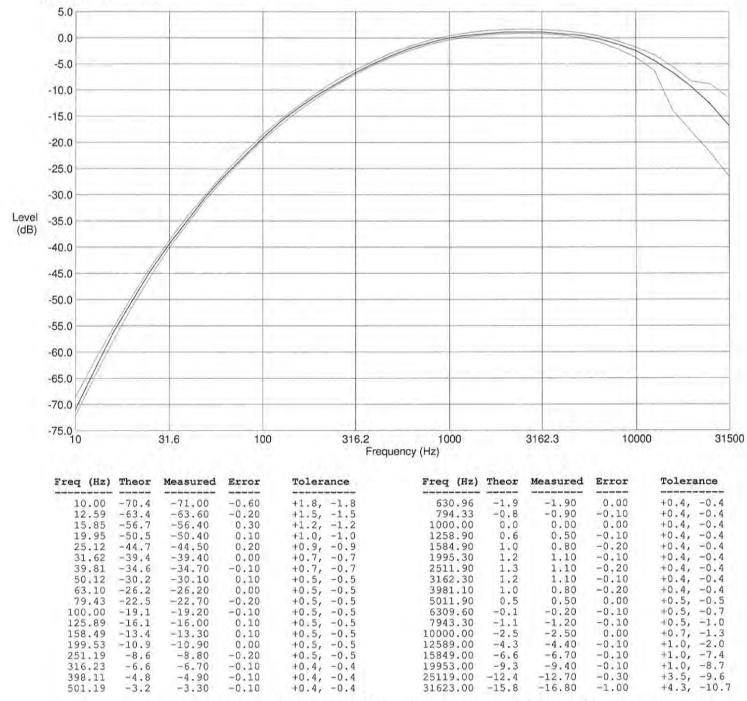


Level (dBSPL)

Lev1	Meas	Err	Lev1	Meas	Err	Lev1	Meas	Err	Levl	Meas	Err	Lev1	Meas	Err	Lev1	Meas	Err
dBSPL	dBSPL	dB	dBSPL	dBSPL	dB	dBSPL	dBSPL	dB	dBSPL	dBSPL	dB	dBSPL	dBSPL	dB	dBSPL	dBSPL	dB
05050505050505050505050505050505050505	045915976947206161616161616161505060594949 0000011112223344555667788990001122339445566677 2222233344455666778899900011223394445566677	095410976440N14444444444444444444444444444444444	50505050505050505050505050505050505050	40505051616161615050494949988794949405050505 		05050505050505050505050505050505050505	050594949787878787949495050505050504949494999	00000111112222222220000000000000000000	150505050505050505050505050505050505050	404949505050605050505050504949480809494950505 950011077889999000110077889999999999999999	-0.111-1-1	0505050505050505050505050505050505050 00011222334455506667778889900011122233445556677788899000111112244555666778889900 10001100000000001111111111111111	050505050494949389849494949505050505059494938 00011000000556667788999000100000000000000000000000000000	00000000000000000000000000000000000000	122112223.05050505050505050505050505050 1222122223.050505050505050505050505050 1222222334455566777888999000111333333445556667778 12222222222222222222222222222222222	1201.3838499494949499 <b>49381479902220000022</b> 12212222334494949494949 <b>49388147990222</b> 1222222222222222222222222222222222	22222222111111111111111111111111111111

Plotted per typical sensitivity of a 2541 microphone; 44.5 mV/Pa & 17.1 pF.

Overload occurs at 129.9 dBSPL.

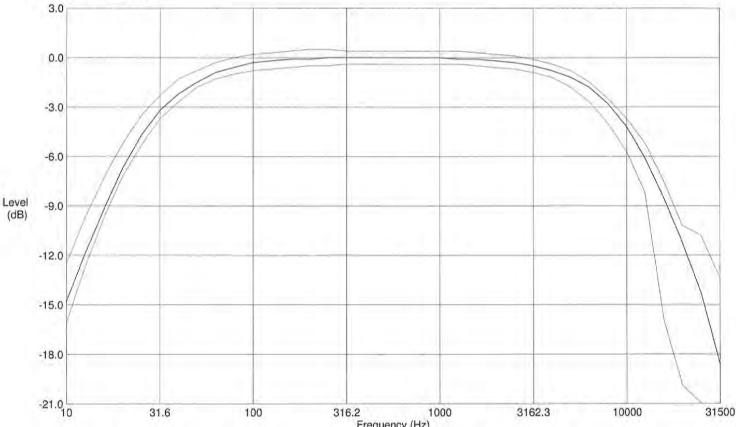

Primary indicator range: 107.3 dB (lower limit: 22.5 dBSPL to upper limit: 129.8 dBSPL). Dynamic range: 112.7 dB (noise floor: 17.1 dBSPL to upper limit: 129.8 dBSPL).

This instrument is in compliance with IEC 60651 (2001-10) 7.9 and 7.10, ANSI S1.4-1983 3.2 and IEC 60804 (2001-10) 9.2.1 for Type 1 sound level meters when used with a Larson Davis Type 1 microphone.

Technician: Ron Harris Test Date: 02OCT2013

## Sound Level Meter Model: 820A Serial Number: A1651 Certificate of A-Weight Electrical Conformance

This Type 1 Sound Level Meter (including attached PRM828 preamplifier and ADP005 18 pF input adapter) was calibrated with a reference 1kHz sine wave at a level of 114.0 dBSPL. The instrument's A-weighted response was then electrically tested using a 2.0 Vrms sinewave at exact frequencies as specified in IEC 60651 (2001-10) and ANSI S1.4-1983.




This instrument is in compliance with IEC 60651 (2001-10) 6.1 and 9.2.2, ANSI S1.4-1983 5.1 and 8.2.1, and IEC 60804 (2001-10) 5.1 for Type 1 sound level meters when used with a Larson Davis Type 1 microphone.

Technician: Ron Harris Test Date: 020CT2013

## Sound Level Meter Model: 820A Serial Number: A1651 Certificate of C-Weight Electrical Conformance

This Type 1 Sound Level Meter (including attached PRM828 preamplifier and ADP005 18 pF input adapter) was calibrated with a reference 1kHz sine wave at a level of 114.0 dBSPL. The instrument's C-weighted response was then electrically tested using a 2.0 Vrms sinewave at exact frequencies as specified in IEC 60651 (2001-10) and ANSI S1.4-1983.



Frequency	(Hz)	

Freq (Hz)	Theor	Measured	Error	Tolerance	Freq (Hz)	Theor	Measured	Error	Tolerance
10.00	-14.3	-14.80	-0.50	+1.8, -1.8	630.96	0.0	0.00	0.00	+0.4, -0.4
12.59	-11.2	-11.90	-0.70	+1.5, -1.5	794.33	0.0	0.00	0.00	+0.4, -0.4
15.85	-8.5	-9.20	-0.70	+1.2, -1.2	1000.00	0.0	0.00	0.00	+0.4, -0.4
19.95	-6.2	-6.70	-0.50	+1.0, -1.0	1258.90	0.0	-0.10	-0.10	+0.4, -0.4
25.12	-4.4	-4.70	-0.30	+0.9, -0.9	1584.90	-0.1	-0.10	0.00	+0.4, -0.4
31.62	-3.0	-3.20	-0.20	+0.7, -0.7	1995.30	-0.2	-0.20	0.00	+0.4, -0.4
39.81	-2.0	-2.20	-0.20	+0.7, -0.7	2511.90	-0.3	-0.30	0.00	+0.4, -0.4
50.12	-1.3	-1.50	-0.20	+0.5, -0.5	3162.30	-0.5	-0.50	0.00	+0.4, -0.4
63.10	-0.8	-0.90	-0.10	+0.5, -0.5	3981.10	-0.8	-0.80	0.00	+0.4, -0.4
79.43	-0.5	-0.60	-0.10	+0.5, -0.5	5011.90	-1.3	-1.20	0.10	+0.5, -0.5
100.00	-0.3	-0.30	0.00	+0.5, -0.5	6309.60	-2.0	-1.80	0.20	+0.5, -0.7
125.89	-0.2	-0.20	0.00	+0.5, -0.5	7943.30	-3.0	-2.80	0.20	+0.5, -1.0
158.49	-0.1	-0.10	0.00	+0.5, -0.5	10000.00	-4.4	-4.20	0.20	+0.7, -1.3
199.53	0.0	-0.10	-0.10	+0.5, -0.5	12589.00	-6.2	-6.10	0.10	+1.0, -2.0
251.19	0.0	0.00	0.00	+0.5, -0.5	15849.00	-8.5	-8.50	0.00	+1.0, -7.4
316.23	0.0	0.00	0.00	+0.4, -0.4	19953.00	-11.2	-11.20	0.00	+1.0, -8.7
398.11	0.0	0.00	0.00	+0.4, -0.4	25119.00	-14.3	-14.30	0.00	+3.5, -9.6
501.19	0.0	0.00	0.00	+0.40.4	31623.00	-17.7	-18.60	-0.90	+4.3, -10.

This instrument is in compliance with IEC 60651 (2001-10) 6.1 and 9.2.2, ANSI S1.4-1983 5.1 and 8.2.1, and IEC 60804 (2001-10) 5.1 for Type 1 sound level meters when used with a Larson Davis Type 1 microphone.

Test Date: 02OCT2013 Technician: Ron Harris



Certificate Number 2013-180220

Instrument Model 820, Serial Number 1652, was calibrated on 02OCT2013. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

Instrument found to be in calibration as received: YES Date Calibrated: 020CT2013 Calibration due:

#### Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn/2209	0277 / 0109	12 Months	08MAR2014	2013-171090

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

**Calibration Environmental Conditions** 

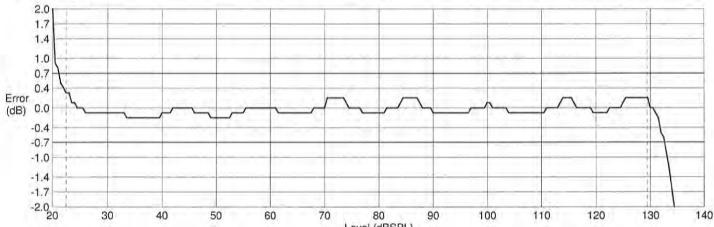
Temperature: 23 ° Centigrade

Relative Humidity: 32 %

#### Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.


The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"AS RECEIVED" data same as shipped data. Tested with PRM828-2582

Signed: echnician: Ron Harris

## Sound Level Meter Model: 820A Serial Number: A1652 Log Linearity, Differential Linearity and Range Data

This Type 1 Sound Level Meter (including attached PRM828 preamplifier and ADP005 18 pF input adapter) was calibrated with a reference 1kHz sine wave at a level of 114.0 dBSPL. The instrument's Log Linerarity A-weighted slow response was then electrically tested using a 1kHz sine wave from 18.0 dBSPL to 138.0 dBSPL in 0.5 dB increments.

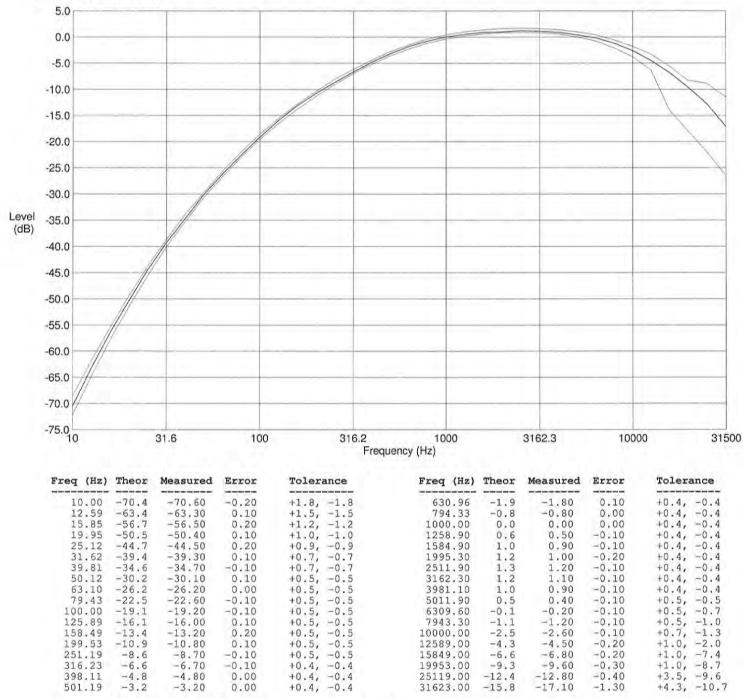


Level (dBSPL)

Lev1	Meas	Err	Levl	Meas	Err	Lev1	Meas	Err	Lev1	Meas	Err	Lev1	Meas	Err	Lev1	Meas	Err
dBSPL	dBSPL	dB	dBSPL	dBSPL	dB	dBSPL	dBSPL	dB	dBSPL	dBSPL	dB	dBSPL	dBSPL	dB	dBSPL	dBSPL	
0.5050505050505050505050505050505050505	0,558048048,048,059494949494949494949494980,000011110000111100001111000001111000000	21111100000000000000000000000000000000	1,00,00,00,00,00,00,00,00,00,00,00,00,00	<b>3878494050505059494948787878787949495050505</b>	20000000000000000000000000000000000000	0505050505050505050505050505050505050505	05050494949494949405050727272715050594949 990011122233445566678899000111223344556667788 556666666666666666667777777777	00000011111111111111000000000000000000	50505050505050505050505050505050505050	49495050517707070605059494949494949494050505 99001100778899990011100778899 77788888888888888888888888899999999	-0		160505059494949494949405050602722 1000112223333445556667788999001112223333445556667788999001112223334445556667778899990 10005566677889990011112223334445556667778889999	00000000000000000000000000000000000000	1201.50 1221.50 1221.50 1221.50 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1222.3.55 1233.3.44 1233.3.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 1233.55 12	120.94 1221.23.05 1221.23.05 1221.23.05 1224.25.05 1224.25.05 1225.27 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1226.77 1227.77 1226.77 1227.77 1226.77 1227.77 1226.77 1227.77 1227.77 1226.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1227.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77 1237.77	

Plotted per typical sensitivity of a 2541 microphone; 44.5 mV/Pa & 17.1 pF.

Overload occurs at 129.5 dBSPL.

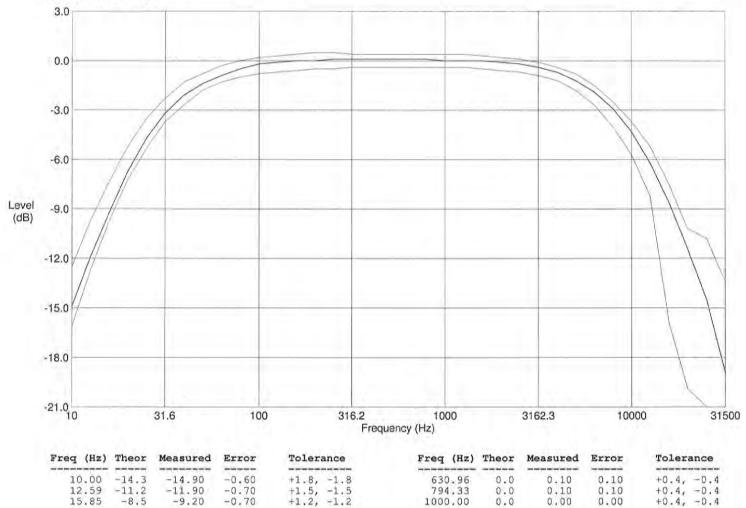

Primary indicator range: 106.9 dB (lower limit: 22.5 dBSPL to upper limit: 129.4 dBSPL). Dynamic range: 112.3 dB (noise floor: 17.1 dBSPL to upper limit: 129.4 dBSPL).

This instrument is in compliance with IEC 60651 (2001-10) 7.9 and 7.10, ANSI S1.4-1983 3.2 and IEC 60804 (2001-10) 9.2.1 for Type 1 sound level meters when used with a Larson Davis Type 1 microphone.

Technician: Ron Harris Test Date: 02OCT2013

### Sound Level Meter Model: 820A Serial Number: A1652 Certificate of A-Weight Electrical Conformance

This Type 1 Sound Level Meter (including attached PRM828 preamplifier and ADP005 18 pF input adapter) was calibrated with a reference 1kHz sine wave at a level of 114.0 dBSPL. The instrument's A-weighted response was then electrically tested using a 1.9 Vrms sinewave at exact frequencies as specified in IEC 60651 (2001-10) and ANSI S1.4-1983.




This instrument is in compliance with IEC 60651 (2001-10) 6.1 and 9.2.2, ANSI S1.4-1983 5.1 and 8.2.1, and IEC 60804 (2001-10) 5.1 for Type 1 sound level meters when used with a Larson Davis Type 1 microphone.

Technician: Ron Harris Test Date: 02OCT2013

## Sound Level Meter Model: 820A Serial Number: A1652 Certificate of C-Weight Electrical Conformance

This Type 1 Sound Level Meter (including attached PRM828 preamplifier and ADP005 18 pF input adapter) was calibrated with a reference 1kHz sine wave at a level of 114.0 dBSPL. The instrument's C-weighted response was then electrically tested using a 1.9 Vrms sinewave at exact frequencies as specified in IEC 60651 (2001-10) and ANSI S1.4-1983.



This instrument is in compliance with IEC 60651 (2001-10) 6.1 and 9.2.2, ANSI S1.4-1983 5.1 and 8.2.1, and IEC 60804 (2001-10) 5.1 for Type 1 sound level meters when used with a Larson Davis Type 1 microphone.

1258.90

1584.90

1995.30

2511.90

3162.30

3981.10

5011.90

6309.60

7943.30

10000.00

12589.00

15849.00

19953.00

25119.00

31623.00

0.0

-0.1

-0.2

-0.3

-0.5

-0.8

-1.3

-2.0

-3.0

-4.4

-6.2

-8.5

-11.2

-14.3

-17.7

0.00

0.00

-0.10

-0.20

-0,40

-0.70

-1.20

-1.90

-2.90

-4.30

-6.20

-8.60

-11.40

-14.50

-18.90

0.00

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.00

-0.10

-0.20

-0.20

-1.20

+0.4, -0.4

+0.4, -0.4

+0.4, -0.4

+0.4, -0.4

+0.4, -0.4

+0.4, -0.4

+0.5, -0.5

+0.5, -0.7

+0.5, -1.0

+0.7, -1.3

+1.0, -2.0

+1.0, -7.4

+1.0, -8.7

+3.5, -9.6

-10.7

+4.3,

Technician: Ron Harris

19.95

25.12

31.62

39.81

50.12

63.10

79.43

100.00

125.89

158.49

199.53

251.19

316.23

398.11

501.19

-6.2

-4.4

-3.0

-2.0

-1.3

-0.8

-0.5

-0.3

-0.2

-0.1

0.0

0.0

0.0

0.0

0.0

Test Date: 02OCT2013

-6.70

-4.70

-3.20

-2.10

-1.40

-0.90

-0.50

-0.20

-0.10

0.00

0.00

0.10

0.10

0.10

0.10

-0.50

-0.30

-0.20

-0.10

-0.10

-0.10

0.00

0.10

0.10

0.10

0.00

0.10

0.10

0.10

0.10

+1.0, -1.0

+0.9, -0.9

+0.7, -0.7

+0.7, -0.7

+0.5, -0.5

+0.5, -0.5

+0.5, -0.5

+0.5, -0.5

+0.5, -0.5

+0.4, -0.4

+0.4, -0.4

+0.4, -0.4

-0.5

-0.5

-0.5

+0.5,

+0.5,

+0.5,



Certificate Number 2013-180213

Instrument Model PRM828, Serial Number 2581, was calibrated on 02OCT2013. The instrument meets factory specifications per Procedure D0001.8135.

#### Instrument found to be in calibration as received: YES Date Calibrated: 02OCT2013 Calibration due:

### Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Agilent Technologies	34401A	MY41044529	12 Months	25JAN2014	5954339
Larson Davis	LDSigGn/2209	0277 / 0109	12 Months	08MAR2014	2013-171090

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

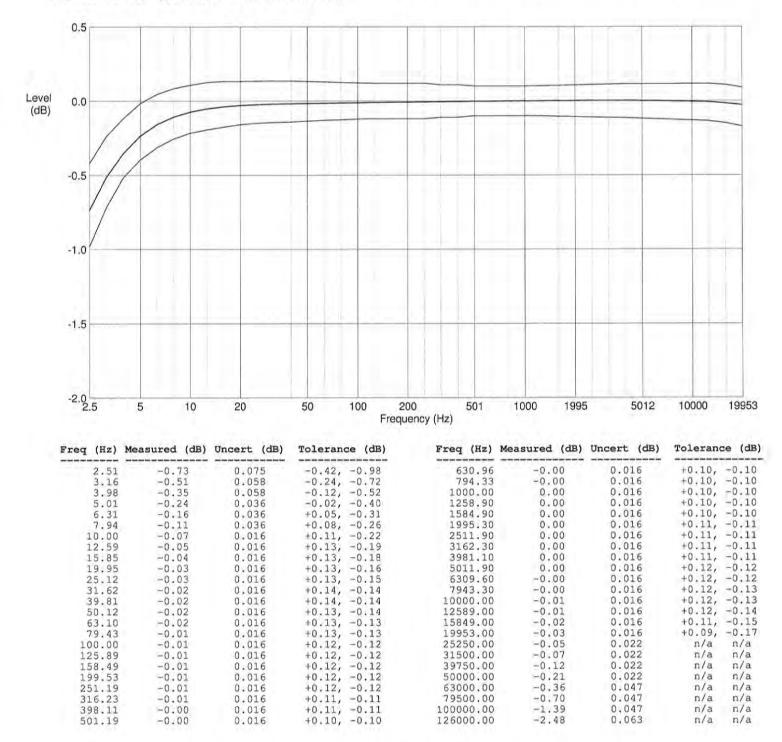
Temperature: 23 ° Centigrade

Relative Humidity: 32 %

#### Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.


