DraftPreliminary Design -- Traffic Noise Report

Pennsylvania Turnpike Commission Milepost 28 to Milepost 31 Roadway and Bridge Reconstruction Allegheny and Butler Counties Project Number T-028.45T001-2

Prepared for:

Prepared by:

Table of Contents

	Executive Sun	nmary	1
1.	Introduction		3
2.	Background a	and History	3
3.	Noise Study A	reas	4
4.	Purpose		6
5.	Regulations a	nd Guidance	6
6.	Methodology		6
7.	TNM Model V	Validation	9
8.	Noise Modelin	ng	10
9.	Traffic Noise		21
		Warrendale Toll Plaza	22
	vvitno	ut Warrendale Toll Plaza	26
10.	Construction	Noise	32
11.		vith Warrendale Toll Plaza vithout Warrendale Toll Plaza	33 35
12.	Public Involve	ement	37
	Figures		38
	Appendix 1	Long-term Noise Monitoring Data	
	Appendix 2	Short-term Noise Monitoring Data	
	Appendix 3	Traffic Data	
	Appendix 4	TNM Validation Model	
	Appendix 5	TNM Existing Conditions Model	
	Appendix 6	TNM No-Build Model	
	Appendix 7	TNM Build with Warrendale Toll Plaza Model	
	Appendix 8	TNM Build without Warrendale Toll Plaza Model	
	Appendix 9	Noise Barrier Summary Tables	
	Appendix 10	Noise Barrier Worksheets	

Executive Summary

The Pennsylvania Turnpike Commission is proposing the reconstruction of a portion of the Pennsylvania Turnpike mainline between the Cranberry Interchange (Exit 28) and the Warrendale Toll Plaza. This project will not use Federal funding. This Preliminary Design Noise Analysis Report presents the results of a traffic noise analysis conducted using the current project plans and the procedures contained in PennDOT *Publication No. 24* (Project Level Highway Traffic Noise Handbook) issued December 12, 2013.

24-hour noise monitoring was conducted at two sites along the Turnpike within the project area. The 24-hour noise study indicated that Turnpike traffic noise levels were almost exactly the same from 7:00 AM to 7:00 PM. Therefore, it was determined that short-term traffic noise monitoring conducted at any time during the day would capture peak noise hour conditions. Short-term noise monitoring was conducted at 20 sites on June 26, 2014.

FHWA's Traffic Noise Model (Version 2.5) computer program was used to predict the Existing and Design Year (2039) noise levels generated by traffic on the reconstructed Turnpike mainline, I-79, US 19, multiple ramps, and the local roads associated with the no-build and build alternatives. Noise impacts were identified and noise mitigation, including noise barriers, were evaluated according the procedures contained in PennDOT *Publication No. 24*.

Two build alternatives are currently under consideration for this project. Both include the widening of the Turnpike mainline and other improvements. The key difference between the two alternatives is the removal of the Warrendale Toll Plaza and the pavement surrounding the plaza will result in higher traffic speeds, different future traffic noise levels, and the potential for additional traffic noise impacts.

The noise analysis results are summarized for the five Noise Study Areas (NSA) as follows:

NSA A

NSA A includes the commercial and light industrial sites along Commonwealth Drive, south of the Turnpike. No traffic noise impacts were predicted and no noise mitigation was required with either alternative.

NSA B

This NSA includes the highway-oriented commercial and retail development along US 19, north of the Turnpike. No traffic noise impacts were predicted and no noise mitigation was required with either alternative.

NSA C

This NSA includes the commercial and light industrial sites along Commonwealth Drive, near Thorn Hill Road, south of the Turnpike. No traffic noise impacts were predicted and no noise mitigation was required with either alternative.

NSA D

This NSA includes the residential area along Northgate Drive, south of the Turnpike. NSA D includes a new residential development (under construction in 2015) at the western end of Northgate Drive along with office buildings, restaurants, and other commercial sites west of Mt. Pleasant Road. East of Mt. Pleasant Road, NSA D is primarily residential. In NSA D, some Year 2039 noise levels were considered an impact per PennDOT *Publication No. 24* with both alternatives.

The construction of a noise barrier for the new residential development at the western end of Northgate Drive is warranted with either alternative. However, because no noise barrier along the Turnpike could provide a substantial reduction (>5 dBA) in noise at any site in the new residential development, due to the noise generated by traffic on I-79, noise barriers along the Turnpike are not feasible and not recommended in this portion of NSA D with either alternative.

Also in NSA D, the construction of a noise barrier for the existing residences east of Mt. Pleasant Road can be considered warranted and feasible. However, because the square footage per benefited receiver exceeds 2,000 square feet, a noise barrier is not reasonable and is not recommended if the Warrendale Toll Plaza remains in place. PennDOT *Publication No. 24* states that noise barriers with a maximum square footage per benefited greater than 2,000 are not considered reasonable.

If the Warrendale Toll Plaza is removed, the construction of a 689' long, 12-16' high noise barrier along the eastbound Turnpike mainline for the existing residences east of Mt. Pleasant Road can be considered warranted, feasible, and reasonable given that the barrier meets the 7dB Insertion Loss Design Goal, noise levels at 100% of the impacted receivers will be reduced to the low-60-decibel range, and the square footage per benefited receiver is less than 2,000 square feet. Therefore, the construction of Barrier D -- East is recommended as part of the Build without Warrendale Toll Plaza alternative.

NSA E

This NSA includes the existing and planned hilltop residential areas north of the Turnpike. The western portions of NSA E overlook I-79 and the eastern portions overlook the Turnpike and the Warrendale Toll Plaza. In NSA E, some Year 2039 noise levels were considered an impact per PennDOT *Publication No. 24* with both alternatives.

The construction of noise barriers for the impacted receiver sites in the western portions of NSA E overlooking I-79 can be considered warranted. Because no noise barriers along the Turnpike could provide a substantial reduction (>5 dBA) in noise at any site in the western portions of NSA E, noise barriers are not feasible and not recommended in this portion of NSA E with either alternative.

In the alternative in which the Warrendale Toll Plaza is removed, additional noise traffic impacts were predicted in the neighborhood just west of Mt. Pleasant Road and a noise barrier was warranted and feasible. However, because the square footage per benefited receiver exceeds 2,000 square feet, the noise barrier is not reasonable and is not recommended. PennDOT *Publication No. 24* states that noise barriers with a maximum square footage per benefited greater than 2,000 are not considered reasonable.

1. Introduction

The Pennsylvania Turnpike Commission (PTC) is proposing the reconstruction of a portion of the Pennsylvania Turnpike (I-76) from Milepost 28 to Milepost 31, located in Marshall Township, Allegheny County and Cranberry Township, Butler County, Pennsylvania (See Figure 1). More generally, this project involves the existing Turnpike mainline between the Cranberry Interchange (Exit 28 connecting to US 19 and I-79) and the Warrendale Toll Plaza (See Figure 2). This project will not use Federal funding.

This *Draft* Preliminary Design Noise Analysis Report presents the results of a traffic noise analysis using the current project plans and the procedures contained in PennDOT *Publication No. 24* (Project Level Highway Traffic Noise Handbook) issued December 12, 2013.

2. Background and History

The project area includes the Turnpike mainline, the I-79 mainline, and the US 19 highway oriented commercial corridor. The project area also includes the Cranberry Interchange ramps to/from the Turnpike to US 19 and I-79 and the acceleration/deceleration lanes west of the Warrendale Toll Plaza. Within the project area, the Turnpike is crossed by Thorn Hill Road and crosses over US 19 and Mt. Pleasant Road.

The project will involve:

- widening the Turnpike mainline from four travel lanes to six travel lanes,
- widening the Turnpike median from 10 feet to 26 feet,
- replacement of the Thorn Hill Road bridge over the Turnpike,
- replacement of the bridge carrying the Turnpike over US 19,
- shifting the Turnpike mainline to the north near US 19, and
- modifying/replacing culverts over various streams to accommodate the widened roadway.

In the early 2000s a noise analysis of the Warrendale Toll Plaza was conducted and noise barriers (walls) were built east of Mt. Pleasant Road. This study includes the western portion of the area protected by those existing noise barriers.

Two build alternatives are currently proposed for this project. Both include the widening of the Turnpike mainline and other improvements as stated above. The key difference between the two alternatives is the removal of the Warrendale Toll Plaza in NSA D and NSA E. This is important because the removal of the Warrendale Toll Plaza and the pavement surrounding the plaza will produce higher traffic speeds where the toll plaza previously stood. This results in different future traffic noise levels and the potential for additional traffic noise impacts. Both the Build with the Warrendale Toll Plaza alternative and the Build without the Warrendale Toll Plaza alternative were analyzed as part of this study.

3. Noise Study Areas

The project area has been divided into five Noise Study Areas based upon existing land use patterns and topography (See Figure 3).

NSA A

This NSA includes the commercial and light industrial sites along Commonwealth Drive, south of the Turnpike. In 2014 construction of only one commercial building had been completed. The noise sensitive land use in NSA A was an office building. This facility did not have a noise sensitive outdoor activity area.

NSA B

This NSA includes the highway oriented commercial and retail development along US 19, north of the Turnpike. The noise sensitive land uses in NSA B are hotels, offices, and restaurants. With the exception of a small picnic area at the Comfort Inn, none of the existing facilities have noise sensitive outdoor activity areas.

NSA C

This NSA includes the commercial and light industrial sites along Commonwealth Drive near Thorn Hill Road, south of the Turnpike. In 2014 construction of most commercial buildings had been completed. The noise sensitive land uses in NSA C are offices. None of the existing facilities have noise sensitive outdoor activity areas.

NSA D

This NSA includes the residential area along Northgate Drive, south of the Turnpike. NSA D also includes a new residential development under construction in 2014 and 2015 at the western end of Northgate Drive and office buildings, restaurants, and other commercial sites west of Mt. Pleasant Road, NSA D is primarily residential.

NSA D also includes Warrendale Park south of the existing Warrendale Toll Plaza noise wall.

NSA E

This NSA includes the existing and planned hilltop residential areas north of the Turnpike. The western portions of NSA E overlook I-79 and the eastern portions overlook the Turnpike and the Warrendale Toll Plaza.

NSA E also includes the Venango Trails development (off Freeport Road) and Venango Trails Estates (off Mt. Pleasant Road). Both of these residential areas were under development in 2014 and 2015.

(See: www.venangotrails.com)

4. Purpose

The purpose of this Preliminary Design Traffic Noise Report is to document the existing noise levels and noise sources in the project area, compare the predicted future noise levels associated with the no-build alternative and the two build alternatives, identify any future noise impacts, and evaluate the possible mitigation of identified noise impacts.

5. Regulations and Guidance

ms consultants, inc. conducted traffic noise analyses and prepared this report according to the procedures contained in PennDOT *Publication No. 24* (Project Level Highway Traffic Noise Handbook) issued December 12, 2013 and the regulations issued by the Federal Highway Administration (FHWA) in 23 CFR 772.

6. Methodology

Noise Descriptors

Noise levels are described as hourly A-weighted equivalent sound level in decibels, or dBA Leq(h). The decibel (dB) is a measure used to express the relative measure of a sound in comparison with a standard reference level. At the threshold of pain, the sound pressure is one million times greater than the sound pressure at the threshold of hearing. The decibel scale is used to logarithmically compress this large range of numeric values. By using the decibel scale, the range of sounds can be expressed as 0 to 120 dB rather than 1 to 1,000,000. In general, the average person cannot detect an increase or decrease in noise (sound pressure) level of less than 3 dBA. A change in noise level of 5 dBA is readily perceptible by most people. An increase or decrease in noise level of 10 dBA is perceived as a doubling or halving of the noise level.

Sound frequency is expressed as cycles per second or Hertz (Hz). The human ear can detect a wide range of frequencies from 20 to 20,000 Hz, but is most sensitive to sounds over a frequency range of 200 to 5,000 Hz. The human ear does not respond in a uniform manner to different frequency sounds. A sound pressure level of 70 dB will be perceived as much louder at 1,000 Hz than at 100 Hz. To account for this, various weighting methods have been developed to reflect human sensitivity to noise. The purpose of a weighting method is to de-emphasize the frequency ranges in which the human ear is less sensitive. The most commonly used measure of noise level is the A-weighted sound level (dBA). The dBA sound level is widely used for transportation-related noise measurements and specifications for community noise ordinances and standards. The dBA has been shown to be highly correlated to human response to noise.

In addition to noise fluctuating in frequency, environmental noise will fluctuate in intensity from moment to moment. Over a period of time there will be quiet moments and peak levels resulting from noisy, identifiable sources (trucks, aircraft, etc.). Because of these fluctuations, it is common practice to average these noise level fluctuations over a specified period of time. The equivalent sound level over a given period of interest, Leq, is equal to the equivalent steady-state noise level which, in a stated time period, would contain the same acoustical energy as the time-varying noise levels that actually occurred during the same time period. The hourly value of Leq, based upon the peak-hour percentage of the annual average daily traffic, is referred to as Leq(h). Surveys have shown that Leq properly predicts annoyance, and this descriptor is commonly used for noise measurement, prediction, and impact assessment.

Noise Monitoring

An Ambient Noise Monitoring work plan was prepared by **ms consultants**, **inc.** and approved by the PTC and the project's design manager, prior to any traffic noise monitoring activity on private property. The work plan included a discussion of noise monitoring procedures, a map of short-term (15-minute) and long-term (24-hour) monitoring locations, and an explanation of site access procedures.

A Metrosonics db-3100 sound analyzer (dosimeter) was utilized to obtain existing traffic noise levels. Standardized field data sheets for existing condition documentation were also completed at every ambient noise monitoring site.

24-hour noise monitoring was conducted at two sites along the Turnpike in NSA B and NSA D (See Figure 3). 24-hour noise monitoring was conducted from 10:00 AM May 29, 2014 to 10:00 AM May 30, 2014. Weather conditions at the site were noted at the beginning and end of the 24-hour monitoring period. Additionally, weather conditions obtained from Personal Weather Station MC3603 in Cranberry Township (2 miles east of Exit 28) were also reviewed to confirm that acceptable conditions existed throughout the 24-hour study (See Appendix 1).

The 24-hour noise study indicated that Turnpike (I-76) traffic noise levels were almost exactly the same from 7:00 AM to 7:00 PM. Therefore, it was determined that short-term traffic noise monitoring conducted at any time during the day would capture peak noise hour conditions. Short-term ambient noise monitoring was conducted on June 26, 2014, during weather conditions suitable for outdoor activity. Each site was monitored for a period of at least 15 minutes. Weather conditions and noise sources were noted at each site (See Appendix 2).

During short-term traffic noise monitoring, traffic counts on the Turnpike, I-79 mainline, US 19, and Northgate Drive were conducted using video tape and manual methods. Observed travel speed was determined by radar gun and by driving the Turnpike and I-79.

Noise Level Prediction

FHWA's Traffic Noise Model (Version 2.5) computer program was used to predict the Existing and Design Year (2039) noise levels generated by traffic on the reconstructed Turnpike mainline, I-79, US 19, multiple ramps, and the local roads associated with the no-build and build alternatives. Roadway location and elevation data was determined from project plans, profiles, and cross sections available in June 2015. Receiver locations and elevations were developed from project area base maps and approved subdivision plans.

The existing conditions, Design Year no-build, and Design Year build TNM models used traffic data that was developed from traffic forecasts prepared specifically for the project (See Appendix 3). Observed traffic was used only for TNM model validation. The existing conditions analysis involved 2013 traffic traveling at the observed speeds. The Design Year analysis for the With Warrendale Toll Plaza alternative involved 2039 traffic traveling at the observed speeds. However, traffic using the booth lanes was decelerated to a stop and accelerated to the observed speed (65 mph - Turnpike mainline) and traffic using EZ-Pass lanes was set to 55 mph. To account for the free-flow mainline conditions in the Without Warrendale Toll Plaza alternative, the Design Year analysis involved 2039 Turnpike mainline traffic traveling at design speed (70 mph). TNM's Traffic Control Devices (a software function) was used to account for acceleration at the US 19 signals, the Cranberry Interchange (Exit 28) ramps, and the Warrendale Toll Plaza.

Undeveloped Lands

PennDOT *Publication No. 24* explains that in order to assist local planning officials, the distance to impact thresholds for the various FHWA land use activity categories should be determined in undeveloped areas. Because approved development plans for the undeveloped areas in NSA E have been included in this analysis, there are no undeveloped lands in the MP 28-31 project area. The areas not included in the development plans are steep hill sides, which will not be developed in the foreseeable future.

Noise Impact Assessment

According to PennDOT *Publication No. 24*, a project is defined as having a traffic noise impact if either of the following conditions occur:

- 1. Predicted noise levels approach or exceed the FHWA Noise Abatement Criteria (NAC) as presented in Table 1.
- 2. Predicted noise levels are a substantial increase over the existing noise levels. According to PennDOT *Publication No. 24*, a substantial increase occurs where the future noise level increases 10 dB(A) or more above the existing noise level.

Н	Table 1 Noise Abatement Criteria (23 CFR 772) Hourly Weighted Sound Levels dB(A) For Various Land Use Activity Categories								
Land Use Activity Category	Leq(h)	Description of Land Use Activity Category							
A	57 (exterior)	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.							
B*	67 (exterior)	Residential.							
C*	67 (exterior)	Active sports areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings.							
D	52 (interior)	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios.							
E*	72 (exterior)	Hotels, motels, offices, restaurants/bars, and other developed lands, properties, or activities not included in A, B, or C.							
F		Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, ship yards, utilities, (water resources, water treatment, electrical), and warehousing.							
G		Undeveloped lands that are not permitted.							
*	Includes unde	eveloped lands permitted for this activity category.							

Because traffic noise impacts were identified with the build alternatives, the feasibility (acoustical performance) and reasonability (effectiveness) of mitigation via structural noise barriers (walls)

were evaluated using TNM 2.5. Noise mitigation via traffic management measures, horizontal and vertical alignment modifications, buffer zone creation, or noise insulation of Activity Category D structures was also considered, if appropriate. Note: There were no substantial increase impacts related to the MP 28-31 reconstruction project.