The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As received" data is the same as shipped data.

chnician: Ron Harris

## Preamplifier Model: 828 Serial Number: 2581 Certificate of Electrical Conformance

Frequency response of this model 828 preamplifier was tested at a level of 1 Vrms with 18pF microphone capacitance and driving a short cable. Output level at 1kHz is 0.8923 Vrms (-0.989 dBV), uncertainty 0.033 dB. Results are displayed relative to the level at 1kHz.



Noise floor data: 1kHz (1/3 Octave) = 0.55 uV, -5.2 dBuV, uncertainty = 0.47 dB Flat (20Hz-20kHz) = 5.1 uV, 14.2 dBuV, uncertainty = 0.47 dB Awt = 3.5 uV, 10.9 dBuV, uncertainty = 0.46 dB

Uncertainties are given as expanded uncertainty at ~95% confidence interval (k = 2).

Technician: Ron Harris Test Date: 020CT2013



Certificate Number 2013-180214

Instrument Model PRM828, Serial Number 2582, was calibrated on 02OCT2013. The instrument meets factory specifications per Procedure D0001.8135.

#### Instrument found to be in calibration as received: YES Date Calibrated: 02OCT2013 Calibration due:

### Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Agilent Technologies	34401A	MY41044529	12 Months	25JAN2014	5954339
Larson Davis	LDSigGn/2209	0277 / 0109	12 Months	08MAR2014	2013-171090

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 23 ° Centigrade

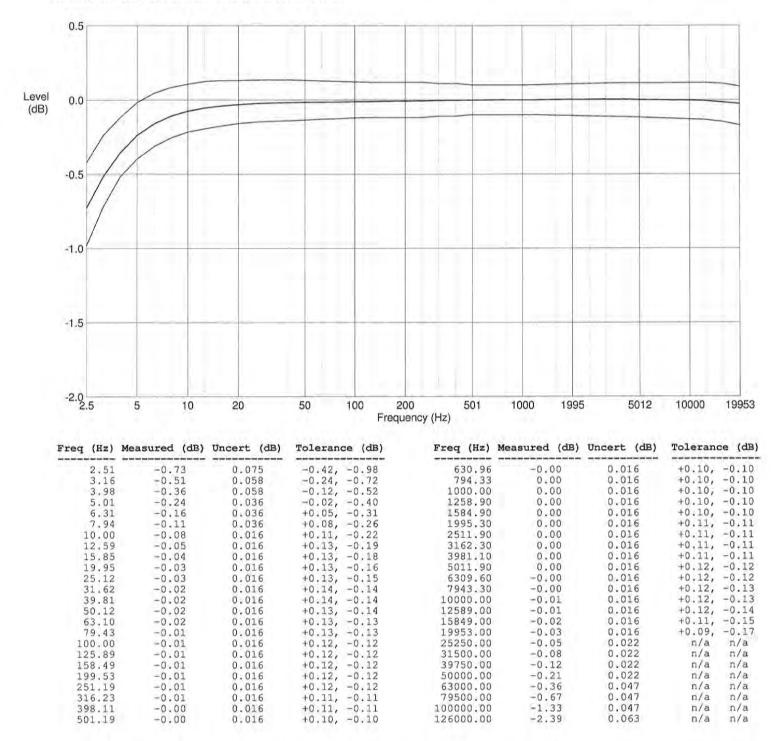
Relative Humidity: 32 %

#### Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.


"As received" data is the same as shipped data.

Signed:

Fechnician: Ron Harris

### Preamplifier Model: 828 Serial Number: 2582 Certificate of Electrical Conformance

Frequency response of this model 828 preamplifier was tested at a level of 1 Vrms with 18pF microphone capacitance and driving a short cable. Output level at 1kHz is 0.8903 Vrms (-1.009 dBV), uncertainty 0.033 dB. Results are displayed relative to the level at 1kHz.



Noise floor data: 1kHz (1/3 Octave) = 0.41 uV, -7.8 dBuV, uncertainty = 0.47 dB Flat (20Hz-20kHz) = 5.1 uV, 14.1 dBuV, uncertainty = 0.47 dB Awt = 3.5 uV, 10.8 dBuV, uncertainty = 0.46 dB

Uncertainties are given as expanded uncertainty at ~95% confidence interval (k = 2).

Technician: Ron Harris Test Date: 02OCT2013



Certificate Number 2013-180698

Microphone Model 377B20, Serial Number 137300, was calibrated on 10OCT2013. The microphone meets factory specifications per Test Procedure D0001.8167.

#### New Instrument Date Calibrated: 100CT2013 Calibration due:

#### **Calibration Standards Used**

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Hewlett Packard	34401A	3146A62099	12 Months	26NOV2013	5884920
Larson Davis	PRM915	0102	12 Months	04DEC2013	2012-167168
Larson Davis	PRM916	0102	12 Months	13DEC2013	2012-167454
Larson Davis	2559	2504	12 Months	03JAN2014	19648-1
Larson Davis	CAL250	42630	12 Months	04JAN2014	2013-168402
Larson Davis	2900	0575	12 Months	24JUL2014	2013-177110
Larson Davis	PRM902	0206	12 Months	15AUG2014	2013-178254
Larson Davis	MTS1000 / 2201	1000 / 0100	12 Months	03SEP2014	SM090313

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

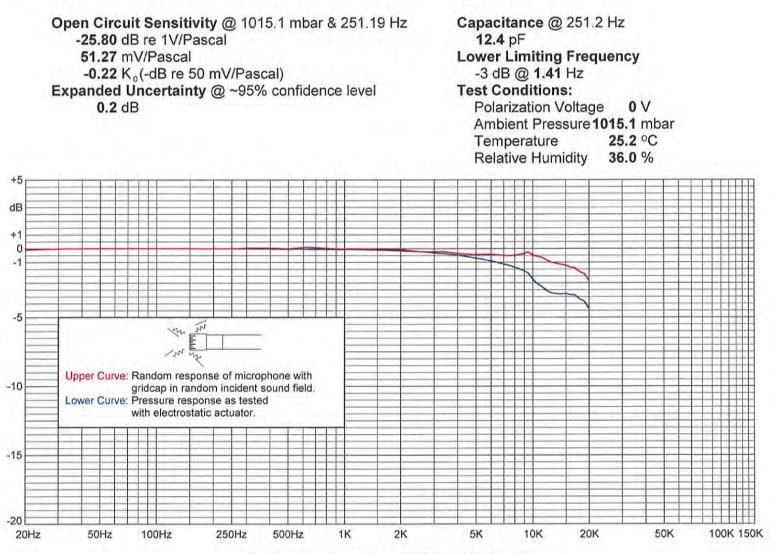
**Calibration Environmental Conditions** 

Environmental test conditions as printed on microphone calibration chart.

#### Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.


The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

Signed: Aladomm

Technician: Abraham Ortega



## PCB 1/2" Microphone Calibration Chart Model: 377B20 Serial Number: 137300



Frequency Response (0 dB @ 251.19 Hz) Random and actuator response with reference to level at 251.19 Hz

Freq (Hz)	Upper (dB)	Lower (dB)												
19.95	-0.07	-0.07	501.19		-0.02	1883.65	-0.06	-0.14	4216.97	-0.37	-0.51	9440.61	-0.25	-1.76
25.12	-0.03	-0.03	630.96	0.11	-0.03	1995.26	-0.06	-0.15	4466.84	-0.39	-0.56	10000.00	-0.46	-2.23
31.62	0.00	-0.00	794.33	0.03	-0.04	2113.49	-0.09	-0.17	4731.51	-0.42	-0.63	10592.54	-0.57	-2.55
39.81	0.01	0.01	1000.00	-0.03	-0.05	2238.72	-0.14	-0.19	5011,87	-0.43	-0.69	11220.19	-0.64	-2.77
50.12	0.01	0.01	1059.25	-0.06	-0.06	2371.37	-0.18	-0.20	5308.84	-0.42	-0.74	11885.02	-0.83	-3.04
63.10	0.02	0.02	1122.02	-0.05	-0.06	2511.89	-0.21	-0.21	5623.41	-0.42	-0.81	12589.25	-1.00	-3.23
79.43	0.01	0.01	1188,50	-0.05	-0.07	2660.73	-0.23	-0.24	5956.62	-0.41	-0.88	13335.21	-1.06	-3.27
100.00	0.01	0.01	1258.93	-0.04	-0.08	2818.38	-0.23	-0.26	6309,57	-0,43	-0.96	14125.38	-1.15	-3,30
125.89	0.01	0.01	1333.52	-0.03	-0.08	2985.38	-0.22	-0.29	6683.44	-0.46	-1.05	14962.36	-1.20	-3.27
158.49	0.01	0.01	1412.54	-0.04	-0.09	3162.28	-0.22	-0.32	7079.46	-0.49	-1.13	15848.93	-1.35	-3.35
199.53	0.00	0.00	1496.24	-0.06	-0.10	3349.65	-0.22	-0.35	7498,94	-0.52	-1.23	16788.04	-1.40	-3.37
251.19	0.00	0.00	1584.89	-0.07	-0.11	3548.13	-0.26	-0.39	7943.28	-0.49	-1.32	17782.80	-1.68	-3.65
316.23	0.05	-0.01	1678.80	-0.07	-0.12	3758.37	-0.29	-0.42	8413.95	-0.45	-1.46	18836.49	-1.82	-3.82
398.11	0.05	-0.01	1778.28	-0.07	-0.13	3981.07	-0.34	-0.47	8912.51	-0.36	-1.60	19952.62	-2.27	-4.32

Abraham Ortega Larson-Davis Model 9700 ES Microphone Calibration System



Certificate Number 2013-180699

Microphone Model 377B20, Serial Number 137305, was calibrated on 10OCT2013. The microphone meets factory specifications per Test Procedure D0001.8167.

#### New Instrument Date Calibrated: 100CT2013 Calibration due:

#### Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL DUE	TRACEABILITY NO
Hewlett Packard	34401A	3146A62099	12 Months	26NOV2013	5884920
Larson Davis	PRM915	0102	12 Months	04DEC2013	2012-167168
Larson Davis	PRM916	0102	12 Months	13DEC2013	2012-167454
Larson Davis	2559	2504	12 Months	03JAN2014	19648-1
Larson Davis	CAL250	42630	12 Months	04JAN2014	2013-168402
Larson Davis	2900	0575	12 Months	24JUL2014	2013-177110
Larson Davis	PRM902	0206	12 Months	15AUG2014	2013-178254
Larson Davis	MTS1000 / 2201	1000 / 0100	12 Months	03SEP2014	SM090313

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

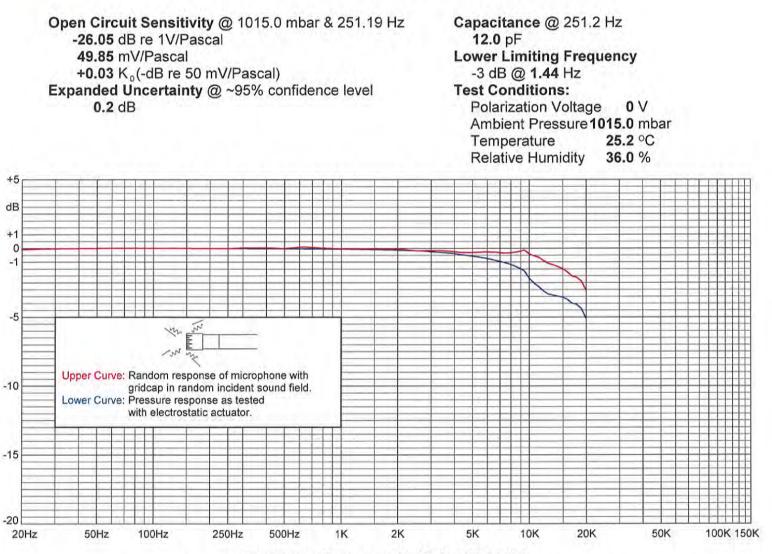
**Calibration Environmental Conditions** 

Environmental test conditions as printed on microphone calibration chart.

#### Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.


The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

Signed: Almolemm

Technician: Abraham Ortega



## PCB 1/2" Microphone Calibration Chart Model: 377B20 Serial Number: 137305



Frequency Response (0 dB @ 251.19 Hz) Random and actuator response with reference to level at 251.19 Hz

Freq	Upper (dB)	Lower (dB)	Freq	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Lower	Freq	Upper (dB)	Lower (dB)	Freq	Upper (dB)	Lower (dB)	Freq (Hz)	Upper (dB)	Lower (dB)
(Hz) 19.95	-0.07	-0.07	(Hz) 501.19	(dB)	(dB) -0.02	(Hz) 1883.65	-0.03	-0.11	(Hz) 4216.97	-0.28	-0.42	9440.61	-0.12	-1.63
25.12	1.80	-0.03	630.96	0.12	-0.02	1995.26	-0.03	-0.12	4466.84	-0.30	-0.47	10000.00	-0.39	-2.16
31.62		-0.01	794.33	0.04	-0.03	2113.49	-0.05	-0.13	4731.51	-0.30	-0.51	10592.54	-0.53	-2.51
39.81	0.00	0.00	1000.00	-0.02	-0.04	2238.72	-0.10	-0.15	5011.87	-0.29	-0.55	11220.19	-0.64	-2.77
50.12	0.01	0.01	1059.25	-0.05	-0.05	2371.37	-0.12	-0.14	5308.84	-0.28	-0.60	11885.02	-0.87	-3.08
63.10	0.01	0.01	1122.02	-0.04	-0.05	2511.89	-0.16	-0.16	5623.41	-0.27	-0.66	12589.25	-1.08	-3.31
79.43	0.01	0.01	1188.50	-0.03	-0.05	2660.73	-0.17	-0.18	5956.62	-0.25	-0.72	13335.21	-1.19	-3.40
100.00	0.01	0.01	1258.93	-0.02	-0.06	2818.38	-0.17	-0.20	6309.57	-0.26	-0.79	14125.38	-1.33	-3.48
125.89	0.01	0.01	1333.52	-0.02	-0.07	2985.38	-0.16	-0.23	6683.44	-0.28	-0.87	14962.36	-1.46	-3.53
158.49	0.01	0.01	1412.54	-0.02	-0.07	3162.28	-0.15	-0.25	7079.46	-0.31	-0.95	15848.93	-1.70	-3.70
199.53	0.00	0.00	1496.24	-0.04	-0.08	3349.65	-0.15	-0.28	7498.94	-0.34	-1.05	16788.04	-2,01	-3.98
251.19	0.00	0.00	1584.89	-0.04	-0.08	3548.13	-0.17	-0.30	7943.28	-0.31	-1.14	17782.80	-2.10	-4.07
316.23	0.06	-0.00	1678.80	-0.04	-0.09	3758.37	-0.20	-0.33	8413.95	-0.28	-1.29	18836.49	-2.38	-4.38
398.11	0.05	-0.01	1778.28	-0.04	-0.10	3981.07	-0.23	-0.36	8912.51	-0.21	-1.45	19952.62	-3.04	-5.09

Abraham Ortega 10OCT2013 Larson-Davis Model 9700 ES Microphone Calibration System



Certificate Number 2013-180256

Instrument Model CAL200, Serial Number 5789, was calibrated on 02OCT2013. The instrument meets factory specifications per Procedure D0001.8190, IEC 60942:2003.

#### Instrument found to be in calibration as received: YES Date Calibrated: 020CT2013 Calibration due:

### Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO
Larson Davis	PRM915	0112	12 Months	08OCT2013	2012-164811
Larson Davis	2559	2504	12 Months	03JAN2014	19648-1
PCB	1502B02FJ15PSIA	1342	12 Months	14JAN2014	3441014716
Larson Davis	2900	0661	12 Months	08APR2014	2013-172252
Larson Davis	MTS1000/2201	0111	12 Months	22AUG2014	SM082213
Larson Davis	PRM902	0480	12 Months	23AUG2014	2013-178669
Hewlett Packard	34401A	3146A10352	12 Months	03SEP2014	6214490

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Environmental test conditions as shown on calibration report.

#### Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

Before: 113.95 dB, 93.94 dB, 1000.0 Hz @ sea level. After: Refer to Certificate of Measured Output.

Signed:

Technician: Scott Montgomery



## Larson Davis CAL200 Acoustic Calibrator, SN: 5789 Certificate of Measured Output

Nominal Level (dB SPL)	onditions -	94		114	
Nominal Level (dB SPL) Measured Level (dB SP		94.00		114.01	
Expanded Uncertainty (	dB):	0.137		0.132	
Level Error Limit (dB):		±0.34		±0.33	
Nominal Frequency (Hz		1000		1000	
Measured Frequency (H		1000.1		1000.0 0.2	
Expanded Uncertainty ( Frequency Error Limit (F		0.2 ±10.0		±10.0	
Measured Distortion (%)	j. 15.	0.39		0.35	
Expanded Uncertainty (		0.25		0.25	
Distortion Limit (%):		2.0		2.0	
The data is aquired by t	he insert vo	ltage calibra	ation method	using the reference	microphone's open circuit sensitivity
invironmental Condition	s				
Temperature (°C):		24		24	
Relative Humidity (%):		34 101.1		35 101.2	
Static Pressure (kPa):		101.1		101.2	
Open Circuit Sensitivity: Uncertainty: 0.110 dB		1993492			
Uncertainty: 0.110 dB			114		
Uncertainty: 0.110 dB ence of Static Pressure Nominal Level (dB SPL) Nominal	):	Level	Frequency		
Uncertainty: 0.110 dB ence of Static Pressure Nominal Level (dB SPL)				Distortion (%)	
Uncertainty: 0.110 dB ence of Static Pressure Nominal Level (dB SPL) Nominal Pressure	): Pressure	Level Change (dB) -0.03	Frequency Change (Hz) 0.00	<u>(%)</u> 0.37	
Uncertainty: 0.110 dB ence of Static Pressure Nominal Level (dB SPL) Nominal Pressure (kPa) 108.0 101.3	): Pressure (kPa) 108.0 101.4	Level Change (dB) -0.03 0.00	Frequency Change (Hz) 0.00 0.00	(%) 0.37 0.35	
Uncertainty: 0.110 dB ence of Static Pressure Nominal Level (dB SPL) Nominal Pressure (kPa) 108.0 101.3 92.0	): Pressure (kPa) 108.0 101.4 92.0	Level Change (dB) -0.03 0.00 0.03	Frequency Change (Hz) 0.00 0.00 -0.00	(%) 0.37 0.35 0.33	
Uncertainty: 0.110 dB ence of Static Pressure Nominal Level (dB SPL) Nominal Pressure (kPa) 108.0 101.3 92.0 83.0	): Pressure (kPa) 108.0 101.4 92.0 83.0	Level Change (dB) -0.03 0.00 0.03 0.03 0.03	Frequency Change (Hz) 0.00 0.00 -0.00 -0.00	(%) 0.37 0.35 0.33 0.31	
Uncertainty: 0.110 dB ence of Static Pressure Nominal Level (dB SPL) Nominal Pressure (kPa) 108.0 101.3 92.0 83.0 74.0	): Pressure (kPa) 108.0 101.4 92.0 83.0 74.0	Level Change (dB) -0.03 0.00 0.03 0.03 -0.02	Frequency Change (Hz) 0.00 0.00 -0.00 -0.00 -0.00	(%) 0.37 0.35 0.33 0.31 0.30	
Uncertainty: 0.110 dB lence of Static Pressure Nominal Level (dB SPL) Nominal Pressure (kPa) 108.0 101.3 92.0 83.0 74.0 65.0	): (kPa) 108.0 101.4 92.0 83.0 74.0 65.1	Level Change (dB) -0.03 0.00 0.03 0.03 -0.02 -0.11	Frequency Change (Hz) 0.00 0.00 -0.00 -0.00 -0.00 -0.01	(%) 0.37 0.35 0.33 0.31 0.30 0.29	
Uncertainty: 0.110 dB ence of Static Pressure Nominal Level (dB SPL) Nominal Pressure (kPa) 108.0 101.3 92.0 83.0 74.0	): Pressure (kPa) 108.0 101.4 92.0 83.0 74.0	Level Change (dB) -0.03 0.00 0.03 0.03 -0.02	Frequency Change (Hz) 0.00 0.00 -0.00 -0.00 -0.00	(%) 0.37 0.35 0.33 0.31 0.30	
Uncertainty: 0.110 dB ence of Static Pressure Nominal Level (dB SPL) Nominal Pressure (kPa) 108.0 101.3 92.0 83.0 74.0 65.0 Expanded Uncertainty:	): Pressure (kPa) 108.0 101.4 92.0 83.0 74.0 65.1 1.0	Level Change (dB) -0.03 0.00 0.03 0.03 -0.02 -0.11 0.04 ±0.30	Frequency Change (Hz) 0.00 0.00 -0.00 -0.00 -0.00 -0.01 0.20	(%) 0.37 0.35 0.33 0.31 0.30 0.29 0.25	
Uncertainty: 0.110 dB Ience of Static Pressure Nominal Level (dB SPL) Nominal Pressure (kPa) 108.0 101.3 92.0 83.0 74.0 65.0 Expanded Uncertainty: Limit: Reference microphone	): Pressure (kPa) 108.0 101.4 92.0 83.0 74.0 65.1 1.0 corrections	Level Change (dB) -0.03 0.00 0.03 0.03 -0.02 -0.11 0.04 ±0.30	Frequency Change (Hz) 0.00 0.00 -0.00 -0.00 -0.00 -0.01 0.20 ±10.0	(%) 0.37 0.35 0.33 0.31 0.30 0.29 0.25	
Uncertainty: 0.110 dB Ience of Static Pressure Nominal Level (dB SPL) Nominal Pressure (kPa) 108.0 101.3 92.0 83.0 74.0 65.0 Expanded Uncertainty: Limit: Reference microphone Environmental Conditions Temperature (°C):	): Pressure (kPa) 108.0 101.4 92.0 83.0 74.0 65.1 1.0 corrections	Level Change (dB) -0.03 0.00 0.03 0.03 -0.02 -0.11 0.04 ±0.30	Frequency Change (Hz) 0.00 0.00 -0.00 -0.00 -0.00 -0.01 0.20 ±10.0	(%) 0.37 0.35 0.33 0.31 0.30 0.29 0.25	
Uncertainty: 0.110 dB Jence of Static Pressure Nominal Level (dB SPL) Nominal Pressure (kPa) 108.0 101.3 92.0 83.0 74.0 65.0 Expanded Uncertainty: Limit: Reference microphone Environmental Condition	): Pressure (kPa) 108.0 101.4 92.0 83.0 74.0 65.1 1.0 corrections	Level Change (dB) -0.03 0.00 0.03 0.03 -0.02 -0.11 0.04 ±0.30	Frequency Change (Hz) 0.00 0.00 -0.00 -0.00 -0.00 -0.01 0.20 ±10.0	(%) 0.37 0.35 0.33 0.31 0.30 0.29 0.25	
Uncertainty: 0.110 dB uence of Static Pressure Nominal Level (dB SPL) Nominal Pressure (kPa) 108.0 101.3 92.0 83.0 74.0 65.0 Expanded Uncertainty: Limit: Reference microphone Environmental Conditione Temperature (°C): Relative Humidity (%): Reference Microphone	): Pressure (kPa) 108.0 101.4 92.0 83.0 74.0 65.1 1.0 corrections s	Level Change (dB) -0.03 0.00 0.03 0.03 -0.02 -0.11 0.04 ±0.30	Frequency Change (Hz) 0.00 0.00 -0.00 -0.00 -0.00 -0.01 0.20 ±10.0	(%) 0.37 0.35 0.33 0.31 0.30 0.29 0.25	
Uncertainty: 0.110 dB Jence of Static Pressure Nominal Level (dB SPL) Nominal Pressure (kPa) 108.0 101.3 92.0 83.0 74.0 65.0 Expanded Uncertainty: Limit: Reference microphone Environmental Conditions Temperature (°C):	): Pressure (kPa) 108.0 101.4 92.0 83.0 74.0 65.1 1.0 corrections s	Level Change (dB) -0.03 0.00 0.03 0.03 -0.02 -0.11 0.04 ±0.30	Frequency Change (Hz) 0.00 0.00 -0.00 -0.00 -0.00 -0.01 0.20 ±10.0	(%) 0.37 0.35 0.33 0.31 0.30 0.29 0.25	

Static pressure was measured with a calibrated Motorola pressure sensor MPX2100AP. Temperature and humidity was measured with a calibrated Fluke 1620A sensor. Expanded uncertainty of environmental measurements: 0.3 °C, 3 %RH, 1.0 kPa Uncertainty values are given at 95% confidence level (k = 2).

A Sound Level Meter can be calibrated to a level (L) defined as: L = measured level + pressure sensitivity or if a Sound Level Meter is calibrated using the nominal level, the adjustments to data (X) are defined as: X = measured level - nominal level - pressure sensitivity This page intentionally left blank

Appendix C contains the following traffic data used in this analysis:

- Certified traffic data for existing and future conditions;
- Modeled existing traffic data;
- Modeled future traffic data.

		Tra	ffic for Ex			•				
Roadway	Au	to	I raffic Medium		s and Spe Heavy		h) for One Bu		Motor	cyclo
	Volume	Speed	Volume	Speed	Volume	Speed	Volume	Speed	Volume	Speed
I-76 EB (entire corridor)	2379	65	82	65	274	65	0	0	0	0
I-76 WB (entire corridor)	2688	65	89	65	177	65	0	0	0	0
Pottsdown Pike NB	872	45	13	45	13	45	0	0	0	0
Pottsdown Pike SB	862	45	13	45	13	45	0	0	0	0
E. Uwchlan NB	1511	45	15	45	15	45	0	0	0	0
E. Uwchlan SB	1511	45	15	45	15	45	0	0	0	0
Conestoga NB	839	35	17	35	17	35	0	0	0	0
Conestoga SB	839	35	17	35	17	35	0	0	0	0
Yellow Springs NB	297	35	6	35	6	35	0	0	0	0
Yellow Springs SB	297	35	6	35	6	35	0	0	0	0
Phoenixville NB	756	45	8	45	8	45	0	0	0	0
Phoenixville SB	756	45	8	45	8	45	0	0	0	0
Charleston NB	875	40	23	40	23	40	0	0	0	0
Charleston SB	875	40	23	40	23	40	0	0	0	0
Warner EB	297	35	6	35	6	35	0	0	0	0
Warner WB	297	35	6	35	6	35	0	0	0	0
Warner WB at Phoenixville	148	35	3	35	3	35	0	0	0	0
Morehall NB	875	40	23	40	23	40	0	0	0	0
Morehall SB	875	40	23	40	23	40	0	0	0	0
76EB-Ramp to 29	403	25	14	25	46	25	0	0	0	0
76EB-East of 29 ramp	1977	65	68	65	227	65	0	0	0	0

	1	Tra	affic for Fu	uture Mo	dels (2038	3)				
Roadway					· ·		h) for One			
	Au	to	Medium	Truck	Heavy	Truck	Bu	S	Motor	cycle
	Volume	Speed	Volume	Speed	Volume	Speed	Volume	Speed	Volume	Speed
I-76 EB (entire corridor)	3505	70	121	70	403	70	0	0	0	0
I-76 WB (entire corridor)	3958	70	130	70	261	70	0	0	0	0
Pottsdown Pike NB	1130	50	17	50	17	50	0	0	0	0
Pottsdown Pike SB	1116	50	17	50	17	50	0	0	0	0
E. Uwchlan NB	1958	50	20	50	20	50	0	0	0	0
E. Uwchlan SB	1958	50	20	50	20	50	0	0	0	0
Conestoga NB	1087	40	23	40	23	40	0	0	0	0
Conestoga SB	1087	40	23	40	23	40	0	0	0	0
Yellow Springs NB	384	40	8	40	8	40	0	0	0	0
Yellow Springs SB	384	40	8	40	8	40	0	0	0	0
Phoenixville NB	979	50	10	50	10	50	0	0	0	0
Phoenixville SB	979	50	10	50	10	50	0	0	0	0
Charleston NB	1133	45	30	45	30	45	0	0	0	0
Charleston SB	1133	45	30	45	30	45	0	0	0	0
Warner EB	384	40	8	40	8	40	0	0	0	0
Warner WB	384	40	8	40	8	40	0	0	0	0
Warner WB at Phoenixville	192	40	4	40	4	40	0	0	0	0
Morehall NB	1133	45	30	45	30	45	0	0	0	0
Morehall SB	1133	45	30	45	30	45	0	0	0	0
76EB-Ramp to 29	593	30	20	30	68	30	0	0	0	0
76EB-East of 29 ramp	2912	70	100	70	335	70	0	0	0	0

				cettons		
I-76 (Pennsylvania	Turnpike)		Project No.	21387580		
			Computed by	KWS		Date 11/10/2012
			Checked by	' CM		Date 11/16/2012
0 · T // D ·						
Current Traffic Data				Eastbound		<b>T</b> -4-1
Data from PTC 2011 ADT =			Westbound 26,570	Eastbound 21,898	1	Total 48,468
Percent Trucks =			9.0%	13.0%		10.8%
2011 ADTT =			2391	2847		5238
DHV Factors - K	=		10.95%		4	0200
D :			N/A			
T :	=		9%	5 <b>1</b> 3%		
Average Daily Traffic G						
Current Year = Use 1.5% annual growt	2012 factor					
Side		arowth %	Base ADT	Current ADT	Base ADTT	Current ADTT
Westbound	2011	1.50%	26,570	26,969	2391	2427
Eastbound	2011	1.50%	21,898	22,226	2847	2889
2401004.14			21,000	,0		2000
Design Year ADT Proje	ctions					
Current Year =	2012					
Opening Year =	2018					
Design Year =	2038					
Use Formula	ADT(future) = ADT(base) *					
		number of	•	imal		
	GF	= Growth F	actor as a dec	imai		
		Current	Opening	Design		
	Year	2012	2018	2038	1	
		26,969	29,489	39,717		
	ADT (Eastbound)	22,226	24,303	32,733		
Design Year ADTT Proj						
Current Year =	2012					
Opening Year =	2018					
Design Year =	2038					
Use Formula	ADTT(future) = ADTT(base)	) * (1+GF)^r	า			
	( ) ( )	number of				
			actor as a dec	imal		
		Current	Opening	Design	•	
	Year	2012	2018	2038		
	ADTT (Westbound)	2427	2654	3575		
	ADTT (Eastbound)	2889	3159	4255	J	
Design Hour Volumes						
Design Year =	2038			Design Year =	- 2012	
	2000			Design rear -	2012	
Use Formula	DHV = K * ADT			Use Formula	DHV = K * ADT	
	where K =	DHV K-fac	tor		where	K = DHV K-fac
	DHV (Westbound) =	4349			DHV (Westbound) =	2953
	DHV (Eastbound) =	4029			DHV (Eastbound) =	2736
Use Formula	DDHV [TRUCKS] = DDHV *		_	Use Formula	DDHV [TRUCKS] = DDH	
		DHV Truck	Factor		where	T = DHV Trucl
	DDHV [TRUCKS] WB =	391			DDHV [TRUCKS] WB =	266
	DDHV [TRUCKS] EB =	524			DDHV [TRUCKS] EB =	356

			<b></b>			
SR 100 (Pottstown	Pike)		Project No.		_	7/00/07 : -
			Computed by			7/26/2012
			Checked by	СМ	Date	
ITMS Current Traffic Co	ount Data					
SR 0100 (Segments 03	20 and 0321)					
Data from ITMS Dated \$	5/30/2012		Northbound 0320	Southbound 0321		Total
2011 ADT =			14,696	14,521		29,217
Percent Trucks =			7.0%	7.0%		7.0%
2010 ADTT =			1028	1016		2044
DHV Factors - K			10%	10%		10%
D :			60%	60%		60%
T	=		3%	3%	)	3%
Average Daily Traffic G	rowth Factors					
Current Year =	2012					
Assume 1.0% Growth F	actor					
Segment	Base Year	Growth %	Base ADT	Current ADT	Base ADTT	Current ADT
0320	2010	1.00%	14,696	14,991	1028	1049
0321	2010	1.00%	14,521	14,813	1016	1036
<b>B I V I I I I I I I I I I</b>						
Design Year ADT Proje Current Year =	2012					
Opening Year =	2012					
Design Year =	2038					
2 co.g.r r cu.	2000					
Use Formula	ADT(future) = ADT(base	e) * (1+GF)^n				
	where	n = number o	f years			
		GF = Growth	Factor as a decimal			
		Current	Opening	Design		
	Year	2012	2018	2038	T	
	ADT (Northbound)	14,991	15,914	19,418		
	ADT (Southbound)	14,813	15,724	19,186		
					-	
Design Year ADTT Proj						
Current Year =	2012					
Opening Year =	2018					
Design Year =	2038					
Use Formula	ADTT(future) = ADTT(b	ase) * (1+GF)	^n			
	. , .	n = number o				
			Factor as a decimal			
		<b>.</b> .				
		Current	Opening	Design	T	
	Year	2012	2018	2038		
	ADTT (Northbound)	1049	1113	1358		
	ADTT (Southbound)	1036	1100	1342	l	
Design Hour Volumes						
Design Year =	2038				Design Yea	2012
Use Formula						
USE FUITIUIA	DHV = K * ADT		otor		ose rormul	DHV = K * AE
		K = DHV K-fa				where
	DHV (Northbound) =	1942	4			DHV (Northbo
	DHV (Southbound) =	1919	1			DHV (Southb
Use Formula	DDHV = D * DHV		[Directional DHV]		Use Formul	DDHV = D * I
		D = DHV Dire	ctional Factor			where
	DDHV (Northbound) =	1165	<b>T</b>			DDHV (North
	DDHV (Southbound) =	1151	1			DDHV (South
			-4			

			Traffic Proje	ctions	
SR 0029 (Charlesto	own Road)		Project No. Computed by Checked by	KWS	Date 7/26/2012 Date
ITMS Current Traffic Co SR 0029 (Segment 0070 Data from ITMS Dated 5 2011 ADT = Percent Trucks = 2011 ADTT = DHV Factors - K = D = T = Average Daily Traffic Gr	D) 5/30/2012	11% 55% 5%	15,077 9.0% 1357		
Current Year =	2012				
Assume 1.0% Growth Fa	actor				
Segment 0070	Base Year 2011	Growth % 1.00%	Base ADT 15,077	Current ADT 15,228	Base ADTT Current ADTT 1357 1371
<u>Design Year ADT Projec</u> Current Year = Opening Year = Design Year =	2012 2012 2018 2038				
Use Formula	ADT(future) = AD where	DT(base) * (1+GF)^n n = number of GF = Growth F	years Factor as a deci	mal	
		Current	Opening	Design	
		Year 2012 ADT 15,228	2018 16,165	2038 19,724	
<u>Design Year ADTT Proje</u> Current Year = Opening Year = Design Year =	ections 2012 2018 2038		-,	- /	4
Use Formula	ADTT(future) = A where	DTT(base) * (1+GF)^ n = number of GF = Growth F		mal	
		Current Year 2012 ADTT 1371	Opening 2018 1455	Design 2038 1775	]
<u>Design Hour Volumes</u> Design Year =	2038				Design Yea <mark>2012</mark>
Use Formula	DHV = K * ADT where DHV =	K = DHV K-fac 2170	tor		Use Formul: DHV = K * AD where DHV =
Use Formula	DDHV = D * DHV where DDHV =	/ D = DHV Direc 1193	[Directional DF tional Factor	IV]	Use Formul: DDHV = D * D where DDHV =
Use Formula	DDHV [TRUCKS] where DDHV [TRUCKS]	T = DHV Truck	Factor		Use Formul: DDHV [TRUC] where DDHV [TRUC]

				5		
SR 0401 (Conestog	ga Road)			Project No.	21387580	
				Computed by		Date 7/26/2012
				Checked by	СМ	Date
ITMS Current Traffic Co	unt Data					
SR 0401 (Segment 025)						
Data from ITMS Dated 5						
2011 ADT =			Γ	10,813		
Percent Trucks =				5.0%		
2011 ADTT =				560		
DHV Factors - K =	=	10%				
D =		80%				
T =	=	4%				
Average Daily Traffic Gr						
Current Year = Assume 1.0% Growth F	2012 actor					
Segment	Base Year	Gro	owth %	Base ADT	Current ADT	Base ADTT Current ADTT
0250	2011		.00%	10,813	10,921	560 566
Design Year ADT Project	ctions					
Current Year =	2012					
Opening Year =	2018					
Design Year =	2038					
Use Formula	ADT(future) = ADT					
	where		umber of ye	ctor as a decir	nal	
		ui =	GIUWIIII a		IIai	
		Cu	urrent	Opening	Design	_
		Year 2	2012	2018	2038	1
		ADT 10	0,921	11,593	14,146	1
Design Year ADTT Proje Current Year =						
Opening Year =	2012 2018					
Design Year =	2038					
200.g.1 104.	2000					
Use Formula	ADTT(future) = AD	DTT(base) *	(1+GF)^n			
	where	n = nı	umber of ye	ears		
		GF =	Growth Fa	ctor as a decir	nal	
		<u> </u>	urront	Oponing	Docian	
			urrent	Opening 2018	Design 2038	ĩ
			566	600	732	
						1
Design Hour Volumes						
Design Year =	2038					Design Year 2012
Use Formula	DHV = K * ADT					Use Formul: DHV = K * AD
	where		HV K-facto	or		where
	DHV =	1	415			DHV =
Use Formula	DDHV = D * DHV		r	Directional DH	IV1	Use Formul: DDHV = D * D
USE Formula	where	ם – ם	-	onal Factor	vj	where
	DDHV =	-	132			DDHV =
		·				
Use Formula	DDHV [TRUCKS]	= DDHV * T	-			Use Formul: DDHV [TRUC
	where		HV Truck	actor		where
	DDHV [TRUCKS]	=	45			DDHV [TRUC

	ville Pike)		Project No. Computed by Checked by	KWS	Date Date	7/26/2012
ITMS Current Traffic Co	<u>ount Data</u>		<b>.</b>			
SR 1003 (Segment 006	60)					
Data from ITMS Dated	5/30/2012					
2009 ADT =			12,373	]		
Percent Trucks =			4.0%	-		
2009 ADTT =			495	-		
DHV Factors - K	_	11%		1		
D		55%				
T		2%				
I	-	270				
Average Daily Traffic G	Frowth Factors					
Current Year =	2012					
Assume 1.0% Growth I	-					
Segment	Base Year	Growth %	Base ADT	Current ADT	Base ADTT (	
-						
0060	2009	1.00%	12,373	12,748	495	510
Design Year ADT Proje						
Current Year =	2012					
Opening Year =	2018					
Design Year =	2038					
Use Formula		)T(base) * (1+GF)^n				
	where	n = number o				
		GF = Growth	Factor as a dec	imal		
		Current	Opening	Design	-	
		Year 2012	2018	2038		
		ADT 12,748	13,532	16,512		
				10,012		
				10,012	1	
Design Year ADTT Pro	jections			10,012	1	
<u>Design Year ADTT Pro</u> Current Year =	jections 2012	<u> </u>	,		1	
			,	10,012	J	
Current Year =	2012		,	10,012	J	
Current Year = Opening Year =	2012 2018				1	
Current Year = Opening Year =	2012 2018 2038	DTT(base) * (1+GF			1	
Current Year = Opening Year = Design Year =	2012 2018 2038	DTT(base) * (1+GF n = number of	)^n		1	
Current Year = Opening Year = Design Year =	2012 2018 2038 ADTT(future) = A	n = number o	)^n		1	
Current Year = Opening Year = Design Year =	2012 2018 2038 ADTT(future) = A	n = number o	)^n of years		1	
Current Year = Opening Year = Design Year =	2012 2018 2038 ADTT(future) = A	n = number o	)^n of years		1	
Current Year = Opening Year = Design Year =	2012 2018 2038 ADTT(future) = A	n = number o GF = Growth	)^n of years I Factor as a dec	imal	1	
Current Year = Opening Year = Design Year =	2012 2018 2038 ADTT(future) = A where	n = number o GF = Growth Current	)^n of years I Factor as a dec Opening	imal Design	]	
Current Year = Opening Year = Design Year =	2012 2018 2038 ADTT(future) = A where	n = number of GF = Growth Current Year 2012	)^n of years I Factor as a dec Opening 2018	imal Design 2038	]	
Current Year = Opening Year = Design Year = Use Formula	2012 2018 2038 ADTT(future) = A where	n = number of GF = Growth Current Year 2012	)^n of years I Factor as a dec Opening 2018	imal Design 2038	]	
Current Year = Opening Year = Design Year = Use Formula <u>Design Hour Volumes</u>	2012 2018 2038 ADTT(future) = A where	n = number of GF = Growth Current Year 2012	)^n of years I Factor as a dec Opening 2018	imal Design 2038	]	2012
Current Year = Opening Year = Design Year = Use Formula <u>Design Hour Volumes</u>	2012 2018 2038 ADTT(future) = A where	n = number of GF = Growth Current Year 2012	)^n of years I Factor as a dec Opening 2018	imal Design 2038	] Design Year	2012
Current Year = Opening Year = Design Year = Use Formula <u>Design Hour Volumes</u> Design Year =	2012 2018 2038 ADTT(future) = A where 2038	n = number of GF = Growth Current Year 2012	)^n of years I Factor as a dec Opening 2018	imal Design 2038	-	
Current Year = Opening Year = Design Year = Use Formula <u>Design Hour Volumes</u> Design Year =	2012 2018 2038 ADTT(future) = A where 2038 DHV = K * ADT	n = number of GF = Growth Current Year 2012 ADTT 510	)^n of years I Factor as a dec Opening 2018 541	imal Design 2038	Use Formula	DHV = K * A
Current Year = Opening Year = Design Year = Use Formula <u>Design Hour Volumes</u> Design Year =	2012 2018 2038 ADTT(future) = A where 2038 DHV = K * ADT where	n = number of GF = Growth Year 2012 ADTT 510 K = DHV K-fr	)^n of years I Factor as a dec Opening 2018 541	imal Design 2038	Use Formula	DHV = K * A where
Current Year = Opening Year = Design Year =	2012 2018 2038 ADTT(future) = A where 2038 DHV = K * ADT	n = number of GF = Growth Current Year 2012 ADTT 510	)^n of years I Factor as a dec Opening 2018 541	imal Design 2038	Use Formula	DHV = K * A
Current Year = Opening Year = Design Year = Use Formula <u>Design Hour Volumes</u> Design Year = Use Formula	2012 2018 2038 ADTT(future) = A where 2038 DHV = K * ADT where DHV =	n = number of GF = Growth Current Year 2012 ADTT 510 K = DHV K-fr 1816	)^n of years Factor as a dec Opening 2018 541	imal Design 2038 660	Use Formuli I	DHV = K * A where DHV =
Current Year = Opening Year = Design Year = Use Formula <u>Design Hour Volumes</u> Design Year = Use Formula	2012 2018 2038 ADTT(future) = A where 2038 DHV = K * ADT where DHV = DHV = DHV = D * DHV	n = number of GF = Growth Current Year 2012 ADTT 510 K = DHV K-fi 1816	)^n of years Factor as a dec Opening 2018 541 541	imal Design 2038 660	Use Formula Use Formula	DHV = K * A where DHV = DDHV = D *
Current Year = Opening Year = Design Year = Use Formula <u>Design Hour Volumes</u> Design Year = Use Formula	2012 2018 2038 ADTT(future) = A where 2038 DHV = K * ADT where DHV = DHV = DHV = D * DHV where	n = number of GF = Growth Current Year 2012 ADTT 510 K = DHV K-fr 1816 r D = DHV Dir	)^n of years Factor as a dec Opening 2018 541	imal Design 2038 660	Use Formula Use Formula Use Formula	DHV = K * A where DHV = DDHV = D * where
Current Year = Opening Year = Design Year = Use Formula <u>Design Hour Volumes</u> Design Year = Use Formula	2012 2018 2038 ADTT(future) = A where 2038 DHV = K * ADT where DHV = DHV = DHV = D * DHV	n = number of GF = Growth Current Year 2012 ADTT 510 K = DHV K-fi 1816	)^n of years Factor as a dec Opening 2018 541 541	imal Design 2038 660	Use Formula Use Formula Use Formula	DHV = K * A where DHV = DDHV = D *
Current Year = Opening Year = Design Year = Use Formula <u>Design Hour Volumes</u> Design Year =	2012 2018 2038 ADTT(future) = A where 2038 DHV = K * ADT where DHV = DHV = DHV = D * DHV where	n = number of GF = Growth Current Year 2012 ADTT 510 K = DHV K-fr 1816 r D = DHV Dir	)^n of years Factor as a dec Opening 2018 541 541	imal Design 2038 660	Use Formula Use Formula Use Formula	DHV = K * A where DHV = DDHV = D * where
Current Year = Opening Year = Design Year = Use Formula <u>Design Hour Volumes</u> Design Year = Use Formula	2012 2018 2038 ADTT(future) = A where 2038 DHV = K * ADT where DHV = DHV = DHV = D * DHV where	n = number of GF = Growth Current Year 2012 ADTT 510 K = DHV K-f. 1816 D = DHV Dir 999	)^n of years Factor as a dec Opening 2018 541 541	imal Design 2038 660	Use Formula Use Formula Use Formula	DHV = K * A where DHV = DDHV = D * where DDHV =
Current Year = Opening Year = Design Year = Use Formula Design Hour Volumes Design Year = Use Formula Use Formula	2012 2018 2038 ADTT(future) = A where 2038 DHV = K * ADT where DHV = DDHV = D * DHV where DDHV =	n = number of GF = Growth Current Year 2012 ADTT 510 K = DHV K-f. 1816 D = DHV Dir 999	)^n of years I Factor as a dec Opening 2018 541 541 actor [Directional Di ectional Factor	imal Design 2038 660	Use Formula Use Formula Use Formula	DHV = K * A where DHV = DDHV = D * where DDHV =