7. TNM Model Validation

To verify the accuracy of TNM 2.5, existing traffic noise levels were predicted for the monitoring sites and compared to the on-site monitoring results. This was accomplished by developing a TNM model of the existing roadways including the traffic volume, average vehicular speed, and percentage of trucks observed during the monitoring period. As

shown in Table 2, the difference in the two values was within +/- 3 dB(A) indicating the model was within the level of accuracy required by PennDOT *Publication No. 24* (See Appendix 4).

	Table 2 Model Validation Results dBA										
Location	Monitored Noise Level	Predicted Noise Level	Difference								
Site A-1	60	61	1								
Site A-2	58	57	-1								
Site B-1	75	75	0								
Site B-2	63	63	0								
Site B-3	70	69	-1								
Site B-4	64	65	1								
Site C-1	67	68	1								
Site C-2	61	60	-1								
Site D-1	62	65	3								
Site D-2	60	62	2								
Site D-3	62	65	3								
Site D-4	59	59	0								
Site D-5	55	57	2								
Site D-6	54	56	2								
Site E-1	64	65	1								
Site E-2	61	62	1								
Site E-5	58	59	1								
Site E-6	56	55	-1								
Site E-7	57	58	1								
Site E-8	55	55	0								

Noise monitoring sites are shown on Figure 3.

Sites E-3 and E-4 are planned sites that were not cleared and graded in May 2014.

8. Noise Modeling

Because TNM was predicting existing noise levels accurately, the validation model was expanded to predict existing peak-hour noise levels in each NSA. For this study, peak-hour was assumed to be the Design Hourly Volume (DHV) on the Turnpike and the existing PM peak-hour traffic on I-79 and other roadways. Appendix 5 contains the TNM output from the existing conditions model. This modeled existing noise level was later used as the existing noise level in future nobuild, build (with and without Toll Plaza), and barrier evaluation models.

TNM 2.5 was also used to predict Design Year (2039) traffic noise levels associated with the no-build and build alternative. Design Year traffic noise was predicted for a total of 285 receiver sites (See Figure 4 thru Figure 8). These modeling sites represent numerous residential sites, hotels, commercial sites, and the park adjacent to the Turnpike mainline, I-79, Exit 28 ramps, and the local roads associated with the MP 28-31 reconstruction project.

- TNM 2.5 output for the no-build alternative is presented in Appendix 6.
- TNM 2.5 output for the build With Toll Plaza alternative is in Appendix 7.
- TNM 2.5 output for the build Without Toll Plaza alternative is in Appendix 8.

NSA A

This NSA includes the commercial and light industrial sites along Commonwealth Drive, south of the Turnpike (See Figure 4). In 2014, construction of only one commercial building had been completed. The noise sensitive land use in NSA A was an office building. As shown in Table 1, office buildings are considered Activity Category E.

Because two project alternatives are being considered, NSA A was analyzed for scenarios in which the Toll Plaza remained and in which the Toll Plaza was removed. Because of the distance between this NSA and the Warrendale Toll Plaza, the predicted noise levels for both alternatives are the same. The predicted noise levels for both alternatives are included in the Build Alternatives - 2039 column in Table 3 below.

Table 3 NSA A Predicted Noise Levels dB(A)										
	NAC Activity		No-Build Alte	rnative - 2039	Build Alternatives - 2039					
Receiver	Category	Existing	Predicted	Increase	Predicted	Increase				
A-1	Е	61	63	2	62	1				

Numbers highlighted in **red** approach or exceed FHWA NAC for that activity category.

As shown in Table 3, Year 2039 no-build peak-hour noise level was 61 decibels. This no-build noise level does not approach or exceed FHWA NAC for Activity Category E land uses.

The Year 2039 build peak-hour noise level was 62 decibels. In NSA A, the Year 2039 build noise levels will not approach or exceed FHWA NAC. Also, Year 2039 noise levels do not increase 10 dB(A) or more above the existing noise level and are not considered a substantial increase. Therefore, no traffic noise impacts are predicted in NSA A with either alternative.

NSA B

This NSA includes the highway oriented commercial and retail development along US 19, north of the Turnpike (See Figure 5). The noise sensitive land uses in NSA B are hotels, offices, and restaurants. As shown in Table 1, hotels, offices, and restaurants are considered Activity Category E and the other commercial and retail development are considered Activity Category F.

Because two project alternatives are being considered, NSA B was analyzed for scenarios in which the Toll Plaza remained and in which the Toll Plaza was removed. Because of the distance between this NSA and the Warrendale Toll Plaza, the predicted noise levels for both alternatives are the same. The predicted noise levels for both alternatives are included in the Build Alternatives - 2039 column in Table 4 below.

Table 4 NSA B Predicted Noise Levels dB(A)											
	NAC Activity		No-Build Alter	rnative - 2039	Build Altern	Build Alternatives - 2039					
Receiver	Category	Existing	Predicted	Increase	Predicted	Increase					
B-1 (Hotel)	Е	69	70	1	71	2					
B-2 (Hotel)	E	73	74	1	76	3					
B-3 (Hotel)	E	71	72	1	74	3					
B-4 (Hotel)	E	65	66	1	67	2					
B-5	E	67	69	2	69	2					
B-6 (Daycare)	С	71	73	2	74	3					
B-7 (Car Dealer)	F	71	73	2	75	4					
B-8 (Hotel)	Е	65	67	2	66	1					
B-9 (Hotel)	E	66	68	2	68	2					
B-10	E	67	69	2	69	2					
B-1ii (Hotel)	Е	61	63	2	62	1					
B-1iii (Gas Station)	F	65	67	2	67	2					
B-2ii (Hotel)	Е	63	65	2	65	2					
B-2iii	E	64	65	1	65	1					
B-2iv	E	70	72	2	71	1					
B-3ii (Hotel)	Е	61	63	2	63	2					
B-3iii	Е	64	65	1	65	1					
B-3iv (Gas Station)	F	73	74	1	74	1					
B-4iiia	Е	62	63	1	64	2					
B-4iiib	E	63	65	2	65	2					
B-4iva	Е	70	71	1	71	1					
B-4ivb (Gas Station)	F	66	68	2	68	2					
B-5iia	Е	64	66	2	66	2					
B-5iib	Е	65	67	2	67	2					
B-5iic	Е	65	66	1	67	2					
B-5iva	Е	64	65	1	65	1					
B-5ivb	Е	64	66	2	66	2					
B-6ii	Е	66	67	1	67	1					

B-6iv	Е	63	65	2	65	2
B-7iv	E	64	65	1	65	1
B-8iv	E	67	70	3	68	1
B-9iv	Е	65	67	2	66	1
B-10iva (Hotel)	E	61	63	2	63	2
B-10ivb (Pool)	C	62	64	2	64	2

Numbers highlighted in **red** approach or exceed FHWA NAC for that activity category.

As shown in Table 4, Year 2039 no-build peak-hour noise levels ranged from 63 to 74 decibels in NSA B with the highest noise levels at first-row receivers near the Turnpike mainline. These no-build noise levels approach or exceed FHWA NAC for Activity Category C and E land uses.

Year 2039 build noise levels do not increase 10 dB(A) or more above the existing noise level and are not considered a substantial increase. Year 2039 build exterior peak-hour noise levels ranged from 62 to 76 decibels and will approach or exceed FHWA NAC. More specifically, at Receivers B-2, B-3, B-6, B-2iv, and B-4iva the build exterior peak-hour noise levels are predicted to exceed FHWA NAC. However, these sites do not have noise sensitive outdoor activity areas.

Because the buildings associated with Receivers B-2, B-3, and B-6 are of modern construction with double-pane windows and air-conditioning, according to FHWA Policy and Guidance, they can be assumed to have at least a 25 dB difference between exterior and interior levels. Therefore, the highest exterior noise level (76 dBA) equates to an interior noise level of 51 dBA, which is below the FHWA NAC for sensitive interior

uses of 52 dBA (See Table 1). Because the predicted interior traffic noise levels at Receivers B-2, B-3, and B-6 cannot be considered an impact, there are no traffic noise impacts predicted in NSA B with either alternative.

NSA C

This NSA includes the commercial and light industrial sites along Commonwealth Drive near Thorn Hill Road, south of the Turnpike (See Figure 6). In 2014, construction of most commercial buildings had been completed. The noise sensitive land uses in NSA C are offices. As shown in Table 1, offices are considered Activity Category E and industrial sites are Activity Category F.

Because two project alternatives are being considered, NSA C was analyzed for scenarios in which the Toll Plaza remained and in which the Toll Plaza was removed. Because of the distance between this NSA and the Warrendale Toll Plaza, the predicted noise levels for both alternatives are the same. The predicted noise levels for both alternatives are included in the Build Alternatives - 2039 column in Table 5 below.

Table 5 NSA C Predicted Noise Levels dB(A)											
	NAC Activity		No-Build Alte	rnative - 2039	Build Altern	Build Alternatives - 2039					
Receiver	Category	Existing	Predicted	Increase	Predicted	Increase					
C-1	Е	60	61	1	62	2					
C-2	Е	67	68	1	69	2					
C-3	E	67	68	1	69	2					
C-4	Е	63	65	2	64	1					
C-5	Е	63	65	2	65	2					
C-6	Е	64	66	2	64	0					
C-7 (Trucking)	F	60	62	2	62	2					
C-8	Е	61	62	1	62	1					
C-9	Е	60	62	2	62	2					
C-2ii	Е	58	60	2	60	2					
C-3ii	Е	57	59	2	60	3					
C-4ii	Е	58	60	2	61	3					
C-5iia	Е	58	60	2	60	2					
C-5iib	Е	56	58	2	58	2					
C-6iia	Е	57	58	1	59	2					
C-6iib	E	57	58	1	58	1					

Numbers highlighted in **red** approach or exceed FHWA NAC for that activity category.

As shown in Table 5, Year 2039 no-build peak-hour noise levels ranged from 58 to 68 decibels in NSA C with the highest noise levels at first-row receivers adjacent to the Turnpike.

In this NSA, Year 2039 build peak-hour noise levels ranged from 58 to 69 decibels. No sites approach or exceed FHWA NAC for Activity Category E land uses and Year 2039 noise levels do not increase 10 dB(A) or more above the existing noise level and are not considered a substantial increase. Therefore, no traffic noise impacts are predicted in NSA C with either alternative.

NSA D

This NSA includes the residential area along Northgate Drive, south of the Turnpike (See Figure 7). NSA D also includes a new residential development under construction in 2014 at the western end of Northgate Drive and office buildings, restaurants, and other commercial sites west of Mt. Pleasant Road. East of Mt. Pleasant Road, NSA D is primarily residential. As shown in Table 1, single and multi-family family homes are considered Activity Category B and buildings, restaurants, and other commercial sites are considered Activity Category E.

Because two project alternatives are being considered, NSA D was analyzed for scenarios with the Warrendale Toll Plaza and without the Warrendale Toll Plaza.

	Table 6 NSA D Predicted Noise Levels dB(A)												
	NAC Activity		No-I Alternati		Build Alt w/ Plaza			Build Alternative w/o Plaza- 2039					
Receiver	Category	Existing	Predicted	Increase	Predicted	Increase	Predicted	Increase					
D-1	В	67	69	2	69	2	69	2					
D-2	В	67	69	2	68	1	68	1					
D-3	В	67	69	2	68	1	68	1					
D-4	В	67	69	2	68	1	68	1					
D-5	В	66	68	2	67	1	67	1					
D-6 (Pool)	С	64	65	1	65	1	65	1					
D-7 (Community	С	63	65	2	64	1	64	1					
Bldg)	_												
D-8	В	64	65	1	64	0	65	1					
D-9	В	63	65	2	64	1	64	1					
D-10	В	63	65	2	63	0	63	0					
D-11	В	63	65	2	63	0	63	0					
D-12	В	62	64	2	62	0	63	0					
D-13	В	62	64	2	62	0	63	1					
D-14	В	62	64	2	62	0	63	1					
D-15	В	62	64	2	62	0	62	0					
D-16	В	62	64	2	62	0	63	1					
D-17	В	62	64	2	62	0	63	1					
D-18	В	60	62	2	62	2	62	2					
D-19	F	61	63	2	63	2	63	2					
D-20	C	60	61	1	62	2	62	2					
D-21	В	62	63	1	63	1	64	2					
D-22	Е	65	66	1	65	0	65	0					
D-23	E	65	67	2	65	0	66	1					
D-24	В	63	65	2	65	2	66	3					
D-25	В	63	65	2	65	2	66	3					
D-26	C	61	63	2	65	4	66	5					
D-27	F	62	63	1	67	5	67	5					
D-28	F	61	62	1	66	5	66	5					
D-30	В	59	61	2	61	2	62	3					
D-31	Е	59	60	1	61	2	62	3					
D-32	F	59	60	1	61	2	62	3					
D-33	F	70	71	1	71	1	72	2					

		T		Ī				
D-34	В	68	70	2	69	1	72	4
D-37	В	57	59	2	60	3	61	4
D-38	В	57	58	1	58	1	61	4
D-1ii	В	67	69	2	68	1	68	1
D-2ii	В	67	69	2	68	1	68	1
D-3ii	В	67	69	2	67	0	67	0
D-4ii	В	66	68	2	67	1	67	1
D-7ii	В	63	65	2	64	1	64	1
D-8ii	В	63	64	1	63	0	63	0
D-10ii	В	62	64	2	63	0	63	1
D-11ii	В	62	64	2	62	0	63	1
D-12ii	В	62	64	2	62	0	62	0
D-13ii	В	62	63	1	62	0	62	0
D-14ii	В	62	63	1	62	0	62	0
D-15ii	В	61	63	2	61	0	61	0
D-16ii	В	61	63	2	61	0	61	0
D-17ii	В	61	62	1	61	0	62	1
D-18ii	F	57	59	2	59	2	60	3
D-22ii	F	62	64	2	64	2	64	2
D-22iii	В	60	62	2	62	2	63	3
D-23ii	Е	63	64	1	64	1	65	2
D-25ii	Е	62	64	2	64	2	65	3
D-25iii	Е	60	62	2	62	2	63	3
D-26iia	Е	61	62	1	64	3	64	3
D-26iib	В	60	62	2	63	3	63	3
D-26iii	F	59	61	2	62	3	63	4
D-27iia	В	61	63	2	63	2	64	3
D-27iib	В	61	62	1	63	2	63	2
D-28iia	В	60	62	2	62	2	63	3
D-28iib	В	60	62	2	62	2	63	3
D-28iii	Е	57	59	2	59	2	60	3
D-29a	F	62	63	1	65	3	65	3
D-29b	Е	60	61	1	62	2	60	0
D-29iia	В	60	62	2	62	2	62	2
D-29iib	В	60	62	2	62	2	63	3
D-32iiia	Е	60	61	1	62	2	62	2
D-32iiib	F	60	62	2	63	3	63	3
D-33ii	В	63	65	2	66	3	67	4
D-33iii	В	61	63	2	64	3	65	4
D-33iv	В	60	61	1	62	2	63	3
D-33va	В	59	60	1	61	2	62	3
D-33vb	F	62	64	2	64	2	65	3
D-33vi	В	60	62	2	62	2	63	3
D-34ii	В	65	67	2	68	3	68	3
D-34iii	В	64	65	1	66	2	67	3
D-34iv	F	61	63	2	63	2	64	3
D-34v	F	62	64	2	64	2	65	3
D-34vi	F	57	59	2	60	3	60	3
D-35v	В	57	58	1	59	2	60	3
D-35via	В	59	60	1	61	2	61	2
D-35vib	В	58	60	2	60	2	61	3

D-36v	В	56	58	2	59	3	61	5
D-36via	В	58	60	2	60	2	61	3
D-36vib	В	58	60	2	60	2	61	3
D-36vii	В	62	63	1	64	2	64	2
D-37iii	В	58	59	1	60	2	61	3
D-37iv	В	57	58	1	59	2	60	3
D-37va	В	56	58	2	59	3	60	4
D-37via	В	58	59	1	59	1	61	3
D-37vib	В	59	60	1	60	1	61	2
D-37vb	В	57	59	2	59	2	60	3
D-37vc	В	57	59	2	59	2	61	4
D-37viia	В	60	61	1	62	2	63	3
D-37viib	В	61	62	1	63	2	64	3
D-38iiia	В	56	57	1	58	2	59	3
D-38iiib	В	58	60	2	60	2	62	4
D-38iiic	В	58	59	1	59	1	62	4
D-38iiid	В	58	60	2	60	2	63	5
D-38vi	В	63	65	2	65	2	66	3

Numbers highlighted in **red** approach or exceed FHWA NAC for that activity category.

As shown in Table 6, Year 2039 no-build peak-hour noise levels ranged from 57 to 70 decibels in NSA D with the highest noise levels in the new residential development at the western end of Northgate Drive and the existing residential sites just east of Mt. Pleasant Road. At these sites the no-build noise levels approach or exceed FHWA NAC for Activity Category B land uses.

Year 2039 build with the Warrendale Toll Plaza peak-hour noise levels also ranged from 59 to 72 decibels. Year 2039 build without the Warrendale Toll Plaza peak-hour noise levels ranged from 58 to 72 decibels. In both alternatives, Year 2039 noise levels do not increase 10 dB(A) or more above the existing noise level and are not considered a substantial increase.

In NSA D, the Year 2039 with or without the Warrendale Toll Plaza build noise levels will approach or exceed FHWA NAC and traffic noise impacts are predicted.

^{*} Predicted exterior noise level.

NSA E

This NSA includes the existing and planned hilltop residential areas north of the Turnpike. The western portions of NSA E overlook I-79 and the eastern portions overlook the Turnpike and the Warrendale Toll Plaza (See Figure 8). As shown in Table 1, single family homes are considered Activity Category B.

Because two project alternatives are being considered, NSA E was analyzed for scenarios with the Warrendale Toll Plaza and without the Warrendale Toll Plaza.