#### PTC 312-319 Traffic Projections

T-488 (Yellow Sprin	ngs Road)		Project No.		
			Computed by		Date 8/3/2012
			Checked by	CM	Date
Current Traffic Count Da	ata				
Existing Plans					
2008 ADT =			3001		
Percent Trucks =			4.0%		
2008 ADTT =			120		
DHV Factors - K =		11%			
D = T =		90% 4%			
1 -	-	- 70			
Average Daily Traffic G	rowth Factors				
Current Year =	2012				
Assume 1.0% Growth F	actor				
	Base Year	Growth %	Base ADT	Current ADT	Base ADTT Current ADTT
	2008	1.00%	3001	3123	120 125
Design Year ADT Proje	ctions				
Current Year =	2012				
Opening Year =	2018				
Design Year =	2038				
Use Formula	· · · · ·	)T(base) * (1+GF)^n			
	where	n = number of	•		
		GF = Growin	Factor as a deci	mai	
		Current	Opening	Design	
		Year 2012	2018	2038	]
		ADT 3123	3315	4045	J
	4'				
Design Year ADTT Proj Current Year =	2012				
Opening Year =	2012				
Design Year =	2038				
5					
Use Formula	ADTT(future) = A	DTT(base) * (1+GF)	'n		
	where	n = number of			
		GF = Growth	Factor as a deci	mal	
		Current	Opening	Design	
		Year 2012	2018	2038	1
		ADTT 125	133	162	
		L			4
Design Hour Volumes					
Design Year =	2038				Design Year 2012
Use Formula	DHV = K * ADT				Use Formul: DHV = K * AD
USE FUITIUIA	Where	K = DHV K-fa	ctor		where
	DHV =	445			DHV =
	2		4		2
Use Formula	DDHV = D * DHV	1	[Directional DI	HV]	Use Formul: DDHV = D * D
	where	D = DHV Dire	ctional Factor	-	where
	DDHV =	400	]		DDHV =
Use Formula	DDHV [TRUCKS]				Use Formul: DDHV [TRUCI
	where	T = DHV Truc	K ⊢actor		where
	DDHV [TRUCKS]	] = 16	J		DDHV [TRUC

#### PTC 312-319 Traffic Projections

T-466 (Pine Creek	Road)		Project No.	21387580	
	·		Computed by		Date 7/26/2012
			Checked by	CM	Date
Current Traffic Count D					
6/27/2012 one hour cou	int		700	Ì	
2012 ADT = Percent Trucks =			788 2.0%		
2012 ADTT =			16		
DHV Factors - K	=	8%			
D	=	50%			
Т	=	2%			
Average Daily Traffic G					
Current Year = Assume 1.0% Growth F	2012				
Assume 1.0% Growin r	Base Yea	r Growth %	Base ADT	Current ADT	Base ADTT Current ADTT
	2009	1.00%	788	812	16 16
				0.2	
Design Year ADT Proje	<u>ctions</u>				
Current Year =	2012				
Opening Year =	2018				
Design Year =	2038				
Use Formula	ADT(tuture) = AI where	DT(base) * (1+GF)^n			
	where	n = number c	Factor as a deci	mal	
				ina	
		Current	Opening	Design	_
		Year 2012	2018	2038	
		ADT 812	862	1052	
Design Veer ADTT Brei	actions				
Design Year ADTT Proj Current Year =	2012				
Opening Year =	2012				
Design Year =	2038				
0					
Use Formula	ADTT(future) = A	ADTT(base) * (1+GF)	)^n		
	where	n = number o			
		GF = Growth	Factor as a deci	mal	
		Current	Ononing	Doolon	
		Current Year 2012	Opening 2018	Design 2038	1
		ADTT 16	17	2030	
			17	41	J
Design Hour Volumes					
Design Year =	2038				
Use Formula	DHV = K * ADT				
	where	K = DHV K-fa	actor		
	DHV =	84			
		V	[Directional D	1/1	
Use Formula	DDHV = D * DH' where		[Directional DH ectional Factor	ואי	
	DDHV =	42			
	22.11 -				
Use Formula	DDHV [TRUCKS	6] = DDHV * T			
	where	T = DHV True	ck Factor		
	DDHV [TRUCKS	6] = 1			
		<u>-</u>	_		

#### PTC 312-319 Traffic Projections

		Traffic Projections				
SR 1023 (Seven Oa		Project No. 21387580				
			Computed by		Date 7/31/2012	
			Checked by		Date	
ITMS Current Traffic Co SR 1023 (Segment 002 Data from ITMS Dated 5	0)					
2010 ADT =	5/50/2012		689	]		
Percent Trucks =			10.0%			
2010 ADTT =			69			
DHV Factors - K =	=	11%				
D =		55%				
T :	=	5%				
<u>Average Daily Traffic G</u> Current Year = Assume 1.0% Growth F	2012					
Segment	Base Year	Growth %	Base ADT	Current ADT	Base ADTT Current ADTT	
0150	2010	1.20%	689	706	69 71	
<u>Design Year ADT Proje</u> Current Year = Opening Year = Design Year =	<u>ctions</u> 2012 2018 2038					
Use Formula	ADT(future) = AD where	DT(base) * (1+GF)^r n = number GF = Growth		mal		
		Current	Opening	Design		
		Year 2012	2018	2038	1	
		ADT 706	758	962		
<u>Design Year ADTT Proj</u> Current Year = Opening Year = Design Year =	ections 2012 2018 2038					
Use Formula	ADTT(future) = A	.DTT(base) * (1+GF	⁻ )^n			
	where	n = number				
		GF = Growth	n Factor as a deci	mal		
		Current	Opening	Design		
		Current Year 2012	Opening 2018	Design 2038	1	
		ADTT 71	76	96		
<u>Design Hour Volumes</u> Design Year =	2038					
Use Formula	DHV = K * ADT					
	where	K = DHV K-f	actor			
	DHV =	106				
Use Formula	DDHV = D * DHV		[Directional D	HV]		
	where DDHV =	D = DHV Dir 58	ectional Factor			
	= 1100	30				
Use Formula	DDHV [TRUCKS]	] = DDHV * T				
	where	T = DHV Tru	ick Factor			
	DDHV [TRUCKS]	] = 3				

#### Traffic Data for MP 312 to MP 319 Between Downingtown I/C and Valley Forge I/C

Traffic	Volumes	1
---------	---------	---

	2013	2043
Eastbound ADT	24,087	37,649
Westbound ADT	23,462	36,673
Peak Hour (EB) 12.70%	3,059	4,781
Peak Hour (WB) 13.20%	3,097	4,841

Peak Month: EB=October, WB=October

Vehicle Composition(%) (Peak Hour):

	EB	WB
PTC Class 1=	89%	89%
PTC Classes 2-3=	4%	5%
PTC Classes 4-9=	7%	6%
Growth Factors:	1.50%	1.50%

Notes:

¹ The 2011 volume and assumed growth are similar to the 2013 volume and assumed growth.

<u>SR 29 (January 1, 2013 thru November 24, 2013)</u>	
Entry – 1,082,895 (ADT = 3,302)	
Exit – 1,252,439 (ADT = 3,818)	
Downington EB K Factor	12.31
Growth	1.5
Exit 2013 DHV	470
2014 DHV	477
2015 DHV	484
2016 DHV	491
2017 DHV	499
2018 DHV	506
2019 DHV	514
2020 DHV	522
2021 DHV	529
2022 DHV	537
2023 DHV	545
2024 DHV	554
2025 DHV	562
2026 DHV	570
2027 DHV	579
2028 DHV	588
2029 DHV	596
2030 DHV	605
2031 DHV	614
2032 DHV	624
2033 DHV	633
2034 DHV	643
2035 DHV	652
2036 DHV	662
2037 DHV	672
2038 DHV	682
2012 DHV	463

This page intentionally left blank

Appendix D contains tables summarizing the TNM output data.

Table D-1 includes predicted noise levels for receptors identified in the noise sensitive areas (NSAs). Each row in the table summarizes a TNM receiver, showing the following information:

- NSA
- Receiver ID
- Dwelling Unit (how many families are represented at each point)
- Predicted existing noise level
- Predicted Future 'No Build' noise level
- Predicted Future "Build' noise level
- Predicted Future "Build with Barrier' noise level (where applicable)
- Predicted Future Barrier Insertion Loss (IL) (where applicable)

Table D-2 contains panel-by-panel information specific to the barriers for NSAs 4, 5, and 20.

The complete TNM 2.5 runs used for this report have been digitally archived and are available upon request.

			TNM Predicted Noise Level, dBA Leq					
NSA	Receiver ID	Dwelling Units	Existing	Future No-Build	Future Build	Future Build "With Barrier"	IL	
	R01-01	1	63.6	66.1	66.7	62.2	4.5	
	R01-02 / ST-01	1	68.2	70.6	71.2	65.6	5.6	
	R01-03	1	70.8	73.2	72.2	65.0	7.2	
1	R01-04	1	68.1	70.4	70.2	65.4	4.8	
	R01-05	1	64.5	66.9	67.2	64.2	3.0	
	R01-06	1	69.2	71.4	71.8	69.5	2.3	
	R01-07	0	73.3	75.8	77.0			
	R02-01 / ST-02	1	68.6	71.0	72.6			
	R02-02	1	60.9	63.3	61.5			
2	R02-03	1	63.9	66.3	64.8			
	R02-04	1	61.3	63.7	62.3			
	R03-01	0	76.1	78.7	78.8			
	R03-02	0	56.2	58.4	58.8			
	R03-03	0	75.8	78.4	78.5			
	R03-04	0	75.7	78.3	78.4			
	R03-05	0	75.4	77.9	78.1			
	R03-06	0	62.9	65.1	65.7			
3	R03-07	0	54.9	57.3	57.6			
	R03-08	0	55.3	57.4	59.6			
	R03-09 / ST-03	0	59.0	60.9	63.1			
	R03-10	0	59.0	61.4	61.3			
	R03-11	0	66.1	68.5	68.4			
	R03-12	0	67.6	70.1	71.1			
	R03-13	0	61.7	64.0	63.1			
	R04-01 / ST-04	1	67.8	70.2	77.6	63.9	13.7	
	R04-02	2	69.1	71.4	75.3	65.8	9.5	
	R04-03	3	68.0	70.0	72.5	67.7	4.8	
	R04-04	3	67.8	70.2	79.7	66.8	12.9	
	R04-05	3	61.3	63.5	69.1	60.7	8.4	
	R04-06	3	71.2	72.9	72.8	72.8	0.0	
4	R04-07	4	67.3	69.7	79.7	67.8	11.9	
4	R04-08	3	59.4	61.6	67.9	59.0	8.9	
	R04-09	6	55.8	57.6	57.6	57.6	0.0	
	R04-10	3	70.9	72.6	72.5	72.5	0.0	
	R04-11	3	65.4	67.8	78.7	66.1	12.6	
	R04-12	3	61.9	64.3	73.3	62.8	10.5	
	R04-13	3	59.8	62.1	67.8	59.5	8.3	
	R04-14	4	57.7	60.0	64.8	58.6	6.2	

Table D-1Predicted Noise Level Data

			TNM Predicted Noise Level, dBA Leq					
NSA	Receiver ID	Dwelling Units	Existing	Future No-Build	Future Build	Future Build "With Barrier"	IL	
	R04-15	3	65.6	68.0	75.7	64.5	11.2	
	R04-16	4	60.1	62.5	68.7	59.9	8.8	
	R04-17 (R04-16 back)	0	56.6	58.8	60.1	57.2	2.9	
	R04-18	3	55.2	57.3	58.1	56.5	1.6	
	R04-19	3	57.9	60.0	59.4	59.2	0.2	
	R04-20(R04-15 back)	0	64.0	66.4	71.2	62.6	8.6	
	R04-21	3	56.1	58.3	60.2	56.3	3.9	
	R04-22	3	57.0	59.0	58.9	58.5	0.4	
	R04-23	4	59.6	61.9	66.5	59.9	6.6	
	R04-24	4	57.5	59.7	59.2	58.1	1.1	
	R04-25	4	65.6	68.0	70.7	63.3	7.4	
	R04-26	6	66.8	69.3	68.6	62.9	5.7	
	R04-27	2	71.5	74.0	69.3	64.6	4.7	
	R04-28	2	65.2	67.6	62.8	60.5	2.3	
	R04-29	1	59.9	62.2	57.7	56.4	1.3	
	R04-30	1	57.5	59.7	56.7	55.5	1.2	
	R04-31	2	53.2	55.2	55.3	54.3	1.0	
	R04-32	2	53.4	55.5	55.6	54.2	1.4	
	R04-33	2	54.9	57.0	56.9	54.9	2.0	
	R04-34	2	72.2	74.7	71.1	65.6	5.5	
	R04-35	2	70.8	73.4	69.5	61.6	7.9	
	R04-36	2	61.7	64.2	61.0	56.7	4.3	
	R04-37	2	56.7	59.0	57.4	53.5	3.9	
	R04-38	2	53.3	55.5	53.6	50.4	3.2	
	R04-39	4	71.6	74.2	71.3	63.1	8.2	
	R04-40	4	74.0	76.6	73.1	62.4	10.7	
	R04-41	4	73.1	75.6	72.8	62.6	10.2	
	R04-42(R04-41 back)	4	71.9	74.4	73.4	61.0	12.4	
	R04-43	2	57.2	59.7	59.2	54.8	4.4	
	R04-44	2	60.7	63.2	67.5	53.3	14.2	
	R04-45	2	67.4	69.9	70.3	60.0	10.3	
	R04-46	0	65.3	67.8	69.4	59.9	9.5	
	R04-47	6	62.9	65.3	67.0	54.5	12.5	
	R04-48	6	52.1	54.3	54.3	50.3	4.0	
	R04-49 / ST28	2	66.6	69.0	70.1	61.7	8.4	
[	R04-50	2	65.6	68.0	69.7	61.7	8.0	
	R04-51	2	64.5	66.9	67.9	61.6	6.3	
	R04-52	4	63.5	65.9	66.3	60.7	5.6	
	R04-53	2	59.1	61.4	62.3	56.6	5.7	

			TNM Predicted Noise Level, dBA Leq					
NSA	Receiver ID	Dwelling Units	Existing	Future No-Build	Future Build	Future Build "With Barrier"	IL	
	R04-54	2	63.0	65.4	66.0	61.1	4.9	
	R04-55	2	62.3	64.6	65.1	60.8	4.3	
	R05-01	3	63.5	66.0	65.4	60.3	5.1	
	R05-02	3	66.5	69.1	68.7	62.5	6.2	
	R05-03	3	69.7	72.3	71.8	64.3	7.5	
	R05-04	3	70.2	72.8	72.3	63.7	8.6	
	R05-05	6	62.1	64.7	65.0	57.8	7.2	
	R05-06	3	70.3	72.9	71.8	62.8	9.0	
	R05-07	3	67.7	70.3	70.5	60.5	10.0	
Γ	R05-08	1	69.5	72.1	72.6	64.3	8.3	
Γ Γ	R05-11	2	69.9	72.5	72.2	65.3	6.9	
Γ	R05-12	3	76.6	79.3	79.4	67.3	12.1	
Γ	R05-12B / ST-05	20	75.1	77.7	77.8	66.3	11.5	
Γ Γ	R05-13	2	71.6	74.2	74.4	64.3	10.1	
Γ Γ	R05-14	3	71.3	73.9	74.7	63.7	11.0	
	R05-15	1	64.2	66.8	67.1	63.0	4.1	
	R05-16	2	73.7	76.3	76.5	64.4	12.1	
	R05-17	3	74.8	77.4	77.3	65.4	11.9	
	R05-18	1	65.0	67.6	67.9	63.3	4.6	
	R05-19	2	75.3	77.9	77.8	66.0	11.8	
5	R05-20	3	76.1	78.7	78.6	66.4	12.2	
	R05-21	1	66.2	68.8	68.9	64.4	4.5	
	R05-22	1	68.8	71.4	71.6	65.9	5.7	
	R05-23	1	68.9	71.5	71.8	67.3	4.5	
	R05-24	1	68.5	71.2	71.4	68.2	3.2	
	R05-25	1	62.8	65.4	66.6	66.6	0.0	
	R05-26	1	65.4	68.0	67.8	67.8	0.0	
	R05-27	1	67.8	70.5	70.7	67.5	3.2	
	R05-28	1	63.1	65.7	66.1	64.5	1.6	
	R05-29	1	64.2	66.8	67.1	64.9	2.2	
	R05-30	1	62.7	65.3	65.9	62.2	3.7	
	R05-31	1	60.7	63.3	63.6	61.1	2.5	
	R05-32	1	58.8	61.4	61.9	59.3	2.6	
	R05-33	1	63.1	65.7	65.8	62.5	3.3	
	R05-34	1	61.5	64.0	64.3	61.4	2.9	
	R05-35	1	62.4	65.0	65.2	61.7	3.5	
	R05-36	1	62.7	65.2	65.2	63.3	1.9	
	R05-37	6	60.0	62.6	63.0	60.8	2.2	
	R05-38	6	60.4	62.9	64.4	62.2	2.2	
6	R06-01 / ST-06	1	64.0	66.6	66.8			
7	R07-01 / ST-07	2	63.3	65.8	66.9			

			TNM Predicted Noise Level, dBA Leq					
NSA	Receiver ID	Dwelling Units	Existing	Future No-Build	Future Build	Future Build "With Barrier"	IL	
	R07-02	1	65.8	68.3	68.5			
	R07-03	1	61.6	64.1	64.2			
	R08-01 / ST-08	1	73.9	76.5	74.9	69.4	5.5	
	R08-02	1	74.7	77.2	75.9	65.9	10.0	
	R08-03	1	67.7	70.2	71.0	63.9	7.1	
	R08-04	1	58.9	61.1	63.0	58.4	4.6	
	R08-05	1	57.1	59.4	60.6	57.5	3.1	
	R08-06	1	62.1	64.5	65.4	64.9	0.5	
	R08-07	1	69.2	71.6	72.2	72.2	0.0	
	R08-08	1	64.2	66.7	68.1	62.7	5.4	
	R08-09	1	63.0	65.4	66.7	62.1	4.6	
8	R08-10	1	58.9	61.3	63.0	58.2	4.8	
0	R08-11	1	60.7	63.2	64.6	60.1	4.5	
	R08-12	1	59.6	62.0	63.6	59.8	3.8	
	R08-13	1	59.0	61.4	63.0	59.8	3.2	
	R08-14	1	59.9	62.2	63.9	62.6	1.3	
	R08-15	1	59.1	61.4	63.1	62.5	0.6	
	R08-16	1	60.8	63.2	65.2	65.0	0.2	
	R08-17	1	57.0	59.3	60.8	57.9	2.9	
	R08-18	1	58.5	60.9	61.8	59.9	1.9	
	R08-19	1	58.3	60.7	62.1	61.4	0.7	
	R08-20	1	64.5	67.0	67.9	67.9	0.0	
	R09-01	1	57.5	59.8	60.0			
	R09-02	1	58.6	60.9	62.9			
~	R09-03	1	68.9	71.3	70.9	66.4	4.5	
9	R09-04	1	62.8	65.2	65.1	63.9	1.2	
	R09-05 / ST-09	1	69.0	71.5	69.8	62.9	6.9	
	R09-06	3	63.8	66.3	65.0	62.1	2.9	
	R10-01 / ST-10	1	65.1	67.5	66.2	60.2	6.0	
4.0	R10-02 / ST-29	1	66.3	68.7	68.3	61.8	6.5	
10 -	R10-03	1	62.0	64.4	63.9	60.1	3.8	
	R10-04	1	63.3	65.7	65.6	60.2	5.4	
	R11-01 / ST-11	1	71.8	74.4	74.7	68.2	6.5	
11	R11-02	1	59.6	61.9	61.6	61.0	0.6	
12	R12-01 / ST-12	1	66.0	68.4	69.0			
	R13-01	1	70.7	73.2	74.1	67.0	7.1	
13	R13-02 / ST-13	1	67.8	70.3	72.3	66.8	5.5	
	R13-03	1	66.2	68.7	70.2	65.2	5.0	
14	R14-01 / ST-14	1	65.5	67.8	69.3			
	R15-01	1	68.2	70.7	71.4	66.4	5.0	
15 -		1 1	00.2	10.1		00.7	0.0	