Table 7 NSA E Predicted Noise Levels dB(A)											
	NAC Activity			No-Build Alternative - 2039 Build Alternative w/ Plaza - 2039				Build Alternative w/o Plaza- 2039			
Receiver	Category	Existing	Predicted	Increase	Predicted	Increase	Predicted	Increase			
E-1	В	65	67	2	67	2	67	2			
E-2	В	65	67	2	67	2	67	2			
E-3	В	65	67	2	67	2	67	2			
E-4	В	66	67	1	67	1	67	1			
E-5	В	65	67	2	67	2	67	2			
E-6	В	65	67	2	67	2	67	2			
E-7	В	65	66	1	66	1	66	1			
E-8	В	65	67	2	67	2	67	2			
E-9	В	65	66	1	66	1	66	1			
E-10	В	64	66	2	66	2	66	2			
E-11	В	64	66	2	66	2	66	2			
E-12	В	64	66	2	66	2	66	2			
E-13	В	65	67	2	66	1	66	1			
E-14	В	65	67	2	67	2	67	2			
E-15	В	65	67	2	66	1	66	1			
E-16	В	65	67	2	67	2	67	2			
E-17	В	65	66	1	66	1	66	1			
E-18	В	63	64	1	64	1	64	1			
E-19	В	61	63	2	63	2	63	2			
E-20	В	60	61	1	61	1	61	1			
E-21	В	58	60	2	60	2	60	2			
E-22	В	57	59	2	59	2	59	2			
E-23	В	53	55	2	54	1	54	1			
E-24	В	50	52	2	51	1	51	1			
E-25	В	51	53	2	52	1	52	1			
E-26	В	52	54	2	53	1	53	1			
E-27	В	52	54	2	53	1	53	1			
E-28	В	52	53	2	52	0	52	0			
E-29	В	51	53	2	52	1	52	1			
E-30	В	53	54	1	54	1	54	1			
E-31	В	53	55	2	54	1	54	1			
E-32	В	54	55	1	55	1	55	1			
E-33	В	52	54	2	54	2	54	2			
E-34	В	51	52	1	52	1	52	1			
E-35	В	45	47	2	47	2	47	2			
E-36	В	65	66	1	65	0	68	3			

E-37	В	60	61	1	60	0	63	3
E-38	В	61	62	1	62	1	64	3
E-39	В	59	61	2	59	0	63	4
E-40	В	58	59	1	59	1	63	5
E-41	В	59	61	2	60	1	65	6
E-42	В	57	58	1	58	1	62	5
E-43	В	57	59	2	58	1	62	5
E-44	В	55	57	2	56	1	60	5
E-45	В	57	59	2	59	2	64	7
E-46	В	56	58	2	57	1	62	1
E-1ii	В	54	56	2	56	2	56	2
E-2ii	В	58	60	2	60	2	60	2
E-3ii	В	60	62	2	62	2	62	2
E-3iii	В	60	61	1	61	1	61	1
E-3iv	В	59	60	1	60	1	60	1
E-3v	В	59	60	1	61	2	61	2
E-3vi	В	58	60	2	60	2	60	2
E-4ii	В	60	61	1	62	2	62	2
E-4vi	В	58	59	1	59	1	59	1
E-5ii	В	60	62	2	62	2	62	2
E-5iii	В	57	59	2	59	2	59	2
E-5vi	В	57	59	2	59	2	59	2
E-6ii	В	61	63	2	63	2	63	2
E-6iii	В	57	58	1	58	1	58	1
E-6vi	В	57	59	2	59	2	59	2
E-7ii	В	60	62	2	62	2	62	2
E-7iii	В	57	58	1	58	1	58	1
E-7vi	В	56	58	2	58	2	58	2
E-8ii	В	60	62	2	62	2	62	2
E-8iii	В	55	57	2	57	2	57	2
E-8vi	В	56	58	2	58	2	58	2
E-9ii	В	60	62	2	62	2	62	2
E-9via	В	56	57	1	57	1	57	1
E-9vib	В	55	57	2	57	2	57	2
E-10ii	В	58	59	2	59	1	59	1
E-10iii	В	57	59	2	59	2	59	2
E-10iv	В	56	58	2	58	2	58	2
E-10v	В	56	57	2	57	1	57	1
E-10vi	В	55	57	2	57	2	57	2
E-16ii	В	59	61	2	61	2	61	2
E-17ii	В	58	60	2	60	2	60	2
E-18ii	В	56	57	2	57	1	57	1
E-19ii	В	55	57	2	57	2	57	2
E-22ii	В	55	57	2	57	2	57	2
E-23iia	В	55	56	1	56	1	56	1
E-23iib	В	54	55	1	55	1	55	1
E-23iic	В	53	54	1	54	1	54	1
E-24iia	В	52	53	1	54	2	54	2
E-24iib	В	52	53	1	53	1	53	1
E-25ii	В	39	41	2	40	1	40	1
E-26ii	В	38	39	1	39	1	39	1
п	i					ı	п	1