			TNM Predicted Noise Level, dBA Leq					
NSA	Receiver ID	Dwelling Units	Existing	Future No-Build	Future Build	Future Build "With Barrier"	IL	
	R15-03	1	71.7	74.2	74.5	64.7	9.8	
	R15-04	1	66.8	69.3	70.8	63.5	7.3	
	R15-05	1	68.1	70.6	71.3	64.0	7.3	
	R15-06	1	74.3	76.8	77.1	64.7	12.4	
	R15-07	1	61.5	63.9	65.3	65.2	0.1	
	R15-08	1	59.1	61.4	63.4	62.9	0.5	
	R15-09	1	59.0	61.3	63.6	62.6	1.0	
	R15-10	1	61.4	63.7	65.7	63.8	1.9	
	R15-11	1	61.2	63.6	64.9	60.6	4.3	
	R15-12	1	59.5	61.8	63.5	59.3	4.2	
	R15-13	1	63.0	65.4	67.1	61.8	5.3	
	R16-01	1	62.7	65.1	64.8	60.8	4.0	
	R16-02	1	65.8	68.2	67.7	61.3	6.4	
10	R16-03 / ST-16	1	67.9	70.3	70.0	63.5	6.5	
16	R16-04	1	60.4	62.8	62.2	60.3	1.9	
	R16-05	1	60.5	62.9	62.5	60.8	1.7	
	R16-06	1	58.5	60.8	61.3	61.2	0.1	
	R17-01 / ST-17	1	64.1	66.6	66.9	64.7	2.2	
47	R17-02	1	63.0	65.3	65.9	60.1	5.8	
17 -	R17-03	1	60.3	62.7	64.1	63.3	0.8	
	R17-04	1	55.8	58.1	59.1	61.3 63.5 60.3 60.8 61.2 64.7 60.1 63.3 58.6 67.9 63.4 60.5 64.4  	0.5	
	R18-01 / ST-18	1	73.0	75.4	75.0	67.9	7.1	
40	R18-02	1	62.5	64.8	64.8	63.4	1.4	
18 -	R18-03	1	60.6	62.9	62.3	60.5	1.8	
	R18-04	1	68.0	70.4	68.9	64.4	4.5	
	R19-01	1	59.5	64.7	64.9			
	R19-02	1	56.7	61.9	62.8			
	R19-03	1	55.3	60.3	61.6			
	R19-04	1	54.3	59.5	60.7			
	R19-05	1	54.0	58.9	59.9			
	R19-06	1	58.5	63.7	64.6			
10	R19-07	1	59.3	65.3	64.9			
19	R19-08	1	57.6	63.3	63.1			
	R19-09	1	57.8	63.2	63.4			
	R19-10 / ST-19	1	57.3	62.6	62.7			
	R19-11	1	57.0	62.0	62.2			
[	R19-12	1	55.8	60.6	60.8			
[	R19-13	1	53.7	58.1	58.8			
	R19-14	1	60.9	65.5	63.4			
20	R20-01	1	59.9	64.4	65.2	63.8	1.4	
20 -	R20-02	1	64.4	69.4	69.7	65.0	4.7	

			١T	M Predicted	d Noise Le	vel, dBA Leq	
NSA	Receiver ID	Dwelling Units	Existing	Future No-Build	Future Build	Future Build "With Barrier"	IL
	R20-03	3	54.8	59.3	59.1	53.6	5.5
	R20-04	3	58.3	62.7	62.5	55.7	6.8
_	R20-05	3	61.2	65.5	65.2	58.3	6.9
_	R20-06	3	64.4	68.4	68.0	61.1	6.9
-	R20-07	3	63.0	67.2	66.5	59.5	7.0
-	R20-08	3	63.0	66.8	66.4	60.2	6.2
	R20-09	3	60.8	65.1	64.3	58.7	5.6
-	R20-10 / ST-20	1	66.0	69.7	68.4	61.8	6.6
-	R20-11	4	62.2	66.1	65.5	61.0	4.5
	R20-12 R20-13	4 4	58.0 56.9	62.4 61.0	62.0 60.3	54.8 56.5	7.2 3.8
-	R20-13	3	61.3	65.6	64.9	59.3	5.6
-	R20-15	5	59.8	64.2	63.3	58.8	4.5
	R21-01	1	58.7	61.1	61.0	61.0	0.0
	R21-02 / ST-21	1	73.7	76.3	76.4	63.0	13.4
	R21-03	1	70.0	72.6	72.6	68.0	4.6
	R21-04	1	72.3	74.9	75.6	62.9	12.7
	R21-05	1	70.3	72.9	74.5	63.0	11.5
	R21-06	1	72.9	75.5	75.8	65.3	10.5
	R21-07	1	67.3	69.8	71.8	63.1	8.7
	R21-08	1	65.0	67.4	69.2	62.1	7.1
	R21-09	1	65.3	67.8	69.1	63.3	5.8
	R21-10	1	62.0	64.3	65.6	60.8	4.8
	R21-11	1	62.0	64.4	65.4	60.6	4.8
21	R21-12	1	62.3	64.7	65.8	61.3	4.5
21	R21-13	1	60.5	62.8	63.9	60.4	3.5
	R21-14	1	62.4	64.8	66.8	61.7	5.1
	R21-15	1	63.7	66.1	68.0	62.3	5.7
	R21-16	1	66.9	69.4	71.6	63.5	8.1
	R21-17 / ST-27	1	71.6	74.2	75.1	64.8	10.3
	R21-18	1	62.8	65.3	67.1	61.2	5.9
	R21-19	1	61.1	63.4	64.9	58.8	6.1
	R21-20	1	65.3	67.7	69.6	61.4	8.2
	R21-21	1	69.0	71.6	72.7	63.7	9.0
	R21-22	1	64.8	67.2	68.5	61.8	6.7
	R21-22A	1	65.5	67.8	68.6	64.0	4.6
	R21-23	1	63.6	66.1	67.4	64.5	2.9

			MT.	M Predicted	d Noise Le	evel, dBA Leq	
NSA	Receiver ID	Dwelling Units	Existing	Future No-Build	Future Build	Future Build "With Barrier"	IL
	R21-24	1	48.3	50.3	51.4	51.3	0.1
	R21-25	1	70.0	72.6	72.4	67.4	5.0
	R21-26	1	43.9	45.7	45.7	45.3	0.4
	R21-27	1	57.7	60.1	60.3	57.0	3.3
	R21-28	1	57.8	60.1	60.8	57.9	2.9
	R21-29	1	58.8	61.1	62.7	58.6	4.1
	R22-01 / ST-22	1	61.7	63.8	64.8		
	R22-02	1	52.1	54.2	55.1		
22	R22-03	1	50.7	52.7	53.5		
	R22-04	1	53.1	55.2	55.0		
	R23-01 / ST-23	1	60.3	62.5	64.1		
23	R23-02	1	56.8	59.0	59.7		
	R23-03	1	62.2	64.5	65.1		
0.1	R24-01 / ST-24	1	64.0	66.2	66.2		
24	R24-02	0	71.4	73.7	72.8		
	R25-01	1	68.3	70.6	70.6	70.6	0.0
-	R25-02	1	69.3	71.6	71.6	71.6	0.0
	R25-03 / ST-25	0	69.7	71.4	71.5	71.2	0.3
-	R25-04	4	63.3	65.3	65.4		
-	R25-05	4	65.3	67.4	67.6	65.2	2.4
_	R25-06	5	67.2	69.6	69.7	65.6	4.1
_	R25-07	4	68.4	70.8	70.8	66.3	4.5
	R25-08	4	69.4	71.8	71.5	67.8	3.7
25	R25-09	2	69.1	71.2	70.9	68.6	2.3
20	R25-10	2	66.7	68.9	68.6		
	R25-11	2	65.6	67.9	67.4		
	R25-12	2	65.2	67.5	67.0		
	R25-13	4	52.2	54.5	54.5		
	R25-14	2	61.7	64.3	64.7		
	R25-15	2	58.8	61.3	61.7		
	R25-16	na	50.2	52.2	52.2		
	R25-17	2	50.6	52.8	52.9		
	R25-18	4	52.2	54.1	54.1		
	R26-01	1	69.5	71.2	71.2	70.0	1.2
26	R26-02	1	69.0	71.2	71.1	66.6	4.5
	R26-03 / ST28	1	64.9	67.2	67.1	62.1	5.0

			TNM Predicted Noise Level, dBA Leq					
NSA	Receiver ID	Dwelling Units			Future Build	Future Build "With Barrier"	IL	
	R26-04	1	66.9	69.3	69.3			
	R26-05	1	69.3	71.6	71.6			

# Table D-2Barrier Segment Information

NSA	Panel #	X (ft)	Y (ft)	Bottom-Z (ft)	Height (ft)	Top-of-Wall Z (ft)*	Length (ft)
	1	2,558,963.8	273,740.9	455.8	19	474.8	12
	2	2,558,952.0	273,738.9	456.0	19	475.0	12
	3	2,558,940.0	273,737.0	456.3	19	475.3	12
	4	2,558,928.3	273,735.0	456.5	19	475.5	12
	5	2,558,916.5	273,733.1	456.7	20	476.7	12
	6	2,558,904.5	273,731.1	456.8	20	476.8	12
	7	2,558,892.8	273,729.2	456.8	20	476.8	12
	8	2,558,881.0	273,727.2	456.9	20	476.9	12
	9	2,558,869.0	273,725.3	456.9	20	476.9	12
	10	2,558,857.3	273,723.3	457.0	20	477.0	12
	11	2,558,845.5	273,721.3	457.3	20	477.3	12
	12	2,558,833.5	273,719.4	457.5	20	477.5	12
	13	2,558,821.8	273,717.4	457.7	20	477.7	12
	14	2,558,809.8	273,715.5	457.9	20	477.9	12
	15	2,558,798.0	273,713.5	458.0	20	478.0	12
4	16	2,558,786.3	273,711.6	458.5	20	478.5	12
	17	2,558,774.3	273,709.6	458.8	20	478.8	12
	18	2,558,762.5	273,707.7	459.3	20	479.3	12
	19	2,558,750.5	273,705.7	459.5	20	479.5	12
	20	2,558,738.8	273,703.8	459.7	20	479.7	12
	21	2,558,727.0	273,701.8	459.9	20	479.9	12
	22	2,558,715.0	273,699.9	460.0	20	480.0	12
	23	2,558,703.3	273,697.9	461.0	20	481.0	12
	24	2,558,691.5	273,696.0	461.3	20	481.3	12
	25	2,558,679.5	273,694.0	461.5	20	481.5	12
	26	2,558,667.8	273,692.1	461.8	20	481.8	12
	27	2,558,656.0	273,690.1	461.9	20	481.9	12
	28	2,558,644.0	273,688.1	462.1	20	482.1	12
	29	2,558,632.3	273,686.2	462.3	20	482.3	12
	30	2,558,620.5	273,684.2	462.6	20	482.6	12
	31	2,558,608.5	273,682.3	462.8	20	482.8	12

NSA	Panel #	X (ft)	Y (ft)	Bottom-Z (ft)	Height (ft)	Top-of-Wall Z (ft)*	Length (ft)
	32	2,558,596.8	273,680.3	463.0	20	483.0	12
	33	2,558,585.0	273,678.4	463.3	20	483.3	12
	34	2,558,573.0	273,676.4	463.5	20	483.5	12
	35	2,558,561.3	273,674.5	463.8	20	483.8	12
	36	2,558,549.5	273,672.5	464.0	20	484.0	12
	37	2,558,537.5	273,670.6	464.2	20	484.2	12
	38	2,558,525.8	273,668.6	464.5	20	484.5	12
	39	2,558,513.8	273,666.7	464.8	20	484.8	12
	40	2,558,502.0	273,664.7	465.0	20	485.0	12
	41	2,558,490.3	273,662.8	465.2	20	485.2	12
	42	2,558,478.3	273,660.8	465.4	20	485.4	12
	43	2,558,466.5	273,658.8	465.6	20	485.6	12
	44	2,558,454.5	273,656.9	465.9	20	485.9	12
	45	2,558,442.8	273,654.9	466.1	20	486.1	12
	46	2,558,431.0	273,653.0	466.3	20	486.3	12
	47	2,558,419.0	273,651.0	466.5	20	486.5	12
	48	2,558,407.3	273,649.1	466.8	20	486.8	12
	49	2,558,395.5	273,647.1	467.1	20	487.1	12
	50	2,558,383.5	273,645.2	467.3	20	487.3	12
	51	2,558,371.8	273,643.2	467.5	20	487.5	12
	52	2,558,360.0	273,641.3	467.8	20	487.8	12
	53	2,558,348.0	273,639.3	468.1	20	488.1	12
	54	2,558,336.3	273,637.4	468.3	20	488.3	12
	55	2,558,324.5	273,635.4	468.5	20	488.5	12
	56	2,558,312.5	273,633.5	468.8	20	488.8	12
	57	2,558,300.8	273,631.5	469.0	20	489.0	12
	58	2,558,289.0	273,629.5	469.2	20	489.2	12
	59	2,558,277.0	273,627.6	469.4	20	489.4	12
	60	2,558,265.3	273,625.6	469.7	20	489.7	12
	61	2,558,253.5	273,623.7	470.0	20	490.0	12
	62	2,558,241.5	273,621.7	470.2	20	490.2	12
	63	2,558,229.8	273,619.8	470.4	20	490.4	12
	64	2,558,217.8	273,617.8	470.7	20	490.7	12
	65	2,558,206.0	273,615.9	471.0	20	491.0	12
	66	2,558,194.3	273,613.9	471.2	20	491.2	12
	67	2,558,182.3	273,612.0	471.3	20	491.3	12
	68	2,558,170.5	273,610.0	471.4	20	491.4	12
	69	2,558,158.5	273,608.1	471.5	20	491.5	12
	70	2,558,146.8	273,606.1	471.8	20	491.8	12
	71	2,558,135.0	273,604.2	472.0	20	492.0	12
	72	2,558,123.0	273,602.2	472.1	20	492.1	12
	73	2,558,111.3	273,600.3	472.2	20	492.2	12
	74	2,558,099.5	273,598.3	472.3	20	492.3	12
	75	2,558,087.5	273,596.3	472.4	20	492.4	12

NSA	Panel #	X (ft)	Y (ft)	Bottom-Z (ft)	Height (ft)	Top-of-Wall Z (ft)*	Length (ft)
	76	2,558,075.8	273,594.4	472.5	20	492.5	5
	77	2,558,070.8	273,593.6	472.5	20	492.5	12
	78	2,558,058.8	273,594.3	472.1	20	492.1	12
	79	2,558,047.0	273,595.0	472.0	20	492.0	12
	80	2,558,035.0	273,595.7	474.0	20	494.0	12
	81	2,558,023.0	273,596.4	475.2	15	490.2	12
	82	2,558,011.0	273,597.1	476.2	14	490.2	12
	83	2,557,999.0	273,597.8	478.2	14	492.2	12
	84	2,557,987.0	273,598.5	480.0	12	492.0	12
	85	2,557,975.0	273,599.2	481.7	10	491.7	12
	86	2,557,963.0	273,599.9	483.0	8	491.0	12
	87	2,557,951.0	273,600.6	484.2	8	492.2	12
	88	2,557,939.0	273,601.3	485.0	8	493.0	12
	89	2,557,927.0	273,602.0	486.2	8	494.2	8
	90	2,557,919.0	273,602.4	486.5	8	494.5	12
	91	2,557,907.0	273,600.7	487.0	8	495.0	12
	92	2,557,895.3	273,599.0	487.9	8	495.9	12
	93	2,557,883.5	273,597.3	488.3	8	496.3	12
	94	2,557,871.5	273,595.6	489.0	8	497.0	12
	95	2,557,859.5	273,593.9	489.8	8	497.8	12
	96	2,557,847.8	273,592.2	490.3	8	498.3	12
	97	2,557,835.8	273,590.6	490.5	8	498.5	12
	98	2,557,824.0	273,589.0	491.2	8	499.2	12
	99	2,557,812.0	273,587.4	492.0	8	500.0	12
	100	2,557,800.3	273,585.8	492.1	8	500.1	12
	101	2,557,788.3	273,584.2	492.3	8	500.3	12
	102	2,557,776.5	273,582.7	492.4	8	500.4	12
	103	2,557,764.5	273,581.1	492.7	8	500.7	12
	104	2,557,752.5	273,579.6	493.2	8	501.2	12
	105	2,557,740.5	273,578.1	493.0	8	501.0	12
	106	2,557,728.8	273,576.6	494.0	8	502.0	12
	107	2,557,716.8	273,575.1	494.0	8	502.0	12
	108	2,557,705.0	273,573.7	494.2	8	502.2	12
	109	2,557,693.0	273,572.2	493.3	8	501.3	12
	110	2,557,681.0	273,570.8	493.3	8	501.3	12
	111	2,557,669.3	273,569.4	495.0	8	503.0	12
	112	2,557,657.3	273,568.0	495.5	8	503.5	12
	113	2,557,645.3	273,566.6	495.8	8	503.8	12
	114	2,557,633.5	273,565.3	496.2	8	504.2	12
	115	2,557,621.5	273,563.9	496.9	8	504.9	12
	116	2,557,609.5	273,562.6	496.7	8	504.7	12
	117	2,557,597.5	273,561.3	496.5	8	504.5	12
	118	2,557,585.8	273,560.0	496.7	8	504.7	12
	119	2,557,573.8	273,558.8	496.5	8	504.5	12

NSA	Panel #	X (ft)	Y (ft)	Bottom-Z (ft)	Height (ft)	Top-of-Wall Z (ft)*	Length (ft)
	120	2,557,561.8	273,557.5	496.7	8	504.7	12
	121	2,557,550.0	273,556.3	496.2	8	504.2	12
	122	2,557,538.0	273,555.0	496.0	8	504.0	12
	123	2,557,526.0	273,553.8	496.5	9	505.5	12
	124	2,557,514.0	273,552.7	497.0	9	506.0	12
	125	2,557,502.0	273,551.5	496.0	9	505.0	12
	126	2,557,490.3	273,550.3	495.1	9	504.1	12
	127	2,557,478.3	273,549.2	494.8	11	505.8	12
	128	2,557,466.3	273,548.1	494.5	11	505.5	12
	129	2,557,454.3	273,547.0	494.0	11	505.0	12
	130	2,557,442.5	273,545.9	493.7	11	504.7	12
	131	2,557,430.5	273,544.8	493.0	15	508.0	12
	132	2,557,418.5	273,543.8	492.9	15	507.9	12
	133	2,557,406.5	273,542.7	492.6	15	507.6	12
	134	2,557,394.5	273,541.7	492.2	15	507.2	12
	135	2,557,382.5	273,540.7	491.0	15	506.0	12
	136	2,557,370.8	273,539.7	492.0	14	506.0	12
	137	2,557,358.8	273,538.8	492.5	14	506.5	12
	138	2,557,346.8	273,537.8	493.0	14	507.0	12
	139	2,557,334.8	273,536.9	493.2	14	507.2	12
	140	2,557,322.8	273,536.0	493.5	12	507.2	12
	140	2,557,310.8	273,535.1	493.8	12	505.8	12
	141	2,557,299.0	273,533.1	493.0	12	506.0	12
	142	2,557,287.0	273,533.3	494.0	12	506.0	12
	143	2,557,275.0	273,533.5	494.0	12	506.2	12
	144	2,557,263.0	273,532.5	494.2	12	506.4	12
				494.4	12		12
	146 147	2,557,251.0	273,530.8	494.7	12	506.7	12
		2,557,239.0	273,530.0			507.3	
	148	2,557,227.0	273,529.2	496.1	12	508.1	12
	149	2,557,215.0	273,528.5	496.4	12	508.4	12
	150	2,557,203.0	273,527.7	496.7	12	508.7	12
	151	2,557,191.0	273,527.0	497.2	12	509.2	12
	152	2,557,179.0	273,526.3	498.0	12	510.0	12
	153	2,557,167.3	273,525.6	498.2	12	510.2	12
	154	2,557,155.3	273,524.9	498.4	12	510.4	12
	155	2,557,143.3	273,524.2	498.6	12	510.6	12
	156	2,557,131.3	273,523.6	498.8	12	510.8	12
	157	2,557,119.3	273,523.0	499.2	12	511.2	12
	158	2,557,107.3	273,522.4	500.0	12	512.0	12
	159	2,557,095.3	273,521.8	500.6	12	512.6	12
	160	2,557,083.3	273,521.2	500.8	12	512.8	12
	161	2,557,071.3	273,520.6	500.9	12	512.9	12
	162	2,557,059.3	273,520.1	501.2	12	513.2	12
	163	2,557,047.3	273,519.5	501.5	12	513.5	12