E-27ii B 37 38 1 38 1 38 1 38 2 38 2 2 38 2 2 38 2 37 1 1 37 1 37 1 1 37 1 1 37 1 1 37 1 1 37 1 1 37 1 1 1 37 1 1 1 1 1 1 1 1 1									
E-29ii	E-27ii	В	37	38	1	38	1	38	1
E-30ii B 36 37 1 37 1 37 1 37 1 E-34ii B 35 37 2 37 2 37 2 37 2 37 2 37 2 37 2 3	E-28ii	В	36	38	2	38	2	38	2
E-34ii B 35 37 2 37 2 37 2 37 2 E-34ii B 36 38 2 38 2 38 2 38 2 E-34ix B 37 39 2 39 2 39 2 E-34ix B 52 54 2 53 1 53 1 E-34ix B 39 41 2 41 2 41 2 41 2 E-34ii B 44 44 2 44 2 44 1 44 1 E-35ii B 46 47 1 46 0 46 0 46 0 E-35ii B 46 47 1 46 0 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 47 41 1 44 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 46 1 46 1 E-35ii B 45 47 2 46 1 47 41 1 44 1 1 44 1 E-35ii B 45 47 2 47 5 44 1 1 44 1 1 44 1 E-35ii B 45 45 2 44 1 1 44 1 1 44 1 E-35ii B 45 45 1 45 1 1 44 1 1 44 1 1 44 1 E-35ii B 45 45 2 44 1 1 44 1 1 44 1 E-35ii B 45 45 2 44 1 1 44 1 1 44 1 E-35ii B 45 45 2 44 1 1 44 1 1 44 1 E-35ii B 45 45 2 44 1 1 44 1 1 44 1 E-35ii B 58 60 2 59 1 65 3 E-36ii B 58 60 2 59 1 63 5 E-36ii B 58 60 2 59 1 63 5 E-36ii B 58 56 58 2 57 1 61 50 5 E-37ii B 56 58 2 57 2 57 2 60 5 E-37ii B 56 58 2 57 2 57 2 60 5 E-37ii B 56 58 2 57 1 61 50 5 E-38ii B 58 50 2 57 2 57 2 50 5 E-38ii B 58 50 2 57 2 57 2 57 2 50 5 E-38ii B 56 55 57 2 57 2 57 2 58 3 E-38ii B 56 55 57 2 57 2 56 1 60 5 E-46ii B 55 5 57 2 56 1 60 5 E-46ii B 55 5 57 2 56 1 60 5 E-45ii B 56 58 2 57 1 57 1 61 5 E-45ii B 56 58 2 57 1 57 1 61 5 E-45ii B 56 58 2 57 1 57 1 61 5 E-45ii B 56 58 2 57 1 57 1 61 5 E-45ii B 56 55 57 2 56 1 60 5 5 E-45ii B 56 55 57 2 56 1 60 5 E-45ii B 56 56 58 2 57 2 56 1 60 5 5 E-45ii B 56 56 57 1 57 2 56 1 60 5 E-45ii B 56 57 1 57 2 56 6 1 60 5 E-45ii B 56 56 57 1 57 2 56 6 1 60 5 E-45ii B 56 56 57 1 57 2 56 6 1 60 5 E-45ii B 56	E-29ii	В	36	38	2	38	2	38	2
E-34iii	E-30ii	В	36	37	1	37	1	37	1
E-34ix B S7 39 2 39 2 39 2 39 2 E-34ix B S2 54 2 53 1 53 1 53 1 E-34vi B 41 43 2 44 2 44 2 E-34vii B 45 47 2 47 2 47 2 2 47 2 E-34viii B 45 47 2 47 2 47 2 2 47 2 E-34viii B 52 53 1 53 1 53 1 53 1 E-35iii B 43 44 1 44 1 44 1 44 1 E-35iii B 46 47 1 46 0 46 0 0 46 0 E-35iii B 45 47 2 46 1 46 1 E-35iii B 44 45 47 2 46 1 46 1 46 1 E-35vii B 44 45 2 44 1 44 1 44 1 E-35vii B 44 46 2 45 1 45 1 E-35vii B 43 44 45 1 44 0 44 0 44 1 E-35viii B 43 44 45 1 44 1 44 1 E-35viii B 43 44 41 44 1 44 1 E-35viii B 43 44 41 44 1 44 1 E-35viii B 43 44 41 44 1 44 1 E-36iii B 62 63 1 61 -1 65 3 E-36iii B 58 60 2 59 1 63 5 E-36vii B 54 56 2 55 1 57 2 60 5 E-37ii B 56 58 2 57 1 61 5 E-37ii B 56 58 2 57 1 61 5 E-37ii B 56 58 2 57 1 61 5 E-37ii B 56 58 2 57 1 61 5 E-37ii B 56 58 2 57 1 61 5 E-38iii B 58 60 2 59 1 63 5 E-36vi B 56 58 2 57 2 60 5 E-37ii B 56 58 2 57 2 57 2 60 5 E-37ii B 56 58 2 57 2 57 2 60 5 E-37ii B 56 58 2 57 1 61 5 E-38iii B 57 59 2 58 1 60 3 E-38iii B 57 59 2 58 1 60 3 E-38iii B 56 58 2 57 2 57 2 57 2 57 2 58 4 E-38iii B 56 58 2 57 1 59 3 E-38iii B 56 58 2 57 1 51 59 3 E-38iv B 56 58 2 57 1 57 1 61 5 E-45iii B 56 57 1 57 1 61 5 E-45iii B 56 57 1 57 1 61 5 E-45iii B 56 57 1 57 1 61 5 E-45iii B 56 57 2 56 1 56 1 60 5 E-45iii B	E-34ii	В	35	37	2	37	2	37	2
E-34ix B 39 41 2 41 2 41 2 41 2 E-34vii B 41 41 42 41 2 41 2 E-34viii B 45 47 2 47 2 47 2 E-34viii B 52 53 1 53 1 53 1 E-35iii B 46 47 1 44 1 44 1 44 1 E-35iii B 46 47 1 46 0 46 0 46 0 E-35iii B 43 45 47 2 46 1 46 1 46 1 E-35iii B 46 47 1 46 0 46 0 46 0 E-35iv B 43 45 2 44 1 44 1 44 1 E-35iii B 46 47 2 46 1 46 1 E-35iii B 46 47 2 46 1 46 1 E-35iii B 46 47 2 46 1 46 1 E-35iii B 46 47 2 46 1 46 1 E-35iv B 43 45 2 44 1 44 1 44 1 E-35vi B 43 45 2 44 1 1 44 1 E-35vi B 44 45 1 44 1 44 1 E-35vi B 44 45 1 44 0 44 0 E-35vi B 44 45 1 44 1 44 1 E-35vii B 43 45 2 44 1 44 1 44 1 E-35vii B 43 45 2 44 1 44 1 44 1 E-35vii B 43 45 2 44 1 1 44 1 E-35ix B 43 45 2 44 1 1 44 1 E-35ix B 43 45 2 44 1 1 44 1 E-35ix B 43 45 2 44 1 1 44 1 E-35ix B 48 50 2 49 1 49 1 E-36ii B 56 60 2 59 1 65 3 E-36ii B 56 60 2 59 1 63 5 E-36iv B 54 56 2 55 1 58 4 E-36v B 56 58 2 57 1 60 4 E-37iii B 56 58 60 2 59 1 63 5 E-36iv B 55 57 2 57 2 60 5 E-37ii B 56 58 58 2 57 1 60 4 E-37iii B 56 58 58 2 57 1 60 4 E-37iii B 56 58 58 2 57 1 60 4 E-37iii B 56 58 50 2 59 1 62 4 E-38ii B 56 58 50 2 59 1 62 4 E-38ii B 56 58 50 2 59 1 62 4 E-37iii B 56 58 50 2 59 1 60 5 E-38ii B 56 58 2 57 1 60 4 E-37iii B 56 58 57 2 57 2 57 2 60 5 E-38ii B 56 58 2 57 1 60 4 E-37iii B 56 58 50 2 57 1 60 4 E-37iii B 56 58 50 2 59 1 62 4 E-38ii B 56 58 2 57 1 60 4 E-38ii B 56 58 2 57 1 60 5 E-38ii B 58 50 57 59 2 58 1 60 3 E-38ii B 56 58 2 57 1 60 5 E-38ii B 56 58 2 57 2 57 2 58 3 E-38iv B 56 58 2 57 2 57 2 58 3 E-40iii B 56 58 2 57 2 57 2 58 3 E-40iii B 56 57 2 57 2 57 2 58 3 E-40iii B 56 57 2 57 2 57 2 58 3 E-40iii B 56 58 2 57 1 57 1 61 5 E-43ii B 56 57 1 57 1 61 5 E-43ii B 56 57 1 57 1 57 1 61 5 E-43ii B 56 57 1 57 1 57 1 61 5 E-43ii B 56 57 1 57 2 56 1 60 5 E-45ii B 56 57 1 57 2 56 1 60 5 E-45ii B 56 57 1 57 2 56 1 60 5 E-45ii B 56 58 2 57 2 56 1 60 5 E-45ii B 56 57 1 57 2 56 1 60 5 E-45ii B 56 58 2 57 2 56 1 60 5 E-45ii B 56 57 1 57 2 56 1 60 5 E-45ii B 56 57 1 57 2 56 1 60 5 E-45ii B 56 57 1 57 2 56 1 60 5 E-45ii B 56 58 2 2 56 6 6 E-45ii B 56 57 1 57 2 56 6 1 60 5 E-45ii B 56 57 1	E-34iii	В	36	38	2	38	2	38	2
E-34vi B 41 43 2 41 2 41 2 41 2 E-34vii B 41 43 2 43 2 43 2 43 2 E-34viii B 45 47 2 47 2 47 2 E-34viii B 52 53 1 53 1 53 1 E-35ii B 43 44 1 44 1 44 1 44 1 E-35ii B 46 47 1 46 0 46 0 E-35iv B 45 47 2 46 1 46 1 E-35ix B 43 45 2 44 1 44 1 44 1 E-35ix B 43 45 2 44 1 44 1 E-35ix B 43 45 2 44 1 44 1 E-35ix B 43 45 2 44 1 E-35vi B 44 46 2 45 1 45 1 E-35vii B 43 45 2 44 1 1 44 1 E-35viii B 43 45 2 44 1 1 44 1 E-35viii B 43 45 2 44 1 1 44 1 E-35viii B 43 45 2 44 1 1 44 1 E-35viii B 43 45 2 44 1 1 44 1 E-35viii B 43 45 2 44 1 1 44 1 E-35viii B 43 45 2 44 1 1 44 1 E-35viii B 56 58 60 2 59 1 63 5 E-36iii B 62 63 1 61 -1 65 3 E-36iii B 62 63 1 61 -1 65 3 E-36iii B 58 60 2 59 1 63 5 E-36iii B 58 60 2 59 1 63 5 E-36iii B 58 60 2 59 1 63 5 E-36iv B 56 58 2 57 1 61 5 E-36v B 56 58 2 57 1 61 5 E-37viii B 54 55 57 2 57 2 60 5 E-37viii B 54 55 57 2 57 2 60 5 E-37viii B 54 55 57 2 57 2 57 2 60 5 E-37viii B 54 55 57 5 2 57 1 60 4 E-37viii B 54 55 57 59 2 58 1 58 4 E-36v B 56 58 2 57 1 60 4 E-37viii B 54 55 57 2 57 2 57 2 50 5 5 E-38vii B 58 60 2 59 1 63 5 E-38vii B 58 60 2 59 1 60 3 E-38vii B 58 60 5 58 2 57 1 60 4 E-37viii B 54 55 57 2 57 2 57 2 58 3 E-38vi B 56 58 2 57 1 50 60 5 E-38vii B 58 50 58 2 57 1 60 5 E-38vii B 58 50 58 2 57 1 50 60 5 E-38vii B 56 58 58 2 57 1 50 60 5 E-38vii B 56 58 2 57 1 50 60 5 E-38vii B 56 58 57 2 57 2 58 3 2 56 5 57 2 58 3 2 56 5 57 2 57 2 58 3 5 57 2 58 3 5 57 2 58 3 5 57 2 58 3 5 57 2 58 3 5 57 2 58 3 5 57 2 58 3 5 57 2 58 3 5 57 2 58 5 57 2 58 57 2	E-34iv	В	37	39	2	39	2	39	2
E-34vii B 45 47 2 47 2 47 2 27 2 28 3 2 28 3 2 28 3 2 3 3 2 3 3 3 3 3	E-34ix	В	52	54	2	53	1	53	1
E-34viii B 45 47 2 47 2 47 2 E-34viii B 52 53 1 53 1 53 1 E-35iii B 43 44 1 44 1 44 1 E-35iv B 45 47 2 46 1 46 0 E-35iv B 43 45 2 44 1 44 1 E-35v B 44 46 2 44 1 44 1 E-35vii B 43 45 2 44 1 44 1 E-35viii B 43 45 2 44 1 44 1 E-35viii B 43 45 2 44 1 44 1 E-36ii B 62 63 1 61 -1 65 3 E-36ii <td< td=""><td>E-34v</td><td>В</td><td>39</td><td>41</td><td>2</td><td>41</td><td>2</td><td>41</td><td>2</td></td<>	E-34v	В	39	41	2	41	2	41	2
E-34viii B 52 53 1 53 1 53 1 E-35iii B 443 444 1 444 1 444 1 444 1 E-35iii B 466 477 1 466 0 466 0 0 0 0 0 0 0 0 0	E-34vi	В	41	43	2	43	2	43	2
E-35ii B 43 44 1 44 1 44 1 E-35iii B 46 47 1 46 0 46 0 46 0 E-35iv B 45 47 2 46 1 46 1 46 1 E-35ix B 43 45 2 44 1 44 1 E-35v B 44 46 2 45 1 45 1 45 1 E-35v B 44 45 1 44 0 44 0 E-35vii B 43 45 2 44 1 44 1 E-35vii B 43 45 2 44 1 44 1 E-35vii B 43 45 1 44 1 44 1 E-35vii B 43 44 1 44 1 44 1 E-35vii B 43 44 1 44 1 44 1 E-35xii B 62 63 1 61 -1 65 3 E-36ii B 62 63 1 61 -1 65 3 E-36ii B 58 60 2 59 1 63 5 E-36iv B 56 58 2 57 1 60 4 E-37ii B 56 58 6 58 2 57 1 60 4 E-37ii B 56 58 60 2 59 1 63 3 5 E-36iv B 55 57 2 57 2 60 5 E-37ii B 56 58 60 2 59 1 63 60 4 E-37ii B 56 58 60 2 59 1 63 60 4 E-37ii B 56 58 6 58 2 57 1 60 4 E-37ii B 56 58 60 2 59 1 63 60 4 E-37ii B 56 58 6 58 2 57 1 60 4 E-37ii B 56 58 6 58 2 57 1 60 4 E-37ii B 56 58 6 58 2 57 1 60 4 E-37ii B 56 58 60 2 59 1 63 60 4 E-37ii B 56 58 60 2 59 1 60 3 E-36ii B 51 53 2 52 52 1 55 4 E-38ii B 58 60 2 59 1 60 3 E-38ii B 58 60 2 59 1 60 3 E-38ii B 58 60 2 59 1 60 3 E-38ii B 58 60 2 59 1 60 3 E-38ii B 58 60 2 59 1 60 3 E-38ii B 58 60 2 59 1 60 3 E-38ii B 58 60 2 59 1 60 3 E-38ii B 58 60 2 59 1 60 3 E-38ii B 58 60 2 59 1 60 3 E-38ii B 58 60 2 59 1 60 3 E-38ii B 58 60 2 59 1 60 3 E-38ii B 58 60 58 2 57 1 59 2 58 3 E-38ii B 58 55 57 2 57 2 58 3 E-38ii B 58 55 57 2 57 2 58 3 E-38ii B 56 58 2 57 1 59 2 58 4 E-38ii B 56 55 57 2 57 2 58 3 E-38ii B 56 55 57 2 57 2 58 3 E-38ii B 56 56 58 2 57 1 59 2 58 4 E-40ii B 55 55 57 2 56 1 60 5 E-43ii B 55 55 57 2 56 1 60 5 E-43ii B 55 55 57 2 56 1 60 5 E-43ii B 55 55 57 2 56 1 60 5 E-43ii B 55 55 57 2 56 1 60 5 E-43ii B 55 55 57 2 56 1 60 5 E-45ii B 55 55 57 2 56 1 60 5 E-45ii B 55 55 57 2 56 6 1 60 5 E-45ii B 55 55 56 1 56 1 60 5 E-45ii B 55 55 56 1 56 1 60 5 E-45ii B 55 55 56 1 56 1 56 1 60 5 E-45ii B 55 55 56 1 56 1 56 1 60 5 E-45ii B 55 55 56 1 56 1 56 1 60 5 E-45ii B 55 55 57 2 55 56 1 56 1 56 1 60 5 E-45ii B 55 55 57 2 55 56 1 56 1 56 1 56 E-45ii B 55 55 57 2 55 56 1 56 1 56 1 56 E-45ii B 55 55 56 1 56 1 56 1 56 E-45ii B 55 55 56 1 56 1 56 1 56 E-45ii B 55 55 56 1 56 1 56 1 56 E-45iii B 55 55 56 1 56 1 56 E-45iii B 55 55 56 1 56 1 56	E-34vii	В	45	47	2	47	2	47	2
E-35iii B 46 47 1 46 0 46 0 E-35iv B 45 47 2 46 1 46 1 E-35iv B 43 45 2 44 1 44 1 E-35v B 44 46 2 45 1 45 1 E-35vi B 44 46 2 45 1 44 0 44 0 E-35vii B 43 45 2 44 1 44 1 E-35vii B 43 45 2 44 1 44 1 E-35viii B 43 45 2 44 1 44 1 E-35viii B 8 43 45 2 44 1 44 1 E-35viii B 8 43 45 2 44 1 44 1 E-35xiii B 8 48 50 2 49 1 49 1 E-36iii B 62 63 1 61 -1 65 3 E-36iii B 58 60 2 59 1 63 5 E-36iii B 58 60 2 59 1 63 5 E-36iii B 56 58 2 57 1 61 5 E-36vi B 56 58 2 57 1 61 5 E-37viii B 56 58 2 57 1 60 4 E-37iii B 56 58 2 57 1 60 4 E-37iii B 56 58 2 57 1 60 4 E-37iii B 56 58 2 57 1 60 3 E-38iii B 51 53 2 52 1 55 4 E-38ii B 58 60 2 59 1 63 3 E-38iii B 58 60 2 59 1 63 5 E-38iii B 58 60 3 5 E-38iii B 58 60 5 58 2 57 1 60 3 E-38iii B 58 60 5 58 2 57 1 60 3 E-38iii B 58 60 3 5 E-38iii B 58 60 5 58 2 57 1 60 3 E-38iii B 58 60 3 5 5 57 5 5 57 5 5 5 5 5 5 5 5 5 5 5 5	E-34viii	В	52	53	1	53	1	53	1
E-35iv B 45 47 2 46 1 46 1 E-35iv B 43 45 2 44 1 44 1 E-35v B 44 46 2 45 1 45 1 E-35vii B 44 45 1 44 0 44 0 E-35viii B 43 45 2 44 1 44 1 E-35viii B 43 44 1 44 1 44 1 E-35x B 48 50 2 49 1 49 1 E-36ii B 62 63 1 61 -1 65 3 E-36ii B 56 58 2 55 1 58 4 E-36v B 56 58 2 57 1 60 5 E-36v B	E-35ii	В	43	44	1	44	1	44	1
E-35ix B 43 45 2 44 1 44 1 E-35vi B 44 46 2 45 1 45 1 E-35vii B 44 45 1 44 0 44 0 E-35viii B 43 44 1 44 1 44 1 E-36iii B 62 63 1 61 -1 65 3 E-36iii B 62 63 1 61 -1 65 3 E-36iii B 58 60 2 55 1 58 4 E-36iii B 54 56 2 55 1 58 4 E-36vi B 56 58 2 57 1 61 5 E-36vi B 56 58 2 57 1 60 5 E-37iii <td< td=""><td>E-35iii</td><td>В</td><td>46</td><td>47</td><td>1</td><td>46</td><td>0</td><td>46</td><td>0</td></td<>	E-35iii	В	46	47	1	46	0	46	0
E-35v B 44 46 2 45 1 45 1 E-35vii B 44 45 1 44 0 44 0 E-35viii B 43 45 2 44 1 44 1 E-35xiii B 48 50 2 49 1 49 1 E-36ii B 62 63 1 61 -1 65 3 E-36ii B 58 60 2 59 1 63 5 E-36ii B 54 56 2 55 1 58 4 E-36ii B 56 58 2 57 1 61 5 E-36ii B 56 58 2 57 1 61 5 E-36vi B 56 58 2 57 1 60 4 E-37iii B </td <td>E-35iv</td> <td>В</td> <td>45</td> <td>47</td> <td>2</td> <td>46</td> <td>1</td> <td>46</td> <td>1</td>	E-35iv	В	45	47	2	46	1	46	1
E-35vii B 44 45 1 44 0 44 1 44 1 E-35viii B 43 45 2 44 1 44 1 44 1 E-35viii B 43 45 2 44 1 1 44 1 E-35xiii B 48 50 2 49 1 49 1 49 1 E-36ii B 62 63 1 61 -1 65 3 E-36iii B 58 60 2 59 1 63 5 E-36iii B 54 56 58 2 57 1 60 4 E-37iii B 56 58 60 2 57 1 57 2 58 1 58 4 E-37iii B 56 58 60 2 57 1 57 2 58 1 58 4 E-37iii B 56 58 60 2 59 1 60 4 E-37iii B 54 55 57 2 57 2 56 1 55 4 E-38iii B 58 58 60 2 59 1 60 5 E-37iii B 54 55 57 2 57 2 57 2 56 1 57 3 E-38iii B 58 58 60 2 59 1 60 5 E-37iii B 55 57 59 2 58 1 55 4 E-38iii B 58 58 60 2 59 1 60 5 E-38iii B 58 58 60 2 59 1 60 5 E-38iii B 58 58 60 2 59 1 60 3 E-38iii B 57 59 2 58 1 60 3 E-38iii B 57 59 2 58 1 60 3 E-38va B 55 57 2 57 2 57 2 58 3 E-40iii B 56 58 2 57 1 60 5 E-40iii B 56 58 2 57 1 60 5 E-40iii B 56 58 2 57 1 60 5 E-41ii B 55 57 2 56 5 E-41ii B 55 57 2 56 5 E-43ii B 56 58 2 57 1 61 59 3 E-40iii B 56 58 2 57 1 61 55 E-40iii B 56 58 2 57 1 61 57 2 58 3 E-40iii B 56 58 2 57 1 61 55 E-40iii B 56 57 57 2 56 1 60 5 E-43ii B 56 57 57 2 56 1 60 5 E-43ii B 56 57 1 57 1 61 55 E-44ii B 55 55 57 2 56 1 60 55 E-45ii B 56 58 2 57 1 61 55 E-45ii B 56 58 2 57 1 61 55 E-45ii B 56 57 1 57 1 61 5 E-45ii B 56 58 2 58 2 58 2 62 62 6 E-45ii B 56 58 2 58 2 58 2 62 62 6 E-45ii B 56 57 1 57 1 57 1 61 5 E-45ii B 56 58 2 58 2 58 2 62 62 6 E-45ii B 56 58 2 58 2 58 2 58 2 62 62 6 E-45ii B 56 57 1 57 1 57 1 61 5 E-45ii B 56 58 2 57 1 57 1 57 1 61 55 E-45ii B 56 58 2 57 1 57 1 61 55 E-45ii B 56 58 2 57 1 57 1 61 55 E-45ii B 56 58 2 58 2 58 2 62 62 6 E-45iv B 56 58 2 58 2 58 2 62 62 6 E-45iv B 56 57 1 57 1 57 1 61 55 E-45ii B 56 57 1 57 1 57 1 61 55 E-45ii B 56 57 1 57 1 57 1 61 55 E-45ii B 56 57 1 57 1 57 1 61 55 E-45ii B 56 58 2 58 2 58 2 58 2 62 62 6 E-45iv B 56 58 2 58 2 58 2 58 2 62 62 6 E-45iv B 56 58 58 2 58 2 58 2 58 2 56 56 E-46ii B 56 57 1 57 2 56 6 1 60 55 E-46ii B 56 57 1 57 2 56 6 1 60 55 E-46ii B 57 57 1 57 2 56 6 1 60 55 E-46ii B 57 5 57 2 56 6 1 60 55 E-46ii B 57 5 57 2 56 6 1 60 55 E-46ii B 57 5 57 2 56 6 1 56 6 E-46iii B 57 57 57 2 56 6 1 56 6 E-46iii B 57 57 57 2 56 6 1 56 6 E-46ii	E-35ix	В	43	45	2	44	1	44	1
E-35viii B 43 45 2 44 1 44 1 E-35viii B 43 44 1 44 1 44 1 E-36ii B 48 50 2 49 1 49 1 E-36ii B 62 63 1 61 -1 65 3 E-36iii B 58 60 2 59 1 63 5 E-36iv B 54 56 2 55 1 58 4 E-36v B 56 58 2 57 1 61 5 E-36vi B 55 57 2 57 2 60 5 E-37ii B 56 58 2 57 1 60 4 E-37iii B 51 53 2 52 1 55 4 E-37iii B<	E-35v	В	44	46	2	45	1	45	1
E-35viii B 43 44 1 44 1 44 1 E-35ix B 48 50 2 49 1 49 1 E-36iii B 62 63 1 61 -1 65 3 E-36iii B 58 60 2 59 1 63 5 E-36iii B 54 56 2 55 1 58 4 E-36vi B 56 58 2 57 1 61 5 E-36vi B 56 58 2 57 1 61 5 E-36vi B 56 58 2 57 1 60 4 E-37iii B 51 53 2 57 1 60 4 E-37iii B 51 53 2 52 1 55 4 E-37iii	E-35vi	В	44	45	1	44	0	44	0
E-35x B 48 50 2 49 1 49 1 E-36iii B 62 63 1 61 -1 65 3 E-36iii B 58 60 2 59 1 63 5 E-36iv B 54 56 2 55 1 58 4 E-36v B 56 58 2 57 1 61 5 E-36vi B 55 58 2 57 1 60 5 E-37ii B 56 58 2 57 1 60 4 E-37iii B 56 58 2 57 1 60 4 E-37iii B 51 53 2 52 1 55 4 E-37iii B 51 53 2 52 1 55 4 E-37iii B <td>E-35vii</td> <td>В</td> <td>43</td> <td>45</td> <td>2</td> <td>44</td> <td>1</td> <td>44</td> <td>1</td>	E-35vii	В	43	45	2	44	1	44	1
E-36ii B 62 63 1 61 -1 65 3 E-36iii B 58 60 2 59 1 63 5 E-36iv B 54 56 2 55 1 58 4 E-36vi B 56 58 2 57 1 61 5 E-36vi B 55 57 2 57 2 60 5 E-37ii B 56 58 2 57 1 60 4 E-37iii B 56 58 2 57 1 60 4 E-37iii B 51 53 2 52 1 55 4 E-37iii B 51 53 2 52 1 55 4 E-37v B 51 53 2 53 2 56 5 E-38ii B <td>E-35viii</td> <td>В</td> <td>43</td> <td>44</td> <td>1</td> <td>44</td> <td>1</td> <td>44</td> <td>1</td>	E-35viii	В	43	44	1	44	1	44	1
E-36iii B 58 60 2 59 1 63 5 E-36iv B 54 56 2 55 1 58 4 E-36v B 56 58 2 57 1 61 5 E-36vi B 56 58 2 57 1 61 5 E-36vi B 55 57 2 57 2 60 5 E-37ii B 56 58 2 57 1 60 4 E-37iii B 51 53 2 52 1 55 4 E-37iii B 51 53 2 52 1 55 4 E-37iii B 51 53 2 52 1 55 4 E-38ii B 51 53 2 56 5 5 E-38iii B 56 <td>E-35x</td> <td>В</td> <td>48</td> <td>50</td> <td>2</td> <td>49</td> <td>1</td> <td>49</td> <td>1</td>	E-35x	В	48	50	2	49	1	49	1
E-36iv B 54 56 2 55 1 58 4 E-36v B 56 58 2 57 1 61 5 E-36vi B 55 58 2 57 2 60 5 E-37ii B 56 58 2 57 1 60 4 E-37ii B 54 55 1 55 1 57 3 E-37iv B 51 53 2 52 1 55 4 E-37iv B 51 53 2 52 1 55 4 E-37iv B 51 53 2 52 1 55 4 E-38ii B 51 53 2 52 1 62 4 E-38ii B 56 58 2 57 1 59 3 E-38iv B	E-36ii	В	62	63	1	61	-1	65	
E-36vi B 56 58 2 57 1 61 5 E-36vi B 55 57 2 57 2 60 5 E-37ii B 56 58 2 57 1 60 4 E-37iii B 54 55 1 55 1 57 3 E-37iv B 51 53 2 52 1 55 4 E-37v B 51 53 2 53 2 56 5 E-38ii B 58 60 2 59 1 62 4 E-38iii B 56 58 2 57 1 59 3 E-38iv B 56 58 2 57 1 59 3 E-38va B 55 57 2 57 2 58 3 E-40ii B	E-36iii	В	58	60	2	59	1	63	5
E-36vi B 55 57 2 57 2 60 5 E-37ii B 56 58 2 57 1 60 4 E-37iii B 54 55 1 55 1 57 3 E-37iv B 51 53 2 52 1 55 4 E-37v B 51 53 2 53 2 56 5 E-38ii B 58 60 2 59 1 62 4 E-38ii B 58 60 2 59 1 62 4 E-38ii B 56 58 2 57 1 59 3 E-38ii B 56 58 2 57 1 59 3 E-38va B 55 57 2 57 2 58 3 E-40ii B	E-36iv	В	54	56	2	55	1	58	4
E-37ii B 56 58 2 57 1 60 4 E-37iii B 54 55 1 55 1 57 3 E-37iv B 51 53 2 52 1 55 4 E-37v B 51 53 2 53 2 56 5 E-38ii B 58 60 2 59 1 62 4 E-38iii B 58 60 2 59 1 62 4 E-38iii B 57 59 2 58 1 60 3 E-38iii B 56 58 2 57 1 59 3 E-38iv B 56 58 2 57 1 59 3 E-38va B 55 57 2 57 2 58 3 E-40iii B <td>E-36v</td> <td>В</td> <td>56</td> <td>58</td> <td>2</td> <td>57</td> <td>1</td> <td>61</td> <td>5</td>	E-36v	В	56	58	2	57	1	61	5
E-37iii B 54 55 1 55 1 57 3 E-37iv B 51 53 2 52 1 55 4 E-37v B 51 53 2 53 2 56 5 E-38ii B 58 60 2 59 1 62 4 E-38iii B 57 59 2 58 1 60 3 E-38iii B 56 58 2 57 1 59 3 E-38iv B 56 58 2 57 1 59 3 E-38va B 55 57 2 57 2 57 2 57 2 57 2 57 2 57 2 58 3 B 4 61 5 5 57 2 56 2 58 3 4 6 2<	E-36vi	В	55	57	2	57	2	60	5
E-37iv B 51 53 2 52 1 55 4 E-37v B 51 53 2 53 2 56 5 E-38ii B 58 60 2 59 1 62 4 E-38iii B 57 59 2 58 1 60 3 E-38iv B 56 58 2 57 1 59 3 E-38iv B 56 58 2 57 1 59 3 E-38va B 55 57 2 57 2 57 2 E-38vb B 55 57 2 57 2 58 3 E-40ii B 56 58 2 57 1 61 5 E-40iii B 54 56 2 56 2 58 4 E-41ii B	E-37ii	В	56	58	2	57	1	60	4
E-37v B 51 53 2 53 2 56 5 E-38ii B 58 60 2 59 1 62 4 E-38iii B 57 59 2 58 1 60 3 E-38iv B 56 58 2 57 1 59 3 E-38va B 55 57 2 57 2 57 2 E-38vb B 55 57 2 57 2 58 3 E-38vb B 55 57 2 57 2 58 3 E-38vb B 56 58 2 57 1 61 5 E-38vb B 56 58 2 57 1 61 5 E-40iii B 56 58 2 56 1 60 5 E-41ii B	E-37iii	В	54	55	1	55	1	57	3
E-38ii B 58 60 2 59 1 62 4 E-38iii B 57 59 2 58 1 60 3 E-38iv B 56 58 2 57 1 59 3 E-38va B 55 57 2 57 2 57 2 E-38vb B 55 57 2 57 2 58 3 E-40ii B 56 58 2 57 1 61 5 E-40iii B 56 58 2 57 1 61 5 E-40iii B 54 56 2 56 2 58 4 E-41ii B 55 57 2 56 1 60 5 E-42ii B 56 57 1 57 1 61 5 E-43ii B	E-37iv	В	51	53	2	52	1	55	4
E-38iii B 57 59 2 58 1 60 3 E-38iv B 56 58 2 57 1 59 3 E-38va B 55 57 2 57 2 57 2 E-38vb B 55 57 2 57 2 58 3 E-40ii B 56 58 2 57 1 61 5 E-40ii B 56 58 2 57 1 61 5 E-40iii B 54 56 2 56 2 58 4 E-41ii B 55 57 2 56 1 60 5 E-42ii B 56 57 1 57 1 61 5 E-43ii B 56 57 1 57 1 61 5 E-45ii B	E-37v	В	51	53	2	53	2	56	5
E-38iv B 56 58 2 57 1 59 3 E-38va B 55 57 2 57 2 57 2 E-38vb B 55 57 2 57 2 58 3 E-40ii B 56 58 2 57 1 61 5 E-40iii B 56 58 2 57 1 61 5 E-40iii B 54 56 2 56 2 58 4 E-41ii B 55 57 2 56 1 60 5 E-41iv B 55 57 2 56 1 60 5 E-42ii B 56 57 1 57 1 61 5 E-43ii B 56 57 1 57 1 61 5 E-45ii B	E-38ii	В	58	60	2	59	1	62	4
E-38va B 55 57 2 57 2 58 3 E-38vb B 55 57 2 57 2 58 3 E-40ii B 56 58 2 57 1 61 5 E-40iii B 54 56 2 56 2 58 4 E-41ii B 55 57 2 56 1 60 5 E-41ii B 55 57 2 56 1 60 5 E-41iv B 55 57 2 56 1 60 5 E-42ii B 56 57 1 57 1 61 5 E-43ii B 56 57 1 57 1 61 5 E-45ii B 55 57 2 56 1 60 5 E-45iii B	E-38iii	В	57	59	2	58	1	60	3
E-38vb B 55 57 2 57 2 58 3 E-40ii B 56 58 2 57 1 61 5 E-40iii B 54 56 2 56 2 58 4 E-41ii B 55 57 2 56 1 60 5 E-41iv B 55 57 2 56 1 60 5 E-41iv B 55 57 2 56 1 60 5 E-42ii B 56 57 1 57 1 61 5 E-43ii B 56 57 1 57 1 61 5 E-45ii B 55 56 1 56 1 60 5 E-45iii B 56 58 2 58 2 62 6 E-45iv B	E-38iv	В	56	58	2	57	1	59	3
E-40ii B 56 58 2 57 1 61 5 E-40iii B 54 56 2 56 2 58 4 E-41ii B 55 57 2 56 1 60 5 E-41iv B 55 57 2 56 1 60 5 E-42ii B 56 57 1 57 1 61 5 E-43ii B 56 57 1 57 1 61 5 E-44ii B 55 56 1 56 1 60 5 E-45ii B 55 57 2 56 1 61 6 E-45iii B 56 58 2 58 2 62 6 E-45iv B 56 57 1 57 1 61 5 E-45iv B	E-38va	В	55	57	2	57	2	57	2
E-40iii B 54 56 2 56 2 58 4 E-41ii B 55 57 2 56 1 60 5 E-41iv B 55 57 2 56 1 60 5 E-42ii B 56 57 1 57 1 61 5 E-43ii B 56 57 1 57 1 61 5 E-43ii B 55 56 1 56 1 60 5 E-45ii B 55 57 2 56 1 61 6 E-45iii B 56 58 2 58 2 62 6 E-45iii B 56 57 1 57 1 61 5 E-45iv B 56 57 1 57 1 61 5 E-46ii B	E-38vb	В	55	57	2	57	2	58	
E-41ii B 55 57 2 56 1 60 5 E-41iv B 55 57 2 56 1 60 5 E-42ii B 56 57 1 57 1 61 5 E-43ii B 56 57 1 57 1 61 5 E-44ii B 55 56 1 56 1 60 5 E-45ii B 55 57 2 56 1 61 6 E-45iii B 56 58 2 58 2 62 6 E-45iii B 56 57 1 57 1 61 5 E-45iv B 56 57 1 57 1 61 5 E-45v B 55 56 1 56 1 60 5 E-46ii B	E-40ii	В	56	58	2	57	1	61	5
E-41iv B 55 57 2 56 1 60 5 E-42ii B 56 57 1 57 1 61 5 E-43ii B 56 57 1 57 1 61 5 E-44ii B 55 56 1 56 1 60 5 E-45ii B 55 57 2 56 1 61 6 E-45iii B 56 58 2 58 2 62 6 E-45iii B 56 57 1 57 1 61 5 E-45iv B 56 57 1 57 1 61 5 E-45v B 55 56 1 56 1 60 5 E-46ii B 53 54 2 54 1 59 6 E-46iii B		В					2	58	
E-42ii B 56 57 1 57 1 61 5 E-43ii B 56 57 1 57 1 61 5 E-44ii B 55 56 1 56 1 60 5 E-45ii B 55 57 2 56 1 61 6 E-45iii B 56 58 2 58 2 62 6 E-45iii B 56 57 1 57 1 61 5 E-45iv B 56 57 1 57 1 61 5 E-45v B 55 56 1 56 1 60 5 E-46ii B 53 54 2 54 1 59 6 E-46iii B 50 52 2 52 2 56 6	E-41ii	В				56	1	60	
E-43ii B 56 57 1 57 1 61 5 E-44ii B 55 56 1 56 1 60 5 E-45ii B 55 57 2 56 1 61 6 E-45iii B 56 58 2 58 2 62 6 E-45iv B 56 57 1 57 1 61 5 E-45iv B 55 56 1 56 1 60 5 E-45iv B 55 56 1 56 1 60 5 E-45ii B 53 54 2 54 1 59 6 E-46iii B 50 52 2 52 2 56 6							1		
E-44ii B 55 56 1 56 1 60 5 E-45ii B 55 57 2 56 1 61 6 E-45iii B 56 58 2 58 2 62 6 E-45iv B 56 57 1 57 1 61 5 E-45v B 55 56 1 56 1 60 5 E-46ii B 53 54 2 54 1 59 6 E-46iii B 50 52 2 52 2 56 6							1	61	
E-45ii B 55 57 2 56 1 61 6 E-45iii B 56 58 2 58 2 62 6 E-45iv B 56 57 1 57 1 61 5 E-45v B 55 56 1 56 1 60 5 E-46ii B 53 54 2 54 1 59 6 E-46iii B 50 52 2 52 2 56 6		В							
E-45iii B 56 58 2 58 2 62 6 E-45iv B 56 57 1 57 1 61 5 E-45v B 55 56 1 56 1 60 5 E-46ii B 53 54 2 54 1 59 6 E-46iii B 50 52 2 52 2 56 6		В					1	60	5
E-45iv B 56 57 1 57 1 61 5 E-45v B 55 56 1 56 1 60 5 E-46ii B 53 54 2 54 1 59 6 E-46iii B 50 52 2 52 2 56 6		В					1		6
E-45v B 55 56 1 56 1 60 5 E-46ii B 53 54 2 54 1 59 6 E-46iii B 50 52 2 52 2 56 6		В			2		2	62	
E-46ii B 53 54 2 54 1 59 6 E-46iii B 50 52 2 52 2 56 6		В			1		1		
E-46iii B 50 52 2 52 2 56 6		В					1		
	E-46ii	В	53	54		54	1	59	6
E-46iv B 49 50 1 50 1 54 5	E-46iii	В	50	52	2	52	2	56	6
	E-46iv	В	49	50	1	50	1	54	5

Numbers highlighted in **red** approach or exceed FHWA NAC for that activity category.

As shown in Table 7, Year 2039 no-build peak-hour noise levels ranged from 37 to 67 decibels in NSA E with the highest noise levels at the first-row receivers adjacent to I-79. Some of these no-build noise levels approach or exceed FHWA NAC for Activity Category B land uses.

Year 2039 build with the Warrendale Toll Plaza peak-hour noise levels also ranged from 37 to 67 decibels. Year 2039 build without the Warrendale Toll Plaza peak-hour noise levels ranged from 37 to 68 decibels. In both alternatives, Year 2039 noise levels do not increase 10 dB(A) or more above the existing noise level and are not considered a substantial increase.

In NSA E, the Year 2039 build with or without the Warrendale Toll Plaza noise levels will approach or exceed FHWA NAC and traffic noise impacts are predicted.

9. Traffic Noise Abatement

According to PennDOT *Publication No. 24*, when the predicted design year noise levels approach or exceed FHWA NAC or when predicted design year noise levels substantially increase, noise mitigation must be considered. Traffic noise mitigation measures may include:

- Traffic management measures,
- Horizontal and vertical alignment modifications,
- Acquisition of right-of-way for buffer zones, or
- Construction of noise barriers.

Traffic management measures which impose vehicle size or weight restrictions, lower speed limits, time-of-operation restrictions, or rerouting traffic were not considered appropriate as noise abatement measures on this project. Vehicle size or weight restrictions were not considered because it is impractical to prohibit heavy vehicles from using the Pennsylvania Turnpike (I-76). Lowering the posted speed was not considered effective because of the subsequent reduction in highway capacity and incentive to use the highway or other state routes. Time-of-operation constraints or the rerouting of traffic were also not appropriate because the highways involved are interstate or state routes.

Additional changes in vertical alignment or shifting the horizontal alignment of the Turnpike was not considered appropriate as noise abatement measures on this project. Alignment modifications are constrained by the location of adjacent residential/commercial land uses, existing highways, and the hilly terrain.

The development of buffer zones to provide noise mitigation was not considered appropriate as a noise abatement measure for this project. The amount of additional right-of-way required to create effective buffer zones would negatively impact existing residential/commercial areas.

In order to recommend a noise barrier for inclusion in a highway improvement project, PennDOT *Publication No. 24* and 23 CFR 772 require the barrier to be warranted, feasible, and reasonable. A noise barrier is warranted when the predicted design year no-barrier noise levels approach or exceed FHWA NAC or when the predicted design year no-barrier noise levels substantially increase over the existing sound levels and when other traffic noise mitigation measures are not appropriate for a project. If a noise barrier is warranted, its feasibility is investigated.

A noise barrier is considered feasible when it can provide a substantial reduction in traffic noise. Specifically, PennDOT *Publication No. 24* states that a barrier should provide an Insertion Loss of at least 5 dBA at 50% of the impacted receivers. A noise barrier is also considered feasible if it is physically possible to construct and maintain, and if it does not create restrictions to drainage, utilities, vehicular or pedestrian traffic and if it does not create safety problems such as reduced sight distances and insufficient clear zones. Once a barrier location is determined to be feasible, its reasonableness is evaluated.

According to PennDOT *Publication No. 24* issued December 12, 2013, a noise barrier is considered reasonable if it meets the barrier Design Goal (7dB Insertion Loss for at least one impacted receiver) and the Maximum Square Footage of Abatement Per Benefited Receiver (MaxSF/BR) is equal to or less than 2,000 square feet. Benefited Receivers are residential dwelling units, or Equivalent Residential Units (ERUs), which are provided with a minimum Insertion Loss of 5 dBA as determined by FHWA's Traffic Noise Model (TNM). To determine barrier reasonability, the total square footage of a barrier is divided by the number of Benefited Receivers. PennDOT *Publication No. 24* states that noise barriers with a MaxSF/BR greater than 2,000 are not considered reasonable.

For the Pennsylvania Turnpike Milepost 28-31 reconstruction project, the feasibility and economic reasonability of potential barriers were evaluated using the TNM Version 2.5.

Two build alternatives are currently proposed for this project. Both include the widening of the Turnpike mainline and other improvements. The key difference between the two alternatives is the removal of the Warrendale Toll Plaza in NSA D and NSA E. Because there were traffic noise impacts, abatement for both the Build with the Warrendale Toll Plaza alternative and the Build without the Warrendale Toll Plaza alternative were analyzed as part of this study.

Build with Warrendale Toll Plaza Alternative

NSA A

This NSA includes the commercial and light industrial sites along Commonwealth Drive, south of the Turnpike (See Figure 4). No traffic noise impacts were predicted and no noise mitigation was evaluated for NSA with either alternative.

NSA B

This NSA includes the highway oriented commercial and retail development along US 19, north of the Turnpike (See Figure 5). No traffic noise impacts were predicted and no noise mitigation was evaluated for NSA B with either alternative.

NSA C

This NSA includes the commercial and light industrial sites along Commonwealth Drive near Thorn Hill Road, south of the Turnpike (See Figure 6). No traffic noise impacts were predicted and no noise mitigation was evaluated for NSA C with either alternative.

NSA D

This NSA includes the residential area along Northgate Drive, south of the Turnpike (See Figure 7). NSA D also includes a new residential development under construction in 2014 at the western end of Northgate Drive and office buildings, restaurants, and other commercial sites west of Mt. Pleasant Road. East of Mt. Pleasant Road, NSA D is primarily residential. As shown in Table 6, Year 2039 build peak-hour noise levels ranged from 57 to 70 decibels. These Year 2039 build noise levels will approach or exceed FHWA NAC in the Build with the Warrendale Toll Plaza alternative.

Barrier D – West

For the receiver sites in the new residential development at the western end of Northgate Drive, it was determined that not even a 20' high noise barrier along the eastbound Turnpike mainline could provide a substantial reduction (>5 dBA) in noise at any site due to the noise generated by traffic on I-79. (See Table 8, Figure 7, Appendix 7, and Appendix 8).

Barrier D - East

For the existing residential sites just east of Mt. Pleasant Road, it was determined that Barrier D – East, a 690' long, 12'-16' high noise barrier along the eastbound Turnpike mainline, would be feasible because it could reduce noise levels at least 5 decibels at 100% of the impacted receivers, it is physically possible to construct without creating a safety problem, it does not restrict maintenance access, and it allows for the adequate functioning of highway drainage (See Table 8, Figure 7, Appendix 7, and Appendix 9).

Barrier D – East can also be considered reasonable because it meets the barrier Design Goal of a 7 decibel insertion loss for at least one receiver and exterior noise levels at 100% of the impacted receivers will be reduced to the low-60-decibel range. However, the square footage of the most effective barrier configuration is 2,602 square feet per benefited receiver. PennDOT *Publication No. 24* states that the Maximum Square Footage of Abatement Per Benefited Receiver (MaxSF/BR) must be equal to or less than 2,000 square feet. Note: Multiple configurations for Barrier D – East were evaluated in order to confirm that no other barrier height could provide feasible and reasonable noise mitigation (See Appendices 7 and 9).

Table 8 – Build with Warrendale Toll Plaza
NSA D Barrier D – West and Barrier D – East
Predicted Noise Reduction dB(A)

Receiver	NAC Activity Category	Build Alternative without Barrier	Build Alternative with Barrier	Noise Reduction (IL)
D-1	В	69	68	1
D-2	В	68	68	0
D-3	В	68	67	1
D-4	В	68	67	1
D-5	В	67	67	0
D-6	С	65	64	1
D-7	C	64	63	1

D-8	В	64	64	0
D-9	В	64	63	1
D-10	В	63	62	1
D-11	В	63	62	1
D-12	В	62	61	1
D-13	В	62	61	1
D-14	В	62	61	1
D-15	В	62	61	1
D-16	В	62	61	1
D-17	В	62	61	1
D-1ii	В	67	67	0
D-2ii	В	67	67	0
D-3ii	В	67	66	1
D-4ii	В	66	66	0
D-7ii	В	63	63	0
D-8ii	В	63	62	1
D-10ii	В	62	62	0
D-11ii	В	62	61	1
D-12ii	В	62	61	1
D-13ii	В	62	60	2
D-14ii	В	62	60	2
D-15ii	В	61	60	1
D-16ii	В	61	60	1
D-17ii	В	61	60	1
D-33	F	71	61	10
D-34	В	69	64	5
D-33ii	В	68	61	7
D-33iii	В	64	60	4
D-33iv	В	62	58	4
D-34ii	В	68	61	7
D-34iii	В	66	61	5
D-34iv	В	63	60	3
NT 1 1 1 1 1 1 1 .	1. 1	1 1 1 1 1 1 1 1 1 1 1		

Numbers highlighted in **red** approach or exceed FHWA NAC for that activity category.

The construction of Barrier D -- West can be considered warranted. Because it could not provide a substantial reduction (>5 dBA) in noise at any site, it is not feasible and construction is not recommended as part of the Build with Warrendale Toll Plaza alternative.