NSA	Panel #	X (ft)	Y (ft)	Bottom-Z (ft)	Height (ft)	Top-of-Wall Z (ft)*	Length (ft)
	164	2,557,035.3	273,519.0	502.0	12	514.0	12
	165	2,557,023.3	273,518.5	502.0	12	514.0	12
	166	2,557,011.3	273,518.1	502.0	12	514.0	12
	167	2,556,999.3	273,517.6	502.1	12	514.1	12
	168	2,556,987.5	273,517.2	502.2	12	514.2	12
	169	2,556,975.5	273,516.7	502.4	12	514.4	12
	170	2,556,963.5	273,516.3	502.8	12	514.8	12
	171	2,556,951.5	273,515.9	503.0	12	515.0	12
	172	2,556,939.5	273,515.6	503.9	12	515.9	12
	173	2,556,927.5	273,515.2	503.9	11	514.9	12
	174	2,556,915.5	273,514.9	504.6	11	515.6	12
	175	2,556,903.5	273,514.5	504.9	11	515.9	12
	176	2,556,891.5	273,514.2	505.0	11	516.0	12
	177	2,556,879.5	273,513.9	505.2	11	516.2	12
	178	2,556,867.5	273,513.7	505.3	11	516.3	12
	179	2,556,855.5	273,513.4	505.5	11	516.5	12
	180	2,556,843.5	273,513.2	505.9	11	516.9	12
	181	2,556,831.5	273,512.9	506.0	13	519.0	12
	182	2,556,819.5	273,512.7	506.8	13	519.8	12
	183	2,556,807.5	273,512.6	507.3	13	520.3	12
	184	2,556,795.5	273,512.4	507.7	13	520.7	12
	185	2,556,783.5	273,512.2	507.2	13	520.2	12
	186	2,556,771.5	273,512.1	507.0	11	518.0	12
	187	2,556,759.5	273,512.0	506.9	11	517.9	12
	188	2,556,747.5	273,511.9	506.8	11	517.8	12
	189	2,556,735.5	273,511.8	506.7	11	517.7	12
	190	2,556,723.5	273,511.7	506.7	16	522.7	12
	191	2,556,711.5	273,511.7	506.5	16	522.5	12
	192	2,556,699.5	273,511.6	506.3	16	522.3	12
	193	2,556,687.5	273,511.6	506.3	16	522.3	12
	194	2,556,675.5	273,511.6	506.3	20	526.3	12
	195	2,556,663.5	273,511.6	506.3	20	526.3	12
	196	2,556,651.5	273,511.6	506.3	20	526.3	12
	197	2,556,639.5	273,511.7	505.9	20	525.9	12
	198	2,556,627.5	273,511.8	505.6	20	525.6	12
	199	2,556,615.5	273,511.8	505.3	20	525.3	12
	200	2,556,603.5	273,511.9	505.2	20	525.2	12
	200	2,556,591.5	273,512.0	505.0	20	525.0	12
	201	2,556,579.5	273,512.2	503.0	20	524.8	12
	202	2,556,567.5	273,512.2	504.7	20	524.7	12
	203	2,556,555.5	273,512.5	504.6	20	524.6	12
	204	2,556,543.5	273,512.7	504.0	20	524.0	12
	205	2,556,531.5	273,512.7	504.4	20	524.3	12
	200	2,556,519.5	273,512.9	504.3	20	524.2	12

NSA	Panel #	X (ft)	Y (ft)	Bottom-Z (ft)	Height (ft)	Top-of-Wall Z (ft)*	Length (ft)
	208	2,556,507.5	273,513.3	504.3	20	524.3	-
	1	2,561,035.0	273,365.6	414.5	12	426.5	12
	2	2,561,025.0	273,372.5	414.8	12	426.8	12
	3	2,561,015.3	273,379.4	415.0	12	427.0	12
	4	2,561,005.3	273,386.2	415.3	12	427.3	12
	5	2,560,995.5	273,393.0	415.5	12	427.5	12
	6	2,560,985.5	273,399.7	415.8	12	427.8	12
	7	2,560,975.5	273,406.5	416.0	12	428.0	12
	8	2,560,965.5	273,413.2	416.3	13	429.3	12
	9	2,560,955.5	273,419.8	416.5	13	429.5	12
	10	2,560,945.5	273,426.4	416.7	13	429.7	12
	11	2,560,935.5	273,433.0	417.0	13	430.0	12
	12	2,560,925.5	273,439.5	417.2	13	430.2	12
	13	2,560,915.5	273,446.0	417.4	13	430.4	12
	14	2,560,905.3	273,452.5	417.7	13	430.7	12
	15	2,560,895.3	273,458.9	417.9	13	430.9	12
	16	2,560,885.0	273,465.2	418.2	13	431.2	12
	17	2,560,874.8	273,471.5	418.4	13	431.4	12
	18	2,560,864.5	273,477.7	418.7	13	431.7	12
	19	2,560,854.3	273,483.9	418.9	13	431.9	12
	20	2,560,844.0	273,490.1	419.2	13	432.2	12
_	21	2,560,833.5	273,496.1	419.4	13	432.4	12
5	22	2,560,823.3	273,502.2	419.7	13	432.7	12
	23	2,560,812.8	273,508.2	419.9	13	432.9	12
	24	2,560,802.5	273,514.1	420.1	13	433.1	12
	25	2,560,792.0	273,519.9	420.3	13	433.3	12
	26	2,560,781.5	273,525.8	420.6	13	433.6	12
	27	2,560,771.0	273,531.6	420.8	13	433.8	12
	28	2,560,760.3	273,537.3	421.0	13	434.0	12
	29	2,560,749.8	273,542.9	421.2	13	434.2	12
	30	2,560,739.0	273,548.6	421.5	13	434.5	12
	31	2,560,728.5	273,554.1	421.7	13	434.7	12
	32	2,560,717.8	273,559.6	421.9	13	434.9	12
	33	2,560,707.0	273,565.0	422.2	13	435.2	12
	34	2,560,696.5	273,570.5	422.4	13	435.4	12
	35	2,560,685.8	273,575.8	422.7	13	435.7	12
	36	2,560,675.0	273,581.0	422.9	13	435.9	12
	37	2,560,664.0	273,586.3	423.2	13	436.2	12
	38	2,560,653.3	273,591.5	423.4	13	436.4	12
	39	2,560,642.5	273,596.5	423.7	13	436.7	12
	40	2,560,631.5	273,601.6	423.9	14	437.9	12
	41	2,560,620.5	273,606.7	424.2	14	438.2	12
	42	2,560,609.8	273,611.6	424.4	14	438.4	12

NSA	Panel #	X (ft)	Y (ft)	Bottom-Z (ft)	Height (ft)	Top-of-Wall Z (ft)*	Length (ft)
	43	2,560,598.8	273,616.4	424.7	14	438.7	12
	44	2,560,587.8	273,621.3	424.9	14	438.9	12
	45	2,560,576.8	273,626.1	425.2	14	439.2	12
	46	2,560,565.8	273,630.8	425.4	14	439.4	12
	47	2,560,554.8	273,635.5	425.7	16	441.7	12
	48	2,560,544.0	273,640.3	426.0	16	442.0	12
	49	2,560,533.0	273,644.8	426.2	16	442.2	12
	50	2,560,521.8	273,649.3	426.4	17	443.4	12
	51	2,560,510.8	273,653.8	426.6	17	443.6	12
	52	2,560,499.5	273,658.2	426.8	17	443.8	12
	53	2,560,488.3	273,662.5	427.0	17	444.0	12
	54	2,560,477.0	273,666.8	427.3	17	444.3	12
	55	2,560,466.0	273,671.0	427.5	17	444.5	12
	56	2,560,454.5	273,675.1	427.7	17	444.7	12
	57	2,560,443.3	273,679.2	427.9	17	444.9	12
	58	2,560,432.0	273,683.3	428.1	16	444.1	12
	59	2,560,420.8	273,687.3	428.4	15	443.4	12
	60	2,560,409.5	273,691.2	428.6	15	443.6	12
	61	2,560,398.0	273,695.1	428.9	15	443.9	12
	62	2,560,386.8	273,698.9	429.1	15	444.1	12
	63	2,560,375.3	273,702.6	429.4	15	444.4	12
	64	2,560,363.8	273,706.3	429.6	14	443.6	12
	65	2,560,352.5	273,710.0	429.9	14	443.9	12
	66	2,560,341.0	273,713.6	430.1	14	444.1	12
	67	2,560,329.5	273,717.1	430.3	14	444.3	12
	68	2,560,318.0	273,720.5	430.5	15	445.5	12
	69	2,560,306.5	273,724.0	430.7	16	446.7	12
	70	2,560,295.0	273,727.3	430.9	16	446.9	12
	71	2,560,283.5	273,730.6	431.2	16	447.2	12
	72	2,560,272.0	273,733.8	431.4	16	447.4	12
	73	2,560,260.3	273,737.0	431.6	16	447.6	12
	74	2,560,248.8	273,740.1	431.8	16	447.8	12
	75	2,560,237.0	273,743.1	432.1	16	448.1	12
	76	2,560,225.5	273,746.2	432.3	16	448.3	12
	77	2,560,213.8	273,749.0	432.6	15	447.6	12
	78	2,560,202.3	273,751.9	432.8	15	447.8	12
	79	2,560,190.5	273,754.8	433.1	15	448.1	12
	80	2,560,178.8	273,757.5	433.3	15	448.3	12
	81	2,560,167.0	273,760.2	433.6	14	447.6	12
	82	2,560,155.5	273,762.8	433.8	14	446.8	12
	83	2,560,143.8	273,765.5	434.0	14	448.0	12
	84	2,560,143.8	273,765.5	434.0	14	448.2	12
	85	2,560,132.0	273,707.9	434.2	14	448.4	12
	86	2,560,120.3	273,770.4	434.4	14	448.6	12

NSA	Panel #	X (ft)	Y (ft)	Bottom-Z (ft)	Height (ft)	Top-of-Wall Z (ft)*	Length (ft)
	87	2,560,096.8	273,775.1	434.9	14	448.9	12
	88	2,560,085.0	273,777.4	435.1	15	450.1	12
	89	2,560,073.0	273,779.6	435.3	16	451.3	12
	90	2,560,061.3	273,781.8	435.5	16	451.5	12
	91	2,560,049.5	273,783.8	435.7	16	451.7	12
	92	2,560,037.8	273,785.9	435.9	16	451.9	12
	93	2,560,026.0	273,787.9	436.2	16	452.2	12
	94	2,560,014.0	273,789.8	436.4	16	452.4	12
	95	2,560,002.0	273,791.6	436.6	16	452.6	12
	96	2,559,990.3	273,793.4	436.9	16	452.9	12
	97	2,559,978.5	273,795.2	437.1	16	453.1	12
	98	2,559,966.5	273,796.8	437.3	16	453.3	12
	99	2,559,954.5	273,798.4	437.6	16	453.6	12
	100	2,559,942.8	273,800.0	437.8	16	453.8	12
	101	2,559,930.8	273,801.5	438.1	16	454.1	12
	102	2,559,919.0	273,802.9	438.3	16	454.3	12
	103	2,559,907.0	273,804.3	438.6	16	454.6	12
	104	2,559,895.0	273,805.6	438.8	16	454.8	12
	105	2,559,883.0	273,806.8	439.1	16	455.1	12
	106	2,559,871.3	273,808.0	439.3	16	455.3	12
	107	2,559,859.3	273,809.2	439.6	16	455.6	12
	108	2,559,847.3	273,810.2	439.8	16	455.8	12
	109	2,559,835.3	273,811.2	440.0	15	455.0	12
	110	2,559,823.5	273,812.2	440.3	15	455.3	12
	111	2,559,811.5	273,813.1	440.5	14	454.5	12
	112	2,559,799.5	273,813.9	440.8	14	454.8	12
	113	2,559,787.5	273,814.6	441.0	14	455.0	12
	114	2,559,775.5	273,815.4	441.2	13	454.2	12
	115	2,559,763.5	273,816.0	441.5	13	454.5	12
	116	2,559,751.5	273,816.5	441.7	13	454.7	12
	117	2,559,739.5	273,817.1	441.9	13	454.9	12
	118	2,559,727.5	273,817.5	442.1	13	455.1	12
	119	2,559,715.5	273,817.9	442.4	13	455.4	12
	120	2,559,703.5	273,818.2	442.6	13	455.6	12
	121	2,559,691.5	273,818.6	442.8	13	455.8	12
	122	2,559,679.5	273,818.7	443.0	13	456.0	12
	123	2,559,667.5	273,818.8	443.3	13	456.3	12
	124	2,559,655.5	273,819.0	443.5	13	456.5	12
	125	2,559,643.5	273,819.0	443.7	13	456.7	12
	126	2,559,631.5	273,818.9	443.9	13	456.9	12
	127	2,559,619.5	273,818.8	444.2	13	457.2	12
	128	2,559,607.5	273,818.8	444.4	13	457.4	12
	129	2,559,595.5	273,818.5	444.7	13	457.7	12
	130	2,559,583.5	273,818.2	444.9	13	457.9	12

NSA	Panel #	X (ft)	Y (ft)	Bottom-Z (ft)	Height (ft)	Top-of-Wall Z (ft)*	Length (ft)
	131	2,559,571.5	273,817.9	445.1	13	458.1	12
	132	2,559,559.5	273,817.5	445.4	13	458.4	12
	133	2,559,547.5	273,817.0	445.6	12	457.6	12
	134	2,559,535.5	273,816.5	445.8	12	457.8	12
	135	2,559,523.5	273,816.0	446.0	12	458.0	12
	136	2,559,511.5	273,815.2	446.2	12	458.2	12
	137	2,559,499.5	273,814.5	446.4	12	458.4	12
	138	2,559,487.8	273,813.8	446.7	12	458.7	12
	139	2,559,475.8	273,813.0	446.9	12	458.9	12
	140	2,559,463.8	273,812.0	447.1	12	459.1	12
	141	2,559,451.8	273,811.1	447.3	12	459.3	12
	142	2,559,439.8	273,810.2	447.5	12	459.5	12
	143	2,559,427.8	273,809.1	447.7	12	459.7	12
	144	2,559,416.0	273,808.0	448.0	12	460.0	12
	145	2,559,404.0	273,806.8	448.2	12	460.2	12
	146	2,559,392.0	273,805.5	448.5	12	460.5	12
	147	2,559,380.0	273,804.2	448.7	12	460.7	12
	148	2,559,368.3	273,802.9	448.9	12	460.9	12
	149	2,559,356.3	273,801.5	449.2	12	461.2	12
	150	2,559,344.3	273,800.0	449.4	12	461.4	12
	151	2,559,332.5	273,798.6	449.6	12	461.6	12
	152	2,559,320.5	273,797.0	449.8	12	461.8	12
	153	2,559,308.5	273,795.5	450.0	12	462.0	12
	154	2,559,296.8	273,793.8	450.2	12	462.2	12
	155	2,559,285.0	273,792.2	450.4	12	462.4	12
	156	2,559,273.0	273,790.5	450.6	12	462.6	12
	157	2,559,261.0	273,788.8	450.8	12	462.8	-
	1	2,578,999.5	275,814.1	597.6	8	605.6	12
	2	2,579,011.3	275,816.1	596.1	8	604.1	12
	3	2,579,023.0	275,818.1	595.6	11	606.6	12
	4	2,579,035.0	275,820.1	594.1	12	606.1	12
	5	2,579,046.8	275,822.1	593.0	13	606.0	12
	6	2,579,058.5	275,824.1	592.3	13	605.3	12
	7	2,579,070.5	275,826.1	591.5	14	605.5	12
20	8	2,579,082.3	275,828.1	590.3	15	605.3	12
20	9	2,579,094.0	275,830.1	589.6	15	604.6	12
	10	2,579,106.0	275,832.1	588.5	16	604.5	12
	11	2,579,117.8	275,834.1	587.8	16	603.8	12
	12	2,579,129.5	275,836.1	587.4	16	603.4	12
	13	2,579,141.5	275,838.1	586.7	16	602.7	12
	14	2,579,153.3	275,840.1	586.3	14	600.3	12
	15	2,579,165.0	275,842.1	585.6	14	599.6	4
	16	2,579,169.3	275,842.8	586.0	14	600.0	12

NSA	Panel #	X (ft)	Y (ft)	Bottom-Z (ft)	Height (ft)	Top-of-Wall Z (ft)*	Length (ft)
	17	2,579,181.3	275,843.7	585.5	15	600.5	12
	18	2,579,193.3	275,844.5	585.0	15	600.0	12
	19	2,579,205.3	275,845.4	584.7	15	599.7	12
	20	2,579,217.3	275,846.3	584.3	15	599.3	12
	21	2,579,229.3	275,847.1	584.1	15	599.1	12
	22	2,579,241.3	275,847.9	584.0	15	599.0	12
	23	2,579,253.3	275,848.8	583.7	15	598.7	12
	24	2,579,265.0	275,849.7	583.3	12	595.3	12
	25	2,579,277.0	275,850.5	583.1	12	595.1	12
	26	2,579,289.0	275,851.3	583.0	12	595.0	12
	27	2,579,301.0	275,852.2	582.8	12	594.8	12
	28	2,579,313.0	275,853.0	582.3	12	594.3	12
	29	2,579,325.0	275,853.9	582.1	12	594.1	12
	30	2,579,337.0	275,854.8	582.0	12	594.0	12
	31	2,579,349.0	275,855.6	581.8	12	593.8	12
	32	2,579,360.8	275,856.4	581.3	12	593.3	12
	33	2,579,372.8	275,857.3	581.1	12	593.1	12
	34	2,579,384.8	275,858.1	581.0	12	593.0	12
	35	2,579,396.8	275,859.0	580.9	12	592.9	12
	36	2,579,408.8	275,859.8	580.4	12	592.4	12
	37	2,579,420.8	275,860.7	580.2	12	592.2	12
	38	2,579,432.8	275,861.5	580.1	12	592.1	12
	39	2,579,444.8	275,862.4	579.9	12	591.9	12
	40	2,579,456.5	275,863.2	579.5	13	592.5	12
	41	2,579,468.5	275,864.1	579.3	13	592.3	12
	42	2,579,480.5	275,864.9	579.1	13	592.1	12
	43	2,579,492.5	275,865.8	578.9	13	591.9	12
	44	2,579,504.5	275,866.6	578.5	13	591.5	12
	45	2,579,516.5	275,867.5	578.3	13	591.3	12
	46	2,579,528.5	275,868.3	578.1	13	591.1	12
	47	2,579,540.5	275,869.2	577.9	13	590.9	12
	48	2,579,552.5	275,870.0	577.5	13	590.5	12
	49	2,579,564.3	275,870.9	577.3	13	590.3	12
	50	2,579,576.3	275,871.7	577.1	13	590.1	12
	51	2,579,588.3	275,872.6	577.0	13	590.0	12
	52	2,579,600.3	275,873.4	576.6	13	589.6	12
	53	2,579,612.3	275,874.3	576.4	13	589.4	12
	54	2,579,624.3	275,875.1	576.2	13	589.2	12
	55	2,579,636.3	275,876.0	576.1	13	589.1	12
	56	2,579,648.3	275,876.8	575.9	13	588.9	12
	57	2,579,660.0	275,877.7	575.5	13	588.5	12
	58	2,579,672.0	275,878.5	575.3	13	588.3	12
	59	2,579,684.0	275,879.4	575.2	13	588.2	12
	60	2,579,696.0	275,880.2	575.1	13	588.1	12

NSA	Panel #	X (ft)	Y (ft)	Bottom-Z (ft)	Height (ft)	Top-of-Wall Z (ft)*	Length (ft)
	61	2,579,708.0	275,881.1	575.0	13	588.0	12
	62	2,579,720.0	275,881.9	574.9	13	587.9	12
	63	2,579,732.0	275,882.8	574.6	13	587.6	12
	64	2,579,744.0	275,883.6	574.4	13	587.4	12
	65	2,579,755.8	275,884.5	574.3	13	587.3	12
	66	2,579,767.8	275,885.3	574.2	13	587.2	12
	67	2,579,779.8	275,886.2	574.1	13	587.1	12
	68	2,579,791.8	275,887.1	574.0	13	587.0	12
	69	2,579,803.8	275,888.0	573.8	13	586.8	12
	70	2,579,815.8	275,888.9	573.4	12	585.4	12
	71	2,579,827.8	275,889.8	573.3	12	585.3	12
	72	2,579,839.8	275,890.8	573.2	12	585.2	12
	73	2,579,851.5	275,891.7	573.1	12	585.1	12
	74	2,579,863.5	275,892.7	573.0	12	585.0	12
	75	2,579,875.5	275,893.7	572.8	12	584.8	12
	76	2,579,887.5	275,894.7	572.4	12	584.4	12
	77	2,579,899.5	275,895.8	572.3	12	584.3	12
	78	2,579,911.3	275,896.9	572.2	12	584.2	12
	79	2,579,923.3	275,898.0	572.1	12	584.1	12
	80	2,579,935.3	275,899.1	572.0	12	584.0	12
	81	2,579,947.3	275,900.3	571.8	12	583.8	12
	82	2,579,959.3	275,901.5	571.4	12	583.4	12
	83	2,579,971.0	275,902.8	571.3	12	583.3	12
	84	2,579,983.0	275,904.0	571.1	12	583.1	12
	85	2,579,995.0	275,905.4	571.0	12	583.0	12
	86	2,580,006.8	275,906.7	570.5	12	582.5	12
	87	2,580,018.8	275,908.1	570.3	12	582.3	12
	88	2,580,030.8	275,909.6	570.1	12	582.1	12
	89	2,580,042.5	275,911.0	570.0	12	582.0	12
	90	2,580,054.5	275,912.5	569.5	12	581.5	12
	91	2,580,066.5	275,914.1	569.3	12	581.3	12
	92	2,580,078.3	275,915.7	569.2	12	581.2	12
	93	2,580,090.3	275,917.3	569.0	12	581.0	12
	94	2,580,102.0	275,918.9	568.8	11	579.8	12
	95	2,580,114.0	275,920.6	568.4	11	579.4	12
	96	2,580,125.8	275,922.4	568.3	11	579.3	12
	97	2,580,137.8	275,924.1	568.1	11	579.1	12
	98	2,580,149.5	275,925.9	567.8	11	578.8	12
	99	2,580,161.5	275,927.8	567.4	11	578.4	12
	100	2,580,173.3	275,929.7	567.3	11	578.3	12
	101	2,580,185.0	275,931.6	567.1	11	578.1	12
	102	2,580,197.0	275,933.5	566.9	11	577.9	12
	103	2,580,208.8	275,935.5	566.4	11	577.4	12
	104	2,580,220.8	275,937.5	566.3	10	576.3	12