The construction of Barrier D -- East can be considered warranted and feasible. However, because the square footage per benefited receiver exceeds 2,000 square feet, it is not reasonable and is not recommended as part of the Build with Warrendale Toll Plaza alternative.

NSA E

This NSA includes the existing and planned hilltop residential areas north of the Turnpike (See Figure 8). The western portions of NSA E overlook I-79 and the eastern portions overlook the Turnpike and the Warrendale Toll Plaza. As shown in Table 7, Year 2039 build peak-hour noise levels ranged from 37 to 67 decibels. These Year 2039 build noise levels will approach or exceed FHWA NAC in the Build with the Warrendale Toll Plaza alternative.

Barrier E

For the impacted receiver sites in the western portions of NSA E overlooking I-79, it was determined that not even a 20' high series of noise barriers along the westbound Turnpike mainline could provide a substantial reduction (>5 dBA) in noise at any site due to the noise generated by traffic on I-79. (See Table 9, Figure 8, Appendix 7 and Appendix 9).

Table 9 – Build with Warrendale Toll Plaza NSA E -- Barrier E (3 barriers) Predicted Noise Reduction dB(A)

Receiver	NAC Activity Category	Build Alternative without Barrier	Build Alternative with Barrier	Noise Reduction (IL)
E-1	В	67	67	0
E-2	В	67	67	0
E-3	В	67	67	0
E-4	В	67	67	0
E-5	В	67	67	0
E-6	В	67	67	0
E-7	В	67	66	1
E-8	В	67	66	1
E-9	В	66	66	0
E-10	В	66	66	0
E-11	В	66	65	1
E-12	В	66	66	0
E-13	В	67	66	1
E-14	В	67	66	1
E-15	В	67	66	1
E-16	В	67	66	1
E-17	В	66	65	1
E-18	В	65	64	1
E-19	В	63	62	1
E-20	В	62	61	1
E-21	В	61	60	1
E-22	В	59	59	0
E-23	В	55	54	1
E-1ii	В	56	56	0
E-2ii	В	60	60	0
E-3ii	В	61	61	0
E-3iii	В	61	61	0
E-4ii	В	61	61	0

E-5ii	В	62	62	0
E-5iii	В	59	59	0
E-6ii	В	62	62	0
E-6iii	В	58	58	0
E-7ii	В	62	62	0
E-7iii	В	58	58	0
E-8ii	В	62	62	0
E-8iii	В	57	57	0
E-9ii	В	62	62	0
E-10ii	В	59	59	0
E-10iii	В	59	59	0
E-16ii	В	60	60	0
E-17ii	В	59	59	0
E-18ii	В	57	57	0
E-19ii	В	56	56	0

Numbers highlighted in **red** approach or exceed FHWA NAC for that activity category.

The construction of Barrier E can be considered warranted. Because it could not provide a substantial reduction (>5 dBA) in noise at any site, it is not feasible and construction is not recommended as part of the Build with Warrendale Toll Plaza alternative.

Build Without Warrendale Toll Plaza Alternative

NSA A

This NSA includes the commercial and light industrial sites along Commonwealth Drive, south of the Turnpike (See Figure 4). No traffic noise impacts were predicted and no noise mitigation was evaluated for NSA A in the Build without the Warrendale Toll Plaza alternative.

NSA B

This NSA includes the highway oriented commercial and retail development along US 19, north of the Turnpike (See Figure 5). No traffic noise impacts were predicted and no noise mitigation was evaluated for NSA B in the Build without the Warrendale Toll Plaza alternative.

NSA C

This NSA includes the commercial and light industrial sites along Commonwealth Drive near Thorn Hill Road, south of the Turnpike (See Figure 6). No traffic noise impacts were predicted and no noise mitigation was evaluated for NSA C in the Build without the Warrendale Toll Plaza alternative.

NSA D

This NSA includes the residential area along Northgate Drive, south of the Turnpike (See Figure 7). NSA D also includes a new residential development under construction in 2014 at the western end of Northgate Drive and office buildings, restaurants, and other commercial sites west of Mt. Pleasant Road. East of Mt. Pleasant Road, NSA D is primarily residential. As shown in Table 6, Year 2039 build without the Warrendale Toll Plaza peak-hour noise levels ranged from 58 to 72 decibels. These Year 2039 build noise levels will approach or exceed FHWA NAC.

Barrier D - West

For the receiver sites in the new residential development at the western end of Northgate Drive, it was determined that not even a 20' high noise barrier along the eastbound Turnpike mainline could provide a substantial reduction (>5 dBA) in noise at any impacted site due to the noise generated by traffic on I-79. (See Table 10, Figure 9, Appendix 8, and Appendix 9).

Barrier D - East

For the existing residential sites just east of Mt. Pleasant Road, it was determined that Barrier D – East, a 689' long, 12-16' high noise barrier along the eastbound Turnpike mainline, would be feasible because it could reduce noise levels at least 5 decibels at 100% of the impacted receivers, it is physically possible to construct without creating a safety problem, it does not restrict maintenance access, and it allows for the adequate functioning of highway drainage (See Table 10, Figure 9, Appendix 8, and Appendix 9).

Barrier D – East can also be considered reasonable because it meets the barrier Design Goal of a 7 decibel insertion loss for at least one receiver, exterior noise levels at 100% of the impacted receivers will be reduced to the low-60-decibel range, and the square footage of the barrier configuration is 1,735 square feet per benefited receiver. PennDOT *Publication No. 24* states that the Maximum Square Footage of Abatement Per Benefited Receiver (MaxSF/BR) must be equal to or less than 2,000 square feet. Note: Multiple configurations for Barrier D – East were evaluated in order to confirm the optimal configuration that provides feasible and reasonable noise mitigation (See Appendices 8 and 9).

Existing Barrier Gap Closure

It was determined that the removal of the Warrendale Toll Plaza would create a traffic noise impact to receiver D-38vi, which is a residential receiver located along the south side of Warrendale Bayne Road. In an effort to provide mitigation at this site, closing the gap for the Warrendale Toll Plaza access road in the existing noise barriers was analyzed. TNM 2.5 showed that closing the gap with a 20' noise wall would only reduce the noise level at the impacted receiver by 0.3 decibels and a 1.3 decibel maximum reduction at other receivers nearby. Because the additional noise wall does not provide at least 5 decibels of reduction at the impacted receiver, closing the gap is not considered feasible noise mitigation and not recommended.

Table 10 – Build without Warrendale Toll Plaza NSA D -- Barrier D – West and Barrier D – East Predicted Noise Reduction dB(A)

Receiver	NAC Activity Category	Build Alternative without Barrier	Build Alternative with Barrier	Noise Reduction (IL)
D-1	В	69	68	1
D-2	В	68	68	0
D-3	В	68	67	1
D-4	В	68	67	1
D-5	В	67	67	0
D-6	C	65	64	1
D-7	С	64	63	1
D-8	В	64	64	0
D-9	В	64	63	1
D-10	В	63	62	1
D-11	В	63	62	1
D-12	В	62	61	1
D-13	В	62	61	1
D-14	В	62	61	1
D-15	В	62	61	1
D-16	В	62	61	1
D-17	В	62	61	1
D-1ii	В	67	67	0
D-2ii	В	67	67	0
D-3ii	В	67	66	1
D-4ii	В	66	66	0
D-7ii	В	63	63	0
D-8ii	В	63	62	1
D-10ii	В	62	62	0
D-11ii	В	62	61	1
D-12ii	В	62	61	1
D-13ii	В	62	60	2
D-14ii	В	62	60	2
D-15ii	В	61	60	1
D-16ii	В	61	60	1
D-17ii	В	61	60	1
D-33	F	72	62	10
D-34	В	72	64	8
D-33ii	В	67	61	6
D-33iii	В	65	60	5
D-33iv	В	63	58	5
D-34ii	В	68	61	7
D-34iii	В	67	62	5
D-34iv	В	64	60	4

Numbers highlighted in **red** approach or exceed FHWA NAC for that activity category.

The construction of Barrier D -- West can be considered warranted. Because it could not provide a substantial reduction (>5 dBA) in noise at any site, it is not feasible and construction is not recommended as part of the Build without Warrendale Toll Plaza alternative.

The construction of Barrier D -- East can be considered warranted and feasible. Furthermore, it is reasonable given that it meets the 7dB Insertion Loss Design Goal, noise levels at 100% of the impacted receivers will be reduced to the low-60-decibel range, and the square footage per benefited receiver is less than 2,000 square feet. Therefore, the construction of Barrier D -- East is recommended as part of the Build without Warrendale Toll Plaza alternative.

NSA E

This NSA includes the existing and planned hilltop residential areas north of the Turnpike (See Figure 8). The western portions of NSA E overlook I-79 and the eastern portions overlook the Turnpike and the Warrendale Toll Plaza. As shown in Table 7, Year 2039 build peak-hour noise levels ranged from 37 to 67 decibels. These Year 2039 build noise levels will approach or exceed FHWA NAC.

Barrier E

For the impacted receiver sites in the western portions of NSA E overlooking I-79, it was determined that not even a 20' high series of noise barriers along the westbound Turnpike mainline could provide a substantial reduction (>5 dBA) in noise at any site due to the noise generated by I-79 traffic (See Table 11, Figure 10, Appendix 8 and Appendix 9).

Barrier E -- East

For the existing residential sites just west of Mt. Pleasant Road, it was determined that Barrier E -- East, a 1100' long, 20' high noise barrier along the westbound Turnpike mainline, would be feasible because it could reduce noise levels at least 5 decibels at 100% of the impacted receivers, it is physically possible to construct without creating a safety problem, it does not restrict maintenance access, and it allows for the adequate functioning of highway drainage (See Table 11, Figure 10, Appendix 8 and Appendix 9).

However, Barrier E -- East cannot be considered reasonable because the square footage of the most effective barrier configuration is 3,721 square feet per benefited receiver. PennDOT *Publication No. 24* states that the Maximum Square Footage of Abatement Per Benefited Receiver (MaxSF/BR) must be equal to or less than 2,000 square feet. Note: Multiple configurations for Barrier E -- East were evaluated in order to confirm that no other barrier height could provide feasible and reasonable noise mitigation (See Appendices 8 and 9).

Table 11 - Build without Warrendale Toll Plaza

NSA E -- Barrier E (3 barriers), Barrier E -- East Predicted Noise Reduction dB(A)

Receiver	NAC Activity Category	Build Alternative without Barrier	Build Alternative with Barrier	Noise Reduction (IL)
E-1	В	67	67	0
E-2	В	67	67	0
E-3	В	67	67	0
E-4	В	67	67	0
E-5	В	67	67	0
E-6	В	67	67	0
E-7	В	67	66	1
E-8	В	67	66	1
E-9	В	66	66	0
E-10	В	66	66	0
E-11	В	66	65	1
E-12	В	66	66	0
E-13	В	67	66	1
E-14	В	67	66	1
E-15	В	67	66	1
E-16	В	67	66	1
E-17	В	66	65	1
E-18	В	65	64	1
E-19	В	63	62	1
E-20	В	62	61	1
E-21	В	61	60	1
E-22	В	59	59	0
E-23	В	55	54	1
E-36	В	68	63	5
E-37	В	63	63	0
E-1ii	В	56	56	0
E-2ii	В	60	60	0
E-3ii	В	61	61	0
E-3iii	В	61	61	0
E-4ii	В	61	61	0
E-5ii	В	62	62	0
E-5iii	В	59	59	0
E-6ii	В	62	62	0
E-6iii	В	58	58	0
E-7ii	В	62	62	0
E-7iii	В	58	58	0
E-8ii	В	62	62	0
E-8iii	В	57	57	0
E-9ii	В	62	62	0
E-10ii	В	59	59	0
E-10iii	В	59	59	0
E-16ii	В	60	60	0

E-17ii	В	59	59	0
E-18ii	В	57	57	0
E-19ii	В	56	56	0
E-36ii	В	65	59	6
E-36iii	В	63	55	8
E-36iv	В	58	52	6
E-36v	В	61	54	7
E-36vi	В	60	53	7
E-37ii	В	60	59	1
E-37iii	В	57	56	1
E-37iv	В	55	54	1
E-37v	В	56	56	0

Numbers highlighted in **red** approach or exceed FHWA NAC for that activity category.

The construction of Barrier E can be considered warranted. Because it could not provide a substantial reduction (>5 dBA) in noise at any site, it is not feasible and construction is not recommended as part of the Build without Warrendale Toll Plaza alternative.

The construction of Barrier -- E East can be considered warranted and feasible. However, because the square footage per benefited receiver exceeds 2,000 square feet, it is not reasonable and is not recommended as part of the Build without Warrendale Toll Plaza alternative.

10. Construction Noise

Project specific construction-related noise levels have not been predicted for the Pennsylvania Turnpike Milepost 28-31 reconstruction project. However, it can be assumed that all developed land uses and activities adjacent to the proposed project will be temporarily affected by noise generated from power-operated equipment utilized in highway construction. Such equipment may include, however is not limited to, front loaders, backhoes, bulldozers, trucks, tractors, scrapers, graders, pavers, roller compactors, slip-form equipment, concrete mixers, cranes, compressors, generators, pumps, jack hammers, pneumatic tools, saws, and vibrators. This equipment will operate intermittently and usually produces noise in the range of 70 - 98 dBA at a distance of approximately 50 feet.

To minimize these noise effects, the contractor shall use only equipment adapted to operate with the least possible noise and shall conduct his work so that annoyance to occupants of nearby property and the general public will be reduced to a minimum.

11. Conclusions

Build with Warrendale Toll Plaza Alternative

Because traffic noise impacts were predicted in NSA D and NSA E, noise mitigation was evaluated for the Build with the Warrendale Toll Plaza alternative.

NSA A

This NSA includes the commercial and light industrial sites along Commonwealth Drive, south of the Turnpike (See Figure 4). No traffic noise impacts were predicted and no noise mitigation was evaluated for NSA A with either alternative.

NSA B

This NSA includes the highway oriented commercial and retail development along US 19, north of the Turnpike (See Figure 5). No traffic noise impacts were predicted and no noise mitigation was evaluated for NSA B with either alternative.

NSA C

This NSA includes the commercial and light industrial sites along Commonwealth Drive near Thorn Hill Road, south of the Turnpike (See Figure 6). No traffic noise impacts were predicted and no noise mitigation was evaluated for NSA C with either alternative.

NSA D

This NSA includes the residential area along Northgate Drive, south of the Turnpike (See Figure 7). NSA D also includes a new residential development under construction in 2014 at the western end of Northgate Drive and office buildings, restaurants, and other commercial sites west of Mt. Pleasant Road. East of Mt. Pleasant Road, NSA D is primarily residential. Some Year 2039 build peak-hour noise levels will approach or exceed FHWA NAC and are considered an impact per PennDOT *Publication No. 24* with both alternatives.

The construction of a noise barrier for the new residential development at the western end of Northgate Drive can be considered warranted. Because not even a 20' high noise barrier along the Turnpike could provide a substantial reduction (>5 dBA) in noise at any site, noise barriers are not feasible and not recommended as part of the Build with Warrendale Toll Plaza alternative.

The construction of a noise barrier for the existing residences east of Mt. Pleasant Road can be considered warranted and feasible. However, because the square footage per benefited receiver exceeds 2,000 square feet, the noise barrier is not reasonable and is not recommended as part of the Build with Warrendale Toll Plaza alternative.

NSA E

This NSA includes the existing and planned hilltop residential areas north of the Turnpike (See Figure 8). The western portions of NSA E overlook I-79 and the eastern portions overlook the Turnpike and the Warrendale Toll Plaza. Some Year 2039 build peak-hour noise levels will approach or exceed FHWA NAC and are considered an impact per PennDOT *Publication No. 24* with both alternatives.

The construction of noise barriers for the impacted receiver sites in the western portions of NSA E overlooking I-79 can be considered warranted. Because not even a 20' high series of noise barriers along the Turnpike could provide a substantial reduction (>5 dBA) in noise at any site, noise barriers are not feasible and not recommended as part of the Build with Warrendale Toll Plaza.

	Table 12 – Build with Warrendale Toll Plaza Summary of Impacts and Mitigation Evaluation									
NSA	Number of Receivers	Number of Impacted Receivers	Barrier Name	Barrier Length	Barrier Height	Barrier Sq. Feet	% Impacted Receivers > 5dB IL ₁	Receivers > 7dB IL2	Benefited Receivers ₃	Sq. Feet per Benefited Receiver4
A	1	0		n/	a			n/a	ı	
В	34	0		n/a n/a						
С	16	0		n/a				n/a	ı	
D	117	24	D - All	4063'	14'	56,882	13%	1	15	3,792
D	76	21	D - West	2971'	20'	59,420	0%	0	0	n/a
D	15	3	D-East	689'	12'-16'	10,407	100%	1	4	2,602
D	45	3	D-East Extended	2003'	16'	32,048	100%	1	11	2,913
Е	136	17	Е	2250'	20'	45,000	0%	0	0	n/a

- 1. Noise barriers must reduce noise levels at least 5 decibels at 50% of the impacted receivers to be considered feasible.
- 2. Noise barriers must provide a 7dB Insertion Loss for at least one receiver to be considered reasonable.
- 3. Benefited Receivers = Impacted Receivers or Non-impacted Receivers w/ > 5 dB IL
- 4. To consider the barrier reasonable the Maximum Square Footage of Abatement Per Benefited Receiver (MaxSF/BR) must be equal to or less than 2,000 square feet.

Note: In each NSA, multiple barrier heights were evaluated in order to confirm that no other barrier height could provide feasible and cost-effective noise mitigation (See Appendix 8).

Build Without Warrendale Toll Plaza Alternative

NSA A

This NSA includes the commercial and light industrial sites along Commonwealth Drive, south of the Turnpike (See Figure 4). No traffic noise impacts were predicted and no noise mitigation was evaluated for NSA A with either alternative.

NSA B

This NSA includes the highway oriented commercial and retail development along US 19, north of the Turnpike (See Figure 5). No traffic noise impacts were predicted and no noise mitigation was evaluated for NSA B with either alternative.

NSA C

This NSA includes the commercial and light industrial sites along Commonwealth Drive near Thorn Hill Road, south of the Turnpike (See Figure 6). No traffic noise impacts were predicted and no noise mitigation was evaluated for NSA C with either alternative.

NSA D

This NSA includes the residential area along Northgate Drive, south of the Turnpike (See Figure 9). NSA D also includes a new residential development under construction in 2014 at the western end of Northgate Drive and office buildings, restaurants, and other commercial sites west of Mt. Pleasant Road. East of Mt. Pleasant Road, NSA D is primarily residential. Some Year 2039 build peak-hour noise levels will approach or exceed FHWA NAC and are considered an impact per PennDOT *Publication No. 24* with both alternatives.

The construction of a noise barrier for the new residential development at the western end of Northgate Drive can be considered warranted. Because not even a 20' high noise barrier along the Turnpike could provide a substantial reduction (>5 dBA) in noise at any site, noise barriers are not feasible and not recommended as part of the Build without Warrendale Toll Plaza alternative.

The construction of a noise barrier for the existing residences east of Mt. Pleasant Road can be considered warranted and feasible. However, it is reasonable given that it meets the 7dB Insertion Loss Design Goal, noise levels at 100% of the impacted receivers will be reduced to the low-60-decibel range, and the square footage per benefited receiver is less than 2,000 square feet. Therefore, the construction of Barrier D -- East is recommended as part of the Build without Warrendale Toll Plaza alternative.

NSA E

This NSA includes the existing and planned hilltop residential areas north of the Turnpike (See Figure 10). The western portions of NSA E overlook I-79 and the eastern portions overlook the Turnpike and the Warrendale Toll Plaza. Some Year 2039 build peak-hour noise levels will approach or exceed FHWA NAC and are considered an impact per PennDOT *Publication No. 24* with both alternatives.

The construction of noise barriers for the impacted receiver sites in the western portions of NSA E overlooking I-79 can be considered warranted. Because not even a 20' high series of noise barriers along the Turnpike could provide a substantial reduction (>5

dBA) in noise at any site, noise barriers are not feasible and not recommended as part of the Build without Warrendale Toll Plaza alternative.

The construction of a noise barrier for the existing residences west of Mt. Pleasant Road can be considered warranted and feasible. However, because the square footage per benefited receiver exceeds 2,000 square feet, the noise barrier is not reasonable and is not recommended as part of the Build without Warrendale Toll Plaza alternative.

							dale Toll Plaza			
NSA	Number of Receivers	Number of Impacted Receivers	Barrier Name	Barrier Length	Barrier Height	Barrier Sq. Feet	% Impacted Receivers > 5dB IL ₁	Receivers > 7dB IL ₂	Benefited Receivers ₃	Sq. Feet per Benefited Receiver ₄
A	1	0		n/	a			n/a	ı	
В	34	0		n/	a			n/a	l	
С	16	0		n/	a			n/a	l	
D	117	27	D - All	4063'	12'	48,755	13%	1	22	2,216
D	76	21	D - West	2971'	20'	59,425	0%	0	0	n/a
D	15	4	D-East	689'	12'-16'	10,407	100%	2	6	1,735
D	45	4	D-East Extended	2003'	12'-14'	26,663	100%	3	8	3,333
Е	136	16	Е	2251'	20'	45,020	0%	0	0	n/a
Е	11	1	E East	1116'	20'	22,320	100%	0	6	n/a

- 1. Noise barriers must reduce noise levels at least 5 decibels at 50% of the impacted receivers to be considered feasible.
- 2. Noise barriers must provide a 7dB Insertion Loss for at least one receiver to be considered reasonable.
- 3. Benefited Receivers = Impacted Receivers or Non-impacted Receivers w/ > 5 dB IL
- 4. To consider the barrier reasonable the Maximum Square Footage of Abatement Per Benefited Receiver (MaxSF/BR) must be equal to or less than 2,000 square feet.

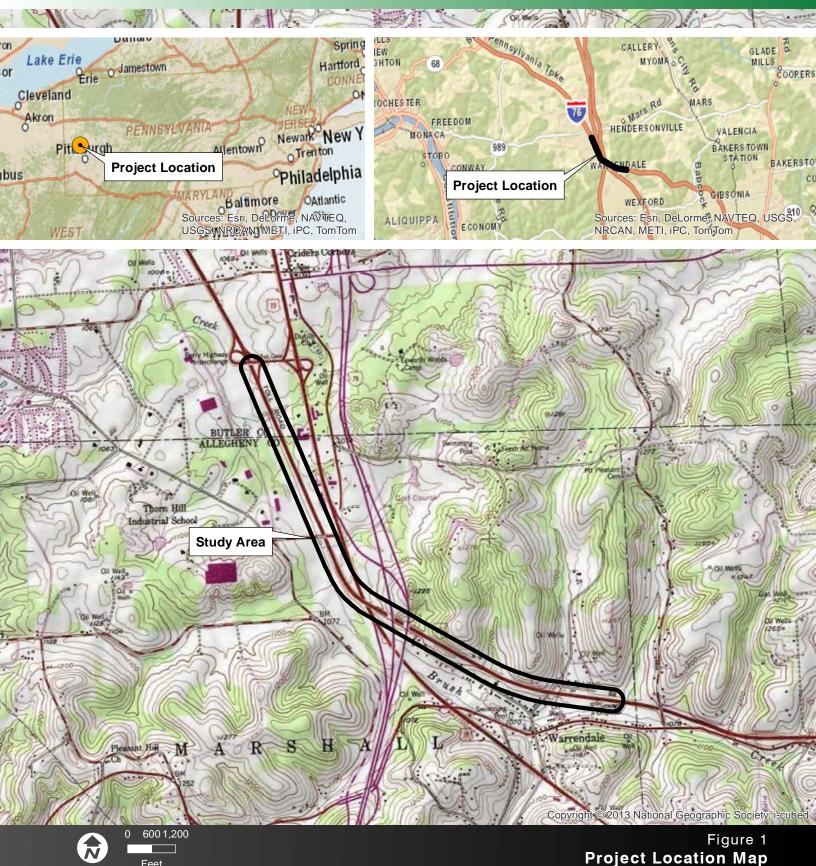
Note: In each NSA, multiple barrier heights were evaluated in order to confirm that no other barrier height could provide feasible and cost-effective noise mitigation (See Appendix 8).

Noise barrier Warranted, Feasible, and Reasonable Worksheets have been prepared for the Barriers listed in Tables 12 and 13 (See Appendix 10).

12. Public Involvement

PennDOT *Publication No. 24* indicates that the public involvement relative to traffic noise should not be conducted until the Preliminary Design Noise Analysis Report has been approved by FHWA and/or the PennDOT Bureau of Design and PennDOT Central Office Environmental staff.

To date, no public involvement relative to traffic noise has been conducted for the Pennsylvania Turnpike Milepost 28-31 reconstruction project.