NSA	Panel #	X (ft)	Y (ft)	Bottom-Z (ft)	Height (ft)	Top-of-Wall Z (ft)*	Length (ft)
	105	2,580,232.5	275,939.6	566.1	10	576.1	12
	106	2,580,244.3	275,941.7	566.0	10	576.0	12
	107	2,580,256.0	275,943.8	565.6	10	575.6	12
	108	2,580,268.0	275,946.0	565.3	10	575.3	12
	109	2,580,279.8	275,948.2	565.1	10	575.1	12
	110	2,580,291.5	275,950.4	565.0	10	575.0	12
	111	2,580,303.3	275,952.7	564.8	10	574.8	12
	112	2,580,315.0	275,955.0	564.4	10	574.4	12
	113	2,580,326.8	275,957.3	564.3	9	573.3	12
	114	2,580,338.5	275,959.8	564.1	9	573.1	12
	115	2,580,350.3	275,962.2	563.8	9	572.8	12
	116	2,580,362.0	275,964.6	563.4	9	572.4	12
	117	2,580,373.8	275,967.1	563.2	9	572.2	12
	118	2,580,385.5	275,969.7	563.1	9	572.1	12
	119	2,580,397.3	275,972.2	562.9	9	571.9	12
	120	2,580,409.0	275,974.8	562.5	9	571.5	12
	121	2,580,420.8	275,977.5	562.3	9	571.3	12
	122	2,580,432.3	275,980.1	562.1	9	571.1	12
	123	2,580,444.0	275,982.8	562.0	9	571.0	12
	124	2,580,455.8	275,985.6	561.5	9	570.5	12
	125	2,580,467.5	275,988.4	561.3	9	570.3	12
	126	2,580,479.0	275,991.2	561.1	9	570.1	12
	127	2,580,490.8	275,994.1	561.0	9	570.0	12
	128	2,580,502.3	275,996.9	560.5	9	569.5	12
	129	2,580,514.0	275,999.9	560.3	9	569.3	12
	130	2,580,525.8	276,002.8	560.3	9	569.3	12
	131	2,580,537.3	276,005.8	560.1	9	569.1	12
	132	2,580,548.8	276,008.9	559.9	9	568.9	12
	133	2,580,560.5	276,012.0	559.4	9	568.4	12
	134	2,580,572.0	276,015.1	559.3	9	568.3	12
	135	2,580,583.8	276,018.2	559.1	9	568.1	12
	136	2,580,595.3	276,021.4	558.9	9	567.9	12
	137	2,580,606.8	276,024.6	558.4	9	567.4	12
	138	2,580,618.3	276,027.8	558.3	8	566.3	12
	139	2,580,629.8	276,031.1	558.1	8	566.1	12
	140	2,580,641.5	276,034.5	558.0	8	566.0	12
	141	2,580,653.0	276,037.8	557.5	8	565.5	12
	142	2,580,664.5	276,041.2	557.3	8	565.3	12
	143	2,580,676.0	276,044.7	557.2	8	565.2	12
	144	2,580,687.5	276,048.1	557.0	8	565.0	12
	145	2,580,699.0	276,051.6	556.6	8	564.6	12
	146	2,580,710.3	276,055.2	556.3	8	564.3	12
	147	2,580,721.8	276,058.7	556.2	8	564.2	12
	148	2,580,733.3	276,062.3	556.1	8	564.1	12

NSA	Panel #	X (ft)	Y (ft)	Bottom-Z (ft)	Height (ft)	Top-of-Wall Z (ft)*	Length (ft)
	149	2,580,744.8	276,066.0	555.8	8	563.8	-

* The top of wall value reported here is the minimum required height to meet the predicted noise levels found in this report. Panels may be higher than the stated value, but not lower.

This page intentionally left blank

#### APPENDIXE

#### Warranted, Reasonable and Feasible Worksheets

Appendix E presents PennDOT Pub. #24's Appendix A "Warranted, Reasonable and Feasible Worksheets"

#### Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet – <u>Noise Wall</u>

5/15/2014
PTC 312 - 319
Chester
I-76, M.P. 312 - 319
NSA01
Widening and Reconstruction
6

#### Warranted

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>		na		
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No		
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.				
<ul> <li>a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?</li> <li>b. With the proposed project, is there predicted to be a substantial</li> </ul>	x Yes	No		
design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	x No		
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No		
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.				
1. Impacted receptor units				
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		6 67%		
c. Is the percentage 50 or greater?	x Yes	No		
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No		
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No		
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No		
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	^x Yes	No		
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No		
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No		

#### Reasonableness

<ol> <li>Community Desires Related to the Barrier         <ul> <li>a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ul> </li> </ol>	TBD at a later date	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	128	
more insertion loss)		
c. $SF/BR = 2a/2b$	320 Yes	x No
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	165	A NU
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?	Yes	No
<ul><li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li><li>c. Does the noise wall provide insertion losses of greater than 7 dB(A)</li></ul>	Yes	No
while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	No
<ul> <li>d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>e. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is		
required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise		
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decisio	on	
Is the Noise Wall WARRANTED?	x Yes	No
Is the Noise Wall FEASIBLE?	x Yes	No
Is the Noise Wall REASONABLE?	Yes	x No
Additional Reasons for Decision:		

#### Responsible/Qualified Individuals Making the Above Decisions

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date

#### Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet – <u>Noise Wall</u>

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA02
Noise Wall Identification (i.e., Wall 1)	
General 1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community	
Category A units impacted	1
Category B units impacted	1
Category C units impacted	
Category D units impacted (if interior analysis required) Category E units impacted	

### Warranted

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>		na na
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?	x Yes	No
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	x No
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.		
1. Impacted receptor units		
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		1 100%
c. Is the percentage 50 or greater?	x Yes	No
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No

#### Reasonableness

<ol> <li>Community Desires Related to the Barrier         <ul> <li>a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise</li> </ul> </li> </ol>	TBD at a later date	
wall."	Yes	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	619	9
more insertion loss)	1	
c. $SF/BR = 2a/2b$	619	9
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	Yes	x No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
<ul> <li>a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?</li> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the</li> </ul>	Yes	No
MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? c. Does the noise wall provide insertion losses of greater than 7 dB(A)	Yes	No
<ul><li>while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li><li>d. Does the noise wall reduce future exterior levels to the low-60-</li></ul>	Yes	No
decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	Х	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA03
Noise Wall Identification (i.e., Wall 1)	
General <ol> <li>Type of project (new location, reconstruction, etc.):</li> </ol>	Widening and Reconstruction
2. Total number of impacted receptor units in community Category A units impacted	
Category B units impacted	1
Category C units impacted	
Category C units impacted	

### Warranted

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>		na na
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?	x Yes	No
b. With the proposed project, is there predicted to be a substantial design year noise level increase of $10 \text{ dB}(A)$ or more at Activity		
Category A, B, C, D, or E receptor(s)?	Yes	x No
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.		1.0
1. Impacted receptor units		
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		1 0%
c. Is the percentage 50 or greater?	Yes	x No
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No
7. Can the noise wall be constructed in a manner that permits drainage		110
features to function in a normal manner?	x Yes	No

#### Reasonableness

<ol> <li>Community Desires Related to the Barrier         <ul> <li>a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ul> </li> </ol>	TBD at a later date	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	4800	0
more insertion loss)		0
<ul><li>c. SF/BR = 2a/2b</li><li>d. Is 2c less than or equal to the MaxSF/BR value of 2000?</li></ul>	4800 Yes	x No
d. Is ze less than of equal to the MaxS17BK value of 2000?		
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?	Yes	No
<ul> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li> <li>c. Does the noise wall provide insertion losses of greater than 7 dB(A)</li> </ul>	Yes	No
while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	No
<ul> <li>d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>e. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	Х	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date		5/	10/2020	
Project Name		PTC	312 - 319	
County		(	Chester	
SR, Section		I-76, M	.P. 312 - 319	)
Community Name and/or NSA #		N	NSA04	
Noise Wall Identification (i.e., Wall 1)				
General				
1. Type of project (new location, reconstruction, etc.):		Widening a	nd Reconstru	iction
2. Total number of impacted receptor units in community				
Category A units impacted				
Category B units impacted			99	
Category C units impacted				
Category D units impacted (if interior analysis required)				
Category E units impacted				
Warranted				
1. Community Documentation				
a. Date community was permitted (for new developments or				
developments planned for or under construction)			na	
b. Date of approval for the Categorical Exclusion (CE), Record of				
Decision (ROD), or Finding of No Significant Impact (FONSI):			na	
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to				
Warranted Item 2. If no, consideration of noise abatement is not				
warranted. Proceed to "Decision" block and answer "no" to warranted				
question. As the reason for this decision, state that "Community was				
permitted after the date of approval of CE, ROD, or FONSI, as				
appropriate ."		Yes		No
2. Criteria requiring consideration of noise abatement (note N/A if category				
is not impacted or present or analysis not required). A "yes" answer to any				
of the following three questions requires the consideration of noise				
abatement.				
a. With the proposed project, are design year noise levels predicted to $1 + 1 + 1 + 1 = 1$	v	Vec		No
approach or exceed the NAC level(s) in Table 1?	Х	Yes		No
b. With the proposed project, is there predicted to be a substantial design war poise level increase of $10 \text{ dB}(\Lambda)$ or more at Activity Category $\Lambda$ .				
year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E recenter(a)?		Voc	х	No
C, D, or E receptor(s)?		Yes	Δ	No
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC				
levels in Table 1 for the relevant Activity Category?		Yes	х	No
levels in rable r for the felevant Activity Category:				

Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.

- 1. Impacted receptor units
  - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

- 3. Can the noise wall be constructed without causing a safety problem?
- 4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

#### Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."

2. Square Footage Per Benefited Receptor (SF/BR) Evaluation

a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior noise levels by at least

7 dB(A) for at least one benefited receptor?

			99	
		9	4%	
	Х	Yes		No
	X	Yes		No
	Х	Yes		No
•	X	Yes		No
	Х	Yes		No
	Х	Yes		No
	X	Yes		No

		37088	
		96	
		386	
Х	Yes		No

TBD

No

TBD

Yes

x Yes No

b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?

c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?

d. Does the noise wall reduce future exterior levels to the low-60decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?

e. Does the noise wall reduce design year noise levels back to existing levels?

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall.

a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point?

b. While conforming to the MaxSF/BR criteria and justified by a "point of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum

Х	Yes	No
X	Yes	No
X	Yes	 No
Х	Yes	No

X	Yes	 No
X	Yes	No

Decision			
Is the Noise Wall WARRANTED?	Х	Yes	No
Is the Noise Wall FEASIBLE?	х	Yes	No
Is the Noise Wall REASONABLE?	х	Yes	No

Additional Reasons for Decision:

PennDOT, Engineering District Environmental Manager

Qualified Professional Performing the Analysis (name, title, and company name)

Date

Date	5/1	0/2020	
Project Name	PTC	312 - 319	
County	C	hester	
SR, Section	I-76, M.	P. 312 - 319	
Community Name and/or NSA #	N	SA05	
Noise Wall Identification (i.e., Wall 1)			
General			
1. Type of project (new location, reconstruction, etc.):	Widening and	d Reconstruct	ion
2. Total number of impacted receptor units in community			
Category A units impacted			
Category B units impacted		72	
Category C units impacted			
Category D units impacted (if interior analysis required)			
Category E units impacted			
Warranted			
1. Community Documentation			
a. Date community was permitted (for new developments or		<b>n</b> 0	
developments planned for or under construction)		na	
b. Date of approval for the Categorical Exclusion (CE), Record of		na	
Decision (ROD), or Finding of No Significant Impact (FONSI):		IId	
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to			
Warranted Item 2. If no, consideration of noise abatement is not			
warranted. Proceed to "Decision" block and answer "no" to warranted			
question. As the reason for this decision, state that "Community was			
permitted after the date of approval of CE, ROD, or FONSI, as	N		No
appropriate ."	Yes		No
2. Criteria requising consideration of noise shotement (note N/A if actors			
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any			
of the following three questions requires the consideration of noise			
abatement.			
a. With the proposed project, are design year noise levels predicted to			
approach or exceed the NAC level(s) in Table 1?	x Yes		No
b. With the proposed project, is there predicted to be a substantial design			
year noise level increase of 10 dB(A) or more at Activity Category A, B,			
C, D, or E receptor(s)?	Yes	Х	No
c. With the proposed project, are design year noise levels predicted to be			_
less than existing noise levels, but still approach or exceed the NAC			
levels in Table 1 for the relevant Activity Category?	Yes	Х	No

Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.

- 1. Impacted receptor units
  - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."

2. Square Footage Per Benefited Receptor (SF/BR) Evaluation

a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least

7 dB(A) for at least one benefited receptor?

_	69					
			87	%		
	Х	Yes	I		No	
	X	Yes			No	
	X	Yes	I		No	
	X	Yes	I		No	
	X	Yes	ļ		No	
	X	Yes	I		No	
	x	Yes			No	

		26049	
		69	
		378	
Х	Yes		No

TBD

No

TBD

Yes

x Yes No

b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?

c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?

d. Does the noise wall reduce future exterior levels to the low-60decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?

e. Does the noise wall reduce design year noise levels back to existing levels?

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall.

a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point?

b. While conforming to the MaxSF/BR criteria and justified by a "point of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum

	Х	Yes	No
f	X	Yes	No
)	X	Yes	No
	Х	Yes	 No

Х	Yes	N	١o
х	Yes	Ν	١o

Decision			
Is the Noise Wall WARRANTED?	Х	Yes	No
Is the Noise Wall FEASIBLE?	X	Yes	No
Is the Noise Wall REASONABLE?	х	Yes	No

Additional Reasons for Decision:

PennDOT, Engineering District Environmental Manager

Qualified Professional Performing the Analysis (name, title, and company name)

Date

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA06
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community Category A units impacted	
Category B units impacted	1
Category C units impacted	
Category C units impacted	

### Warranted

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>		na		
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No		
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.				
a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?	x Yes	No		
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	x No		
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No		
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.				
1. Impacted receptor units				
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		1 100%		
c. Is the percentage 50 or greater?	x Yes	No		
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No		
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No		
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No		
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No		
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No		
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No		

#### Reasonableness

<ol> <li>Community Desires Related to the Barrier         <ol> <li>Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise</li> </ol> </li> </ol>	TBD at a later date	
wall."	Yes	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	132	80
more insertion loss)	1	
c. $SF/BR = 2a/2b$	132	80
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	Yes	x No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
<ul> <li>a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?</li> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for</li> </ul>	Yes	No
<ul><li>more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li><li>c. Does the noise wall provide insertion losses of greater than 7 dB(A)</li></ul>	Yes	No
<ul><li>while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li><li>d. Does the noise wall reduce future exterior levels to the low-60-</li></ul>	Yes	No
decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	Х	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA07
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
	Widening and Reconstruction 2
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	

### Warranted

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>		na na
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
<ul> <li>a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?</li> <li>b. With the proposed project, is there predicted to be a substantial</li> </ul>	x Yes	No
design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	x No
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.		
1. Impacted receptor units		
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		2 100%
c. Is the percentage 50 or greater?	x Yes	No
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No

#### Reasonableness

<ol> <li>Community Desires Related to the Barrier         <ul> <li>a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise</li> </ul> </li> </ol>	TBD at a later date	
wall."	Yes	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	105	60
more insertion loss)	2	
c. $SF/BR = 2a/2b$	528	30
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	Yes	x No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
<ul> <li>a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?</li> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the</li> </ul>	Yes	No
MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? c. Does the noise wall provide insertion losses of greater than 7 dB(A)	Yes	No
<ul><li>while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li><li>d. Does the noise wall reduce future exterior levels to the low-60-</li></ul>	Yes	No
<ul> <li>decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>e. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	Х	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA08
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
	Widening and Reconstruction 7
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	

### Warranted

<ol> <li>Community Documentation         <ol> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ol> </li> </ol>		na na
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?	x Yes	No
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	x No
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.		
1. Impacted receptor units		-
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		7 100%
c. Is the percentage 50 or greater?	x Yes	No
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No

#### Reasonableness

<ol> <li>Community Desires Related to the Barrier         <ul> <li>a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ul> </li> </ol>	TBD at a later date	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	199 7	
more insertion loss)		
<ul><li>c. SF/BR = 2a/2b</li><li>d. Is 2c less than or equal to the MaxSF/BR value of 2000?</li></ul>	284 Yes	x No
d. Is ze less than of equal to the MaxS17BK value of 2000?		
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?	Yes	No
<ul> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li> <li>c. Does the noise wall provide insertion losses of greater than 7 dB(A)</li> </ul>	Yes	No
while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	No
<ul> <li>d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>e. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	Х	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA09
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
	Widening and Reconstruction
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	

### Warranted

<ol> <li>Community Documentation         <ol> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ol> </li> </ol>		na na	
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No	
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.			
<ul> <li>a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?</li> <li>b. With the proposed project, is there predicted to be a substantial</li> </ul>	x Yes	No	
design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	<u> </u>	
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	<u> </u>	
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.			
1. Impacted receptor units		_	
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		2 100%	
c. Is the percentage 50 or greater?	Yes	x No	
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No	
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No	
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No	
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No	
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No	
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No	

#### Reasonableness

<ol> <li>Community Desires Related to the Barrier         <ol> <li>Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise</li> </ol> </li> </ol>		
wall."	Yes	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	665	0
more insertion loss)	2	
c. $SF/BR = 2a/2b$	332	
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	Yes	x No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
<ul> <li>a. Does the noise wall reduce design year exterior noise levels by at least 7 dB(A) for at least one benefited receptor?</li> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for</li> </ul>	Yes	No
<ul><li>more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li><li>c. Does the noise wall provide insertion losses of greater than 7 dB(A)</li></ul>	Yes	No
while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	No
<ul> <li>d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>e. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	X	Yes		No
Is the Noise Wall REASONABLE?		Yes	Х	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA10
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
<ol> <li>Type of project (new location, reconstruction, etc.):</li> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	

### Warranted

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>		na
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?	x Yes	No
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	x No
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.		
1. Impacted receptor units		
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		3 100%
c. Is the percentage 50 or greater?	x Yes	No
2. Can the noise wall be designed and physically constructed at the proposed location?	^x Yes	No
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	^x Yes	No
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No

#### Reasonableness

<ol> <li>Community Desires Related to the Barrier         <ol> <li>Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise</li> </ol> </li></ol>		
wall."	Yes	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li></ul>	8810	0
b. Number of benefited receptor units (any unit receiving 5 $dB(A)$ or more insertion loss)	3	
c. $SF/BR = 2a/2b$	293	7
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	Yes	x No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
<ul> <li>a. Does the noise wall reduce design year exterior noise levels by at least 7 dB(A) for at least one benefited receptor?</li> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for</li> </ul>	Yes	No
<ul><li>more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li><li>c. Does the noise wall provide insertion losses of greater than 7 dB(A)</li></ul>	Yes	No
while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	No
<ul> <li>d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>a. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	X	Yes		No
Is the Noise Wall REASONABLE?		Yes	Х	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA11
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	Widening and Reconstruction
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	Widening and Reconstruction
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	Widening and Reconstruction 1
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	Widening and Reconstruction

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>	na		
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No	
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.			
a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?	x Yes	No	
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	x No	
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No	
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.			
1. Impacted receptor units			
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		1 100%	
c. Is the percentage 50 or greater?	x Yes	No	
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No	
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No	
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No	
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No	
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No	
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No	

<ol> <li>Community Desires Related to the Barrier         <ul> <li>a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ul> </li> </ol>	TBD at a later date	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	550	8
more insertion loss)	550	0
<ul><li>c. SF/BR = 2a/2b</li><li>d. Is 2c less than or equal to the MaxSF/BR value of 2000?</li></ul>	Yes	× No
d. 15 2e less than of equal to the MaxS17BR value of 2000:		
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?	Yes	No
<ul> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li> <li>c. Does the noise wall provide insertion losses of greater than 7 dB(A)</li> </ul>	Yes	No
while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	No
<ul> <li>d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>e. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	Х	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA12
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
	Widening and Reconstruction
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	Widening and Reconstruction 1
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	Widening and Reconstruction         1
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	Widening and Reconstruction         1

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>	na		
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No	
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.			
a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?	x Yes	No	
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	x No	
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No	
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.			
1. Impacted receptor units			
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		1 100%	
c. Is the percentage 50 or greater?	x Yes	No	
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No	
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No	
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No	
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No	
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No	
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No	

<ol> <li>Community Desires Related to the Barrier         <ul> <li>a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ul> </li> </ol>	TBD at a later date	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	720	0
more insertion loss)		0
<ul><li>c. SF/BR = 2a/2b</li><li>d. Is 2c less than or equal to the MaxSF/BR value of 2000?</li></ul>	720 Yes	x No
d. Is ze less than of equal to the MaxS17BK value of 2000?		
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?	Yes	No
<ul> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li> <li>c. Does the noise wall provide insertion losses of greater than 7 dB(A)</li> </ul>	Yes	No
while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	No
<ul> <li>d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>e. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	Х	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA13
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
	Widening and Reconstruction
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>	na		
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No	
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.			
<ul> <li>a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?</li> <li>b. With the proposed project, is there predicted to be a substantial.</li> </ul>	x Yes	No	
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	x No	
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No	
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.			
1. Impacted receptor units			
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		3 100%	
c. Is the percentage 50 or greater?	x Yes	No	
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No	
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No	
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No	
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No	
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No	
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No	

<ol> <li>Community Desires Related to the Barrier         <ul> <li>a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ul> </li> </ol>	TBD at a later date	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	660	0
more insertion loss)		0
<ul><li>c. SF/BR = 2a/2b</li><li>d. Is 2c less than or equal to the MaxSF/BR value of 2000?</li></ul>	220 Yes	x No
d. Is ze less than of equal to the MaxS17DK value of 2000:		
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?	Yes	No
<ul> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li> <li>c. Does the noise wall provide insertion losses of greater than 7 dB(A)</li> </ul>	Yes	No
while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	No
<ul> <li>d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>e. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	Х	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA14
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	Widening and Reconstruction
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	Widening and Reconstruction 1
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	Widening and Reconstruction 1
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	Widening and Reconstruction

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>		na na
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?	x Yes	No
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	x No
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.		
1. Impacted receptor units		
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		1 100%
c. Is the percentage 50 or greater?	x Yes	No
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No

<ol> <li>Community Desires Related to the Barrier         <ul> <li>a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ul> </li> </ol>	TBD at a later date	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	560	0
more insertion loss)		0
<ul><li>c. SF/BR = 2a/2b</li><li>d. Is 2c less than or equal to the MaxSF/BR value of 2000?</li></ul>	560 Yes	x No
d. Is ze less than of equal to the MaxS17BK value of 2000?		
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?	Yes	No
<ul> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li> <li>c. Does the noise wall provide insertion losses of greater than 7 dB(A)</li> </ul>	Yes	No
while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	No
<ul> <li>d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>e. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	Х	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA15
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
	Widening and Reconstruction 8
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>		na na
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
<ul> <li>a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?</li> <li>b. With the proposed project, is there predicted to be a substantial</li> </ul>	x Yes	No
design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	x No
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.		
1. Impacted receptor units		
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		8 88%
c. Is the percentage 50 or greater?	x Yes	No
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No

<ol> <li>Community Desires Related to the Barrier         <ol> <li>Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise</li> </ol> </li> </ol>	TBD at a later date	
wall."	Yes	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	325	00
more insertion loss)	7	
c. $SF/BR = 2a/2b$	464	43
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	Yes	x No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
<ul> <li>a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?</li> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for</li> </ul>	Yes	No
<ul><li>more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li><li>c. Does the noise wall provide insertion losses of greater than 7 dB(A)</li></ul>	Yes	No
while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	No
<ul> <li>d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>e. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	Х	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA16
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
	Widening and Reconstruction 2
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>		na na
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
<ul> <li>a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?</li> <li>b. With the proposed project, is there predicted to be a substantial</li> </ul>	x Yes	No
design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)? c. With the proposed project, are design year noise levels predicted to	Yes	x No
be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.		
1. Impacted receptor units		_
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		2 100%
c. Is the percentage 50 or greater?	x Yes	No
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No

<ol> <li>Community Desires Related to the Barrier         <ul> <li>a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ul> </li> </ol>	TBD at a later date	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	1280	00
more insertion loss)	640	0
<ul><li>c. SF/BR = 2a/2b</li><li>d. Is 2c less than or equal to the MaxSF/BR value of 2000?</li></ul>	Yes	x No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the	na	
<ul> <li>determination of the recommended noise wall.</li> <li>a. Does the noise wall reduce design year exterior noise levels by at least 7 dB(A) for at least one benefited receptor?</li> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the</li> </ul>	Yes	No
MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	No
<ul><li>c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li><li>d. Does the noise wall reduce future exterior levels to the low-60-</li></ul>	Yes	No
decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior_noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	Х	Yes		No
Is the Noise Wall FEASIBLE?	x	Yes		No
Is the Noise Wall REASONABLE?		Yes	Х	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA17
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
<ol> <li>Type of project (new location, reconstruction, etc.):</li> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>		na
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
<ul> <li>a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?</li> <li>b. With the proposed project, is there predicted to be a substantial</li> </ul>	x Yes	No
design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)? c. With the proposed project, are design year noise levels predicted to	Yes	x No
be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.		
1. Impacted receptor units		
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		1 50%
c. Is the percentage 50 or greater?	x Yes	No
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No

<ol> <li>Community Desires Related to the Barrier         <ul> <li>Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ul> </li> </ol>	TBD at a later date	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	2290	00
more insertion loss)		
c. $SF/BR = 2a/2b$	2290 Yes	x No
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	165	
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?	Yes	No
<ul> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li> <li>c. Does the noise wall provide insertion losses of greater than 7 dB(A)</li> </ul>	Yes	No
while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	No
<ul> <li>d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>e. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	Х	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA18
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	Widening and Reconstruction 2
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>		na na
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
<ul> <li>a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?</li> <li>b. With the proposed project, is there predicted to be a substantial</li> </ul>	x Yes	No
design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)? c. With the proposed project, are design year noise levels predicted to	Yes	x No
be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.		
1. Impacted receptor units		_
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		2 100%
c. Is the percentage 50 or greater?	x Yes	No
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No

<ol> <li>Community Desires Related to the Barrier         <ul> <li>a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ul> </li> </ol>	TBD at a later date	No
<ul> <li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation <ul> <li>a. Area (SF) of the proposed noise wall</li> <li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)</li> </ul> </li> </ul>	8532	
c. $SF/BR = 2a/2b$	4266	
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	Yes	x No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
<ul> <li>a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?</li> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns"</li> </ul>	Yes	No
evaluation? c. Does the noise wall provide insertion losses of greater than 7 dB(A)	Yes	No
<ul> <li>while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li> <li>d. Does the noise wall reduce future exterior levels to the low-60-dacibal range (60, 62) for Catagory B and C recentors and the upper 60.</li> </ul>	Yes	No
<ul><li>decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li><li>e. Does the noise wall reduce design year noise levels back to existing</li></ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	X	Yes		No
Is the Noise Wall REASONABLE?		Yes	Х	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA19
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
	Widening and Reconstruction 0
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>	na		
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No	
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.			
<ul> <li>a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?</li> <li>b. With the proposed project, is there predicted to be a substantial</li> </ul>	Yes	x No	
design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)? c. With the proposed project, are design year noise levels predicted to	Yes	x No	
be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No	
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.			
1. Impacted receptor units			
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		0 0%	
c. Is the percentage 50 or greater?	Yes	x No	
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No	
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No	
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No	
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No	
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No	
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No	

<ol> <li>Community Desires Related to the Barrier         <ol> <li>Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ol> </li> </ol>	TBD at a later date	Νο
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)</li></ul>	na	
c. $SF/BR = 2a/2b$	na	No
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	Yes	No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
<ul> <li>a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?</li> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the</li> </ul>	Yes	No
MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? c. Does the noise wall provide insertion losses of greater than 7 dB(A)	Yes	No
<ul><li>while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li><li>d. Does the noise wall reduce future exterior levels to the low-60-</li></ul>	Yes	No
decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is		
required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise		
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior_noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision			
Is the Noise Wall WARRANTED?	Yes	x No	
Is the Noise Wall FEASIBLE?	Yes	x No	
Is the Noise Wall REASONABLE?	Yes	x No	
Additional Reasons for Decision:			

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/10/2	2020		
Project Name	PTC 312 - 319			
County	Chester			
SR, Section	I-76, M.P. 1	I-76, M.P. 312 - 319		
Community Name and/or NSA #	NSA	.20		
Noise Wall Identification (i.e., Wall 1)				
General				
1. Type of project (new location, reconstruction, etc.):	Widening and R	Reconstruct	ion	
2. Total number of impacted receptor units in community				
Category A units impacted				
Category B units impacted	15	i		
Category C units impacted				
Category D units impacted (if interior analysis required)				
Category E units impacted				
Warranted				
1. Community Documentation				
a. Date community was permitted (for new developments or				
developments planned for or under construction)	na	L		
b. Date of approval for the Categorical Exclusion (CE), Record of				
Decision (ROD), or Finding of No Significant Impact (FONSI):	na	L		
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to				
Warranted Item 2. If no, consideration of noise abatement is not				
warranted. Proceed to "Decision" block and answer "no" to warranted				
question. As the reason for this decision, state that "Community was				
permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as</i>	Vec		No	
appropriate ."	Yes		No	
2. Criteria requiring consideration of noise abatement (note N/A if category				
is not impacted or present or analysis not required). A "yes" answer to any				
of the following three questions requires the consideration of noise				
abatement.				
a. With the proposed project, are design year noise levels predicted to				
approach or exceed the NAC level(s) in Table 1?	x Yes		No	
b. With the proposed project, is there predicted to be a substantial design			-	
year noise level increase of 10 dB(A) or more at Activity Category A, B,				
C, D, or E receptor(s)?	Yes	Х	No	
c. With the proposed project, are design year noise levels predicted to be				
less than existing noise levels, but still approach or exceed the NAC	V.	<del></del>	NI-	
levels in Table 1 for the relevant Activity Category?	Yes	Х	No	

Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.

- 1. Impacted receptor units
  - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

#### Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."

2. Square Footage Per Benefited Receptor (SF/BR) Evaluation

a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least

7 dB(A) for at least one benefited receptor?

		15	
		100%	
Х	Yes		No

TBD	Yes	TBD No
		20329
		39
		521
Х	Yes	No

x Yes No

b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?

c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?

d. Does the noise wall reduce future exterior levels to the low-60decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?

e. Does the noise wall reduce design year noise levels back to existing levels?

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall.

a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point?

b. While conforming to the MaxSF/BR criteria and justified by a "point of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum

	Х	Yes	No
f	X	Yes	No
)	X	Yes	No
	Х	Yes	 No

Х	Yes	N	١o
х	Yes	Ν	١o

Decision			
Is the Noise Wall WARRANTED?	Х	Yes	No
Is the Noise Wall FEASIBLE?	X	Yes	No
Is the Noise Wall REASONABLE?	х	Yes	No

Additional Reasons for Decision:

PennDOT, Engineering District Environmental Manager

Qualified Professional Performing the Analysis (name, title, and company name)

Date

Date	5/10/	2020	
Project Name	PTC 31	2 - 319	
County	Che	ster	
SR, Section	I-76, M.P.	312 - 319	
Community Name and/or NSA #	NSA	A21	
Noise Wall Identification (i.e., Wall 1)			
General			
1. Type of project (new location, reconstruction, etc.):	Widening and	Reconstruct	ion
2. Total number of impacted receptor units in community			
Category A units impacted			
Category B units impacted	2	1	
Category C units impacted			
Category D units impacted (if interior analysis required)			
Category E units impacted			
Warranted			
1. Community Documentation			
a. Date community was permitted (for new developments or			
developments planned for or under construction)	n	а	
b. Date of approval for the Categorical Exclusion (CE), Record of			
Decision (ROD), or Finding of No Significant Impact (FONSI):	n	а	
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to			
Warranted Item 2. If no, consideration of noise abatement is not			
warranted. Proceed to "Decision" block and answer "no" to warranted			
question. As the reason for this decision, state that "Community was			
permitted after the date of approval of CE, ROD, or FONSI, as	Maria		N
appropriate ."	Yes		No
2. Critaria requiring consideration of noise shotement (note N/A if actorsmy			
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any			
of the following three questions requires the consideration of noise			
abatement.			
a. With the proposed project, are design year noise levels predicted to			
approach or exceed the NAC level(s) in Table 1?	x Yes		No
b. With the proposed project, is there predicted to be a substantial design			
year noise level increase of 10 dB(A) or more at Activity Category A, B,	,		
C, D, or E receptor(s)?	Yes	Х	No
c. With the proposed project, are design year noise levels predicted to be	-		
less than existing noise levels, but still approach or exceed the NAC			
levels in Table 1 for the relevant Activity Category?	Yes	Х	No

Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.

- 1. Impacted receptor units
  - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

#### Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."

2. Square Footage Per Benefited Receptor (SF/BR) Evaluation

a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least

7 dB(A) for at least one benefited receptor?

		21	
		95%	
Х	Yes		No
X	Yes		No
Х	Yes		No
X	Yes		No
Х	Yes		No
Х	Yes		No
х	Yes		No

TBD	Yes	TBD No
		57927
		22
		2633
	Yes	x No

x Yes

No

b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?

c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?

d. Does the noise wall reduce future exterior levels to the low-60decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?

e. Does the noise wall reduce design year noise levels back to existing levels?

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall.

a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point?

b. While conforming to the MaxSF/BR criteria and justified by a "point of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum

		Yes	Х	No
f		Yes	X	No
)	x	Yes		No
	X	Yes		No

x	Yes	-		No
	Yes	_	X	No

Decision				
Is the Noise Wall WARRANTED?	Х	Yes		No
Is the Noise Wall FEASIBLE?	х	Yes		No
Is the Noise Wall REASONABLE?		Yes	x	No

Additional Reasons for Decision:

PennDOT, Engineering District Environmental Manager

Qualified Professional Performing the Analysis (name, title, and company name)

Date

5/15/2014
PTC 312 - 319
Chester
I-76, M.P. 312 - 319
NSA22
Widening and Reconstruction
0

### Warranted

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>		na
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
<ul> <li>a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?</li> <li>b. With the proposed project, is there predicted to be a substantial</li> </ul>	Yes	x No
design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)? c. With the proposed project, are design year noise levels predicted to	Yes	x No
be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.		
1. Impacted receptor units		
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		0
c. Is the percentage 50 or greater?	Yes	x No
2. Can the noise wall be designed and physically constructed at the proposed location?	^x Yes	No
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No

#### Reasonableness

<ol> <li>Community Desires Related to the Barrier         <ol> <li>Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ol> </li> </ol>	TBD at a later date	Νο
<ul> <li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li> <li>a. Area (SF) of the proposed noise wall</li> <li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)</li> </ul>	na	
c. $SF/BR = 2a/2b$	na	No
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	Yes	No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
<ul> <li>a. Does the noise wall reduce design year exterior noise levels by at least 7 dB(A) for at least one benefited receptor?</li> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the</li> </ul>	Yes	No
MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? c. Does the noise wall provide insertion losses of greater than 7 dB(A)	Yes	No
<ul><li>while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li><li>d. Does the noise wall reduce future exterior levels to the low-60-</li></ul>	Yes	No
decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is		
required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise		
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior_noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision		
Is the Noise Wall WARRANTED?	Yes	x No
Is the Noise Wall FEASIBLE?	Yes	x No
Is the Noise Wall REASONABLE?	Yes	x No
Additional Reasons for Decision:		

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA23
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
	Widening and Reconstruction 0
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	

### Warranted

<ol> <li>Community Documentation         <ol> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ol> </li> </ol>		na na
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
<ul> <li>a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?</li> <li>b. With the proposed project, is there predicted to be a substantial</li> </ul>	Yes	x No
<ul><li>design year noise level increase of 10 dB(A) or more at Activity</li><li>Category A, B, C, D, or E receptor(s)?</li><li>c. With the proposed project, are design year noise levels predicted to</li></ul>	Yes	x No
be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.		
1. Impacted receptor units		
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		0 100%
c. Is the percentage 50 or greater?	x Yes	No
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No

#### Reasonableness

<ol> <li>Community Desires Related to the Barrier         <ol> <li>Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ol> </li> </ol>	TBD at a later date	Νο
<ul> <li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li> <li>a. Area (SF) of the proposed noise wall</li> <li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)</li> </ul>	na	
c. $SF/BR = 2a/2b$	na	No
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	Yes	No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
<ul> <li>a. Does the noise wall reduce design year exterior noise levels by at least 7 dB(A) for at least one benefited receptor?</li> <li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the</li> </ul>	Yes	No
MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? c. Does the noise wall provide insertion losses of greater than 7 dB(A)	Yes	No
<ul><li>while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li><li>d. Does the noise wall reduce future exterior levels to the low-60-</li></ul>	Yes	No
decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is		
required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise		
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior_noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision		
Is the Noise Wall WARRANTED?	Yes	x No
Is the Noise Wall FEASIBLE?	Yes	x No
Is the Noise Wall REASONABLE?	Yes	x No
Additional Reasons for Decision:		

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA24
Noise Wall Identification (i.e., Wall 1)	
General <ol> <li>Type of project (new location, reconstruction, etc.):</li> </ol>	Widening and Reconstruction
2. Total number of impacted receptor units in community	
	1
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	1
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	1
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	1

### Warranted

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ul> </li> </ol>	na na		
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No	
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.			
a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?	x Yes	No	
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	x No	
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No	
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.			
1. Impacted receptor units			
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		1 100%	
c. Is the percentage 50 or greater?	x Yes	No	
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No	
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No	
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No	
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No	
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No	
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No	

#### Reasonableness

<ol> <li>Community Desires Related to the Barrier         <ul> <li>a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ul> </li> </ol>	TBD at a later date	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	4608	3
more insertion loss)	4608	2
<ul><li>c. SF/BR = 2a/2b</li><li>d. Is 2c less than or equal to the MaxSF/BR value of 2000?</li></ul>	Yes	x No
d. 15 2e less than of equal to the MaxS17DR value of 2000:		
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?	Yes	No
<ul><li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li><li>c. Does the noise wall provide insertion losses of greater than 7 dB(A)</li></ul>	Yes	No
while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	No
<ul> <li>d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>e. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	Х	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA25
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
<ol> <li>Type of project (new location, reconstruction, etc.):</li> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction 27
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	

#### Warranted

<ol> <li>Community Documentation         <ul> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> </ul> </li> </ol>		9/3/2013	
b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):			_
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No	
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.			
a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?	x Yes	No	
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	x No	
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No	
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.			
<ol> <li>Impacted receptor units         <ul> <li>Total number of impacted receptor units:</li> </ul> </li> </ol>		27	
b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:		15%	-
<ul><li>c. Is the percentage 50 or greater?</li><li>2. Can the noise wall be designed and physically constructed at the</li></ul>	x Yes	No	
proposed location?	x Yes	No	
<ul><li>3. Can the noise wall be constructed without causing a safety problem?</li><li>4. Can the noise wall be constructed without restricting access to vehicular</li></ul>	x Yes	No	
or pedestrian travel?	x Yes	No	
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	x Yes	No	
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No	
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No	

#### Reasonableness

<ol> <li>Community Desires Related to the Barrier         <ul> <li>a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise</li> </ul> </li> </ol>	TBD at a later date	
wall."	Yes	No
<ul> <li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li> <li>a. Area (SF) of the proposed noise wall</li> <li>b. Number of benefited recenter write (conversity receiving 5, dB(A)) or</li> </ul>	539	72
b. Number of benefited receptor units (any unit receiving 5 $dB(A)$ or more insertion loss)	4	
c. $SF/BR = 2a/2b$	1349	93
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	Yes	x No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?	Yes	No
b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns"		
evaluation?	Yes	No
<ul> <li>c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li> <li>d. Does the noise wall reduce future exterior levels to the low-60-</li> </ul>	Yes	No
<ul> <li>d. Does the holse wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>e. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is		
required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	<b>n</b> 0	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision		
Is the Noise Wall WARRANTED?	x Yes	No
Is the Noise Wall FEASIBLE?	x Yes	No
Is the Noise Wall REASONABLE?	Yes	x No
Additional Reasons for Decision:		

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	5/15/2014
Project Name	PTC 312 - 319
County	Chester
SR, Section	I-76, M.P. 312 - 319
Community Name and/or NSA #	NSA26
Noise Wall Identification (i.e., Wall 1)	
General	
1. Type of project (new location, reconstruction, etc.):	Widening and Reconstruction
2. Total number of impacted receptor units in community	Widening and Reconstruction
	Widening and Reconstruction
<ol> <li>Total number of impacted receptor units in community Category A units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted</li> </ol>	
<ol> <li>Total number of impacted receptor units in community Category A units impacted Category B units impacted Category C units impacted</li> </ol>	

### Warranted

<ol> <li>Community Documentation         <ol> <li>Date community was permitted (for new developments or developments planned for or under construction)</li> <li>Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):</li> </ol> </li> </ol>		na na	
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	Yes	No	
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.			
<ul> <li>a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?</li> <li>b. With the proposed project, is there predicted to be a substantial</li> </ul>	x Yes	No	
design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	Yes	x No	
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	x No	
Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.			
1. Impacted receptor units		_	
<ul> <li>a. Total number of impacted receptor units:</li> <li>b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:</li> </ul>		5 100%	
c. Is the percentage 50 or greater?	Yes	x No	
2. Can the noise wall be designed and physically constructed at the proposed location?	x Yes	No	
3. Can the noise wall be constructed without causing a safety problem?	x Yes	No	
4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?	x Yes	No	
5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?	^x Yes	No	
6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?	x Yes	No	
7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?	x Yes	No	

#### Reasonableness

<ol> <li>Community Desires Related to the Barrier         <ul> <li>a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."</li> </ul> </li> </ol>	TBD at a later date	No
<ul><li>2. Square Footage Per Benefited Receptor (SF/BR) Evaluation</li><li>a. Area (SF) of the proposed noise wall</li><li>b. Number of benefited receptor units (any unit receiving 5 dB(A) or</li></ul>	4000	0
more insertion loss)	5	
c. $SF/BR = 2a/2b$	8000	
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	Yes	x No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.	na	
a. Does the noise wall reduce design year exterior noise levels by at	N.	
<ul><li>least 7 dB(A) for at least one benefited receptor?</li><li>b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns"</li></ul>	Yes	No
evaluation?	Yes	No
<ul> <li>c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?</li> <li>d. Does the noise wall reduce future exterior levels to the low-60-</li> </ul>	Yes	No
<ul> <li>decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?</li> <li>e. Does the noise wall reduce design year noise levels back to existing</li> </ul>	Yes	No
levels?	Yes	No

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.		
Question 4b represents a desirable goal that need not be met for a noise	20	
wall to be determined reasonable. However, this goal must be addressed	na	
and should be considered in the determination of the recommended noise		
wall.		
a. Does noise wall reduce design year interior noise levels by at least 7		
dB(A) for the facility's analysis point?	Yes	No
b. While conforming to the MaxSF/BR criteria and justified by a "point		
of diminishing returns' evaluation, does the noise wall provide an		
interior insertion loss above the 7 dB(A) minimum	Yes	No

Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	X	Yes		No
Is the Noise Wall REASONABLE?		Yes	Х	No
Additional Reasons for Decision:				

PennDOT, Engineering District Environmental Manager

Date

Qualified Professional Performing the Analysis (name, title, and company name)

This page intentionally left blan