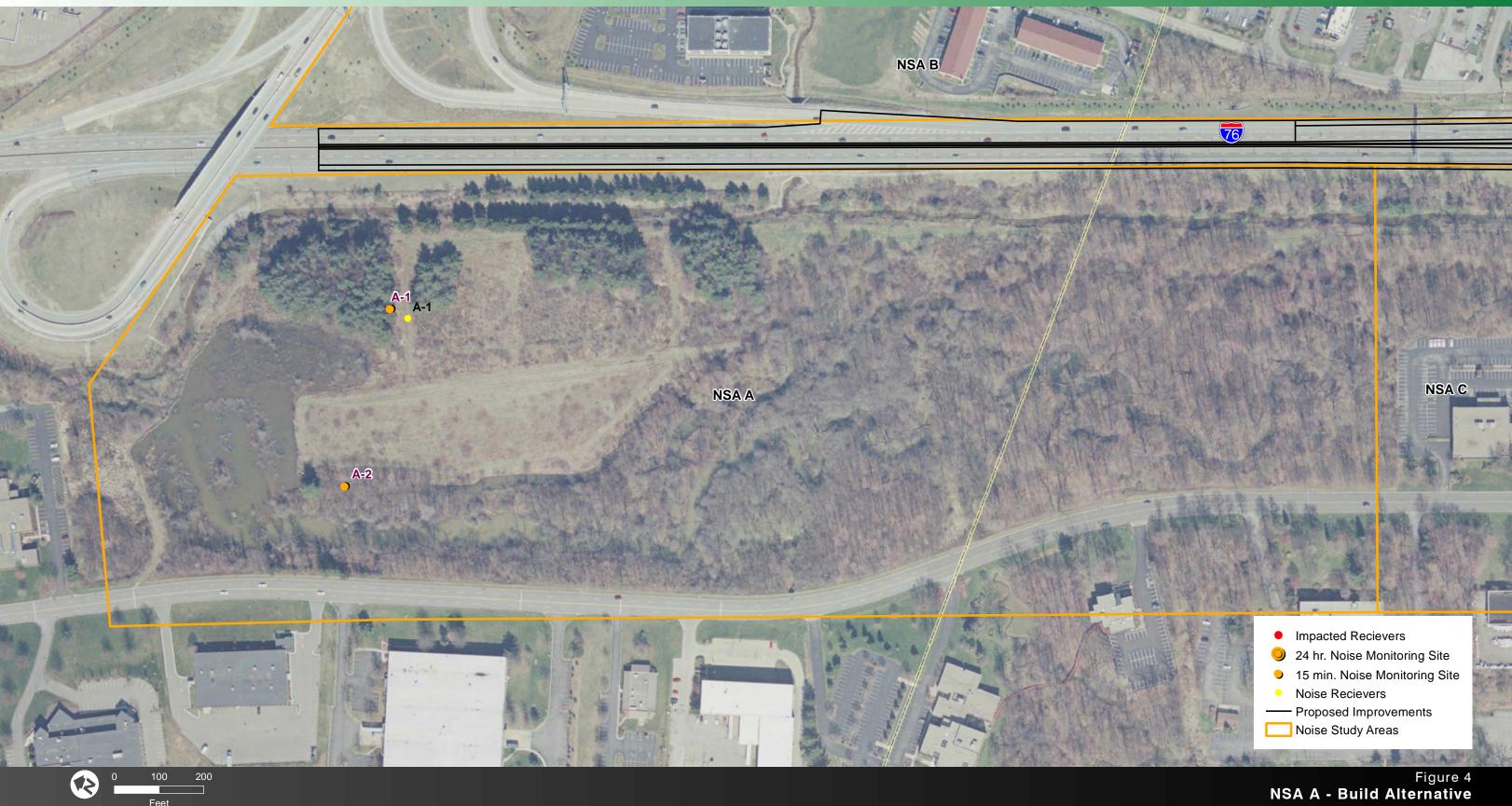


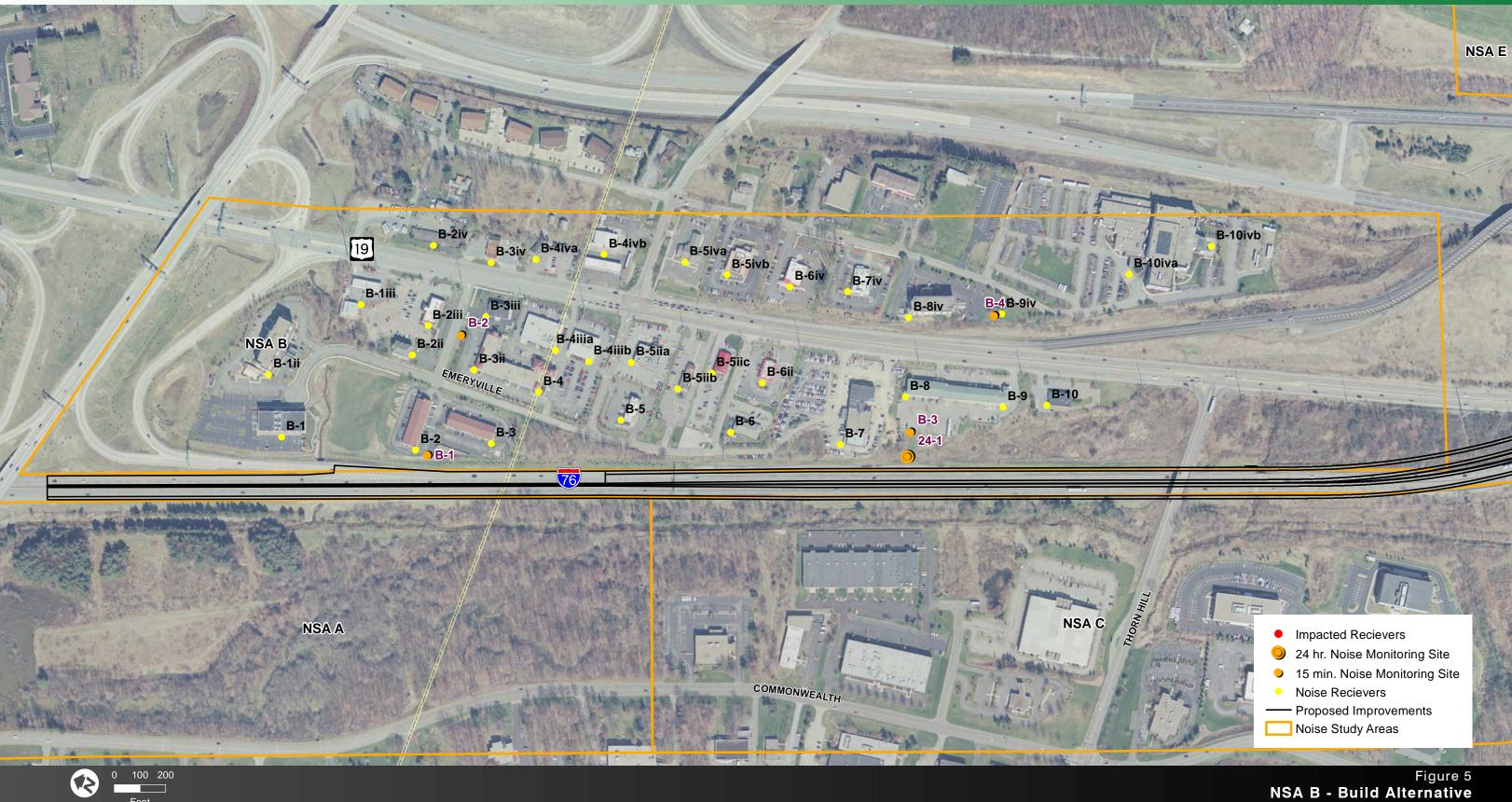
Figures

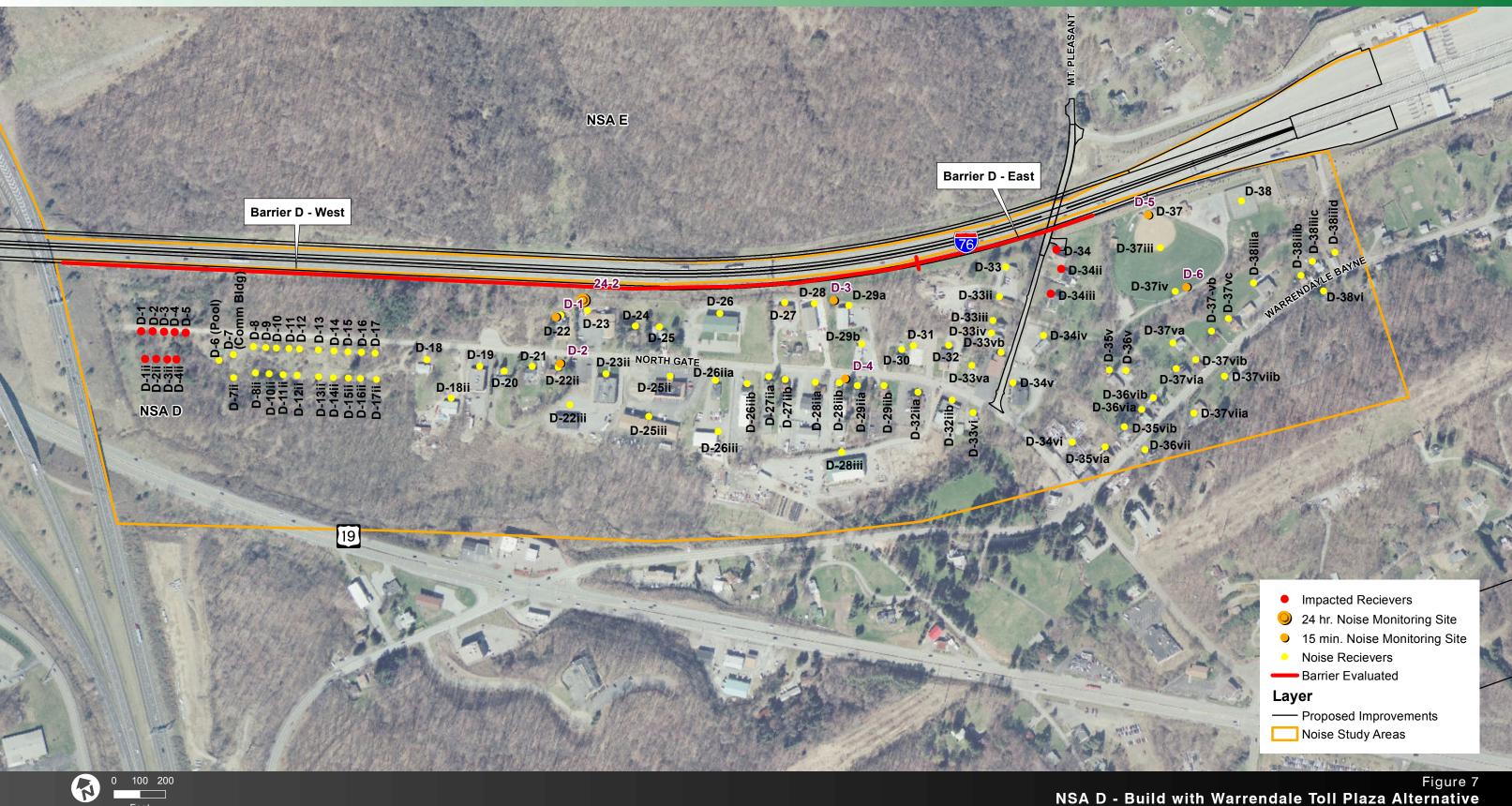
Noise Analysis Report

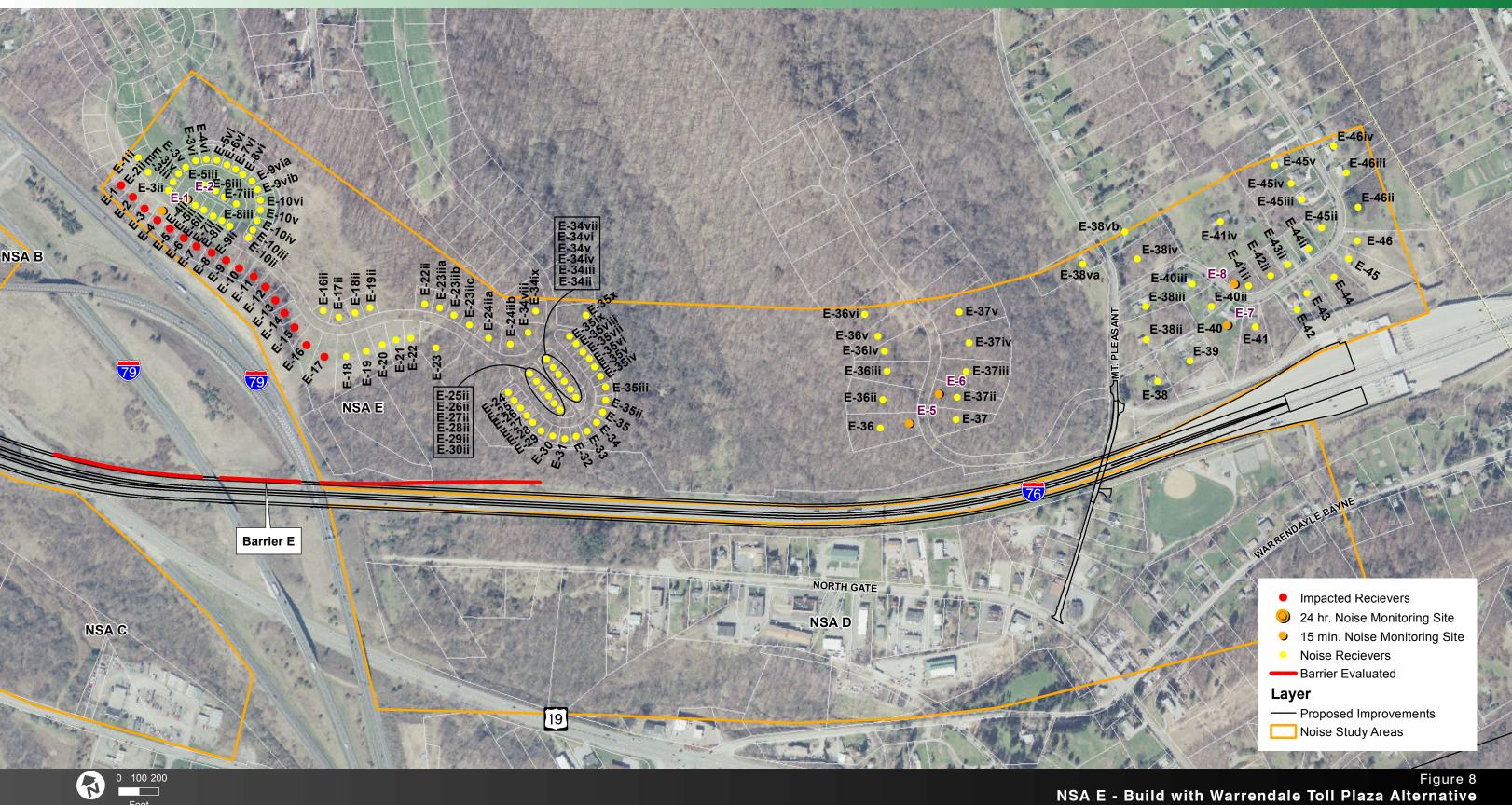
Turnpike Total Reconstruction MP 28-31

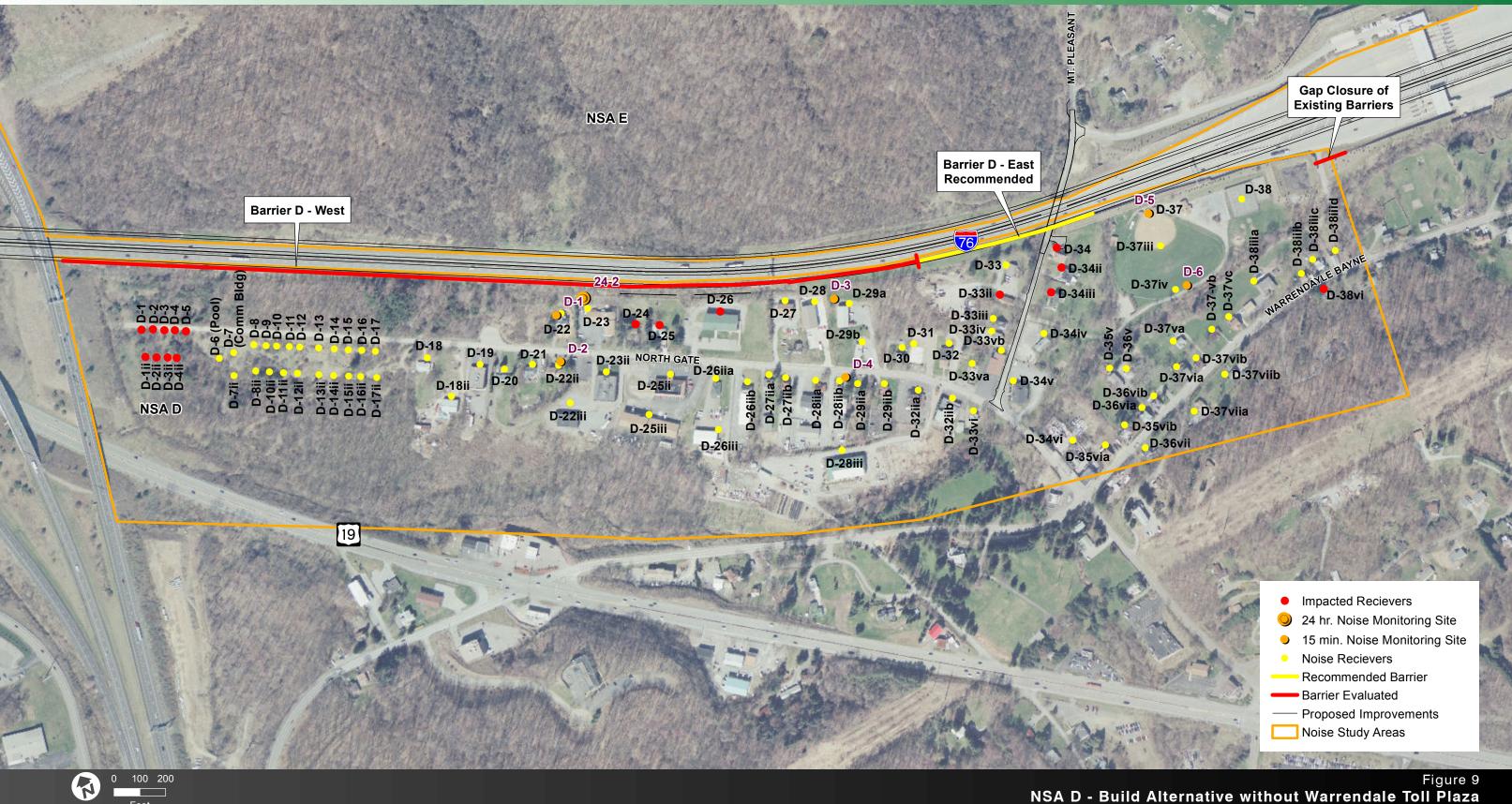
Feet

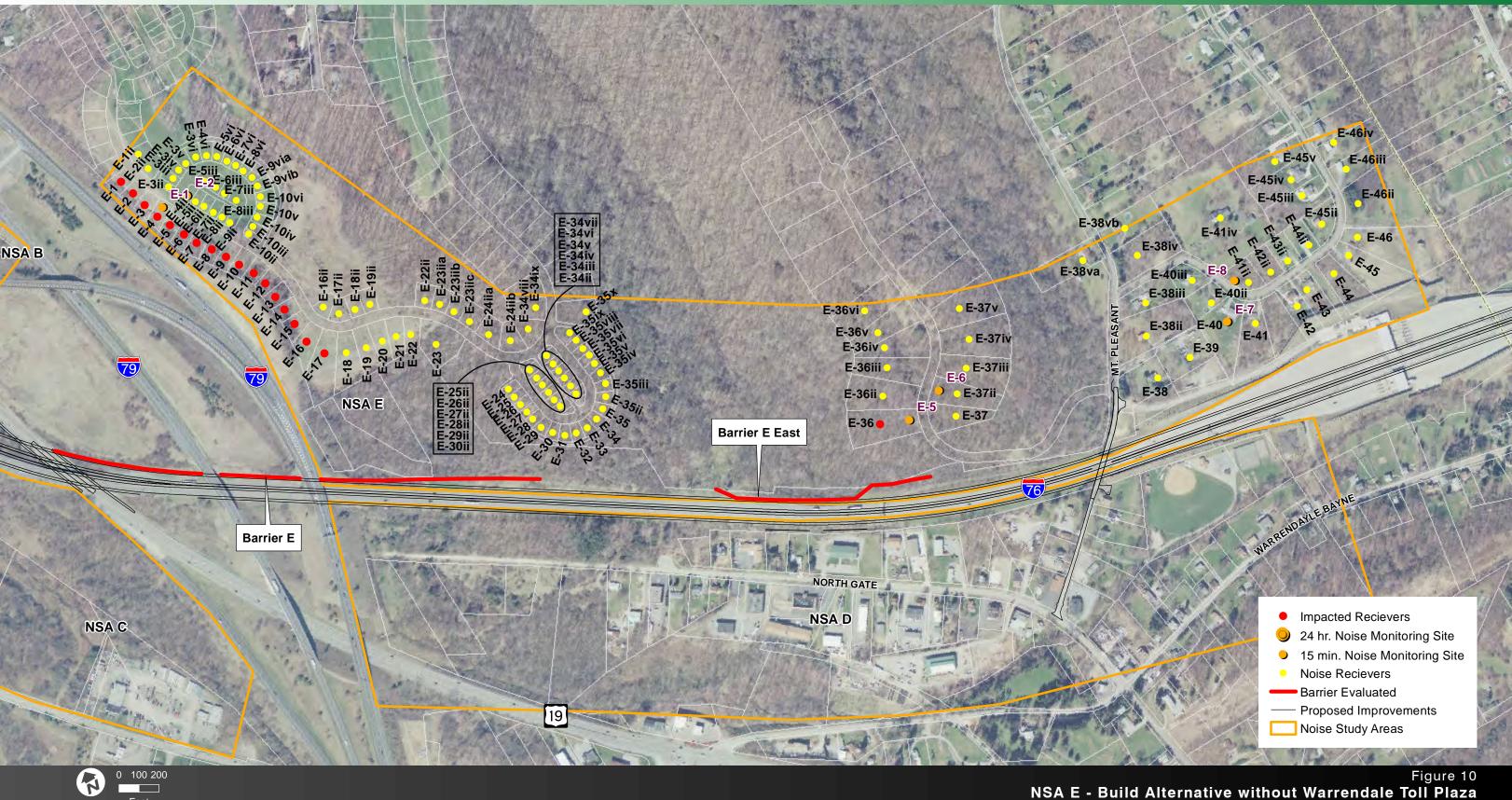


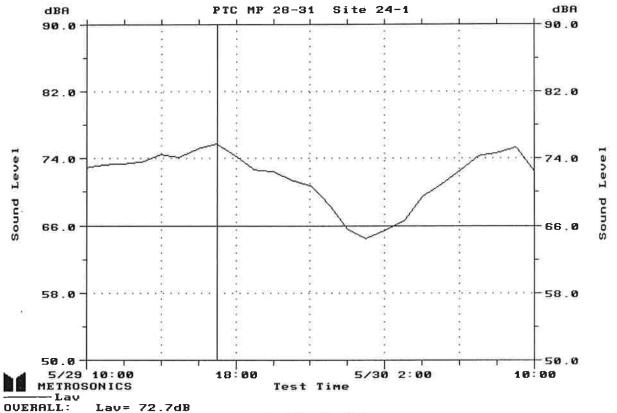








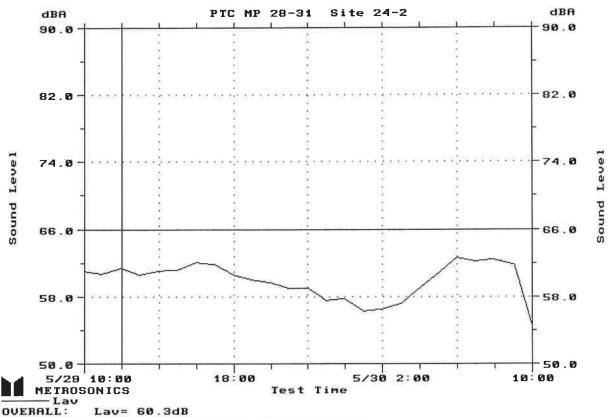




Appendix 1

Long-term Noise Monitoring Data

```
Filename.....31001
Logger.....db-3100 SN 1977
Test Location....PTC MP 28-31 Site 24-1
Employee Name....VRM
Employee Number...
Department..... Environmental Assessment
Comment Field 1...19025 US19 (Motel 6)
Comment Field 2...See Weather Data
                                              #4...
Numeric Code #1...
                        #2...
                                   #3...
                                                          #5...
```



OUERALL: Lav= 72.7dB SCAN LINE: 5/29/14 17:06:01 Lav= 75.7dB

Project: PA Turnpike MP 28-31

Project: PA rumpik	e IVIF 20-51				
		Observer:	VRM		
Site ID: 24-1	Date: 5/29/14	Location: /9025			
Site Surface: BRUSH		Landmark: YELLOW	PAST NEAP		
Near Lane U-760 Direction:	Pavement Type:		FENCE		
Temperature:	Cloud Cover:	Wind Speed: 0-3 MPH	Wind Direction:		
Start Time: /4	1:06:00 AM	Stop Time: 5/30/	10:06:00 AM 640		
Noise Sources: 1-76 TRAFFIC, \$ IRPS					
PLAN VIEW	1		9 8		
2	PARKING	MOTEL PARKING LOT	24-1 X		
ELEVATION VIEW					
MOTEL 6		24-1 LA FENCE	1.76		

Meter No: ______| 977 ____

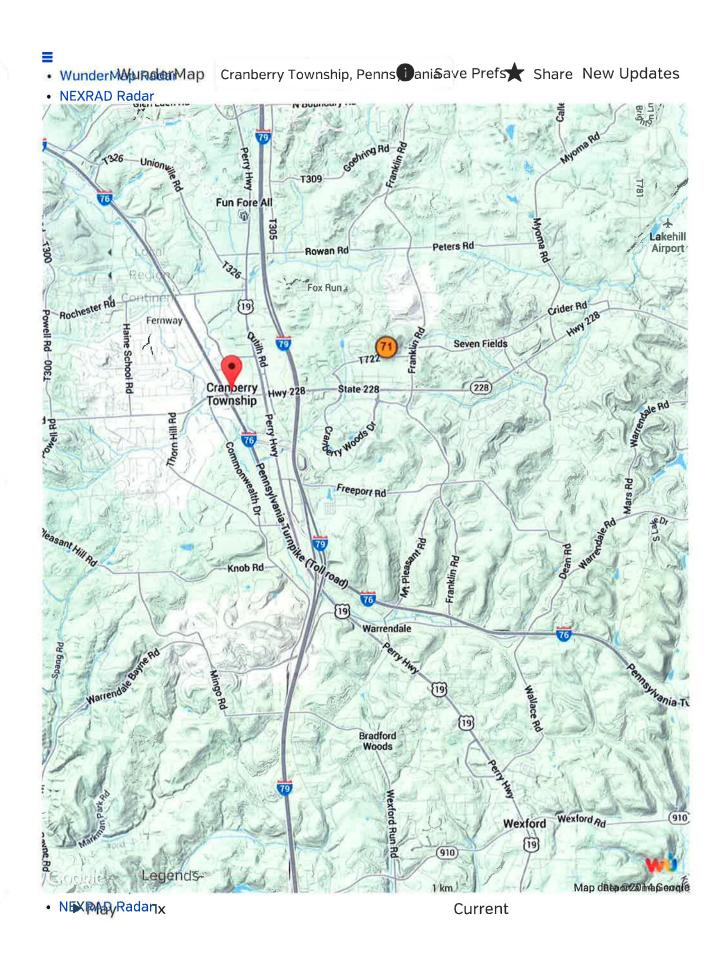
```
Filename.....31002
Logger......db-3100 SN 1976
Test Location....PTC MP 28-31 Site 24-2
Employee Name....VRM
Employee Number ...
Department..... Environmental Assessment
Comment Field 1...380 Northgate (Comm Bldg)
Comment Field 2... See Weather Data
                                                           #5...
                                               #4...
Numeric Code #1...
                        #2...
                                   #3...
```


OVERHLL: Lav= 60.3dB SCAN LINE: 5/29/14 12:35:29 Lav= 61.4dB

Project: PA Turnpik	e MP 28-31			
		Observer:	VRION	
Site ID: 24-2	Date: 5/29/14	Location: 386 No	RTHGATE	
Site Surface:	2015H	Landmark: LA	FENCE POST	
Near Lane 1-76 Direction: EB	Pavement Type:	KEAR	OF PROPERTY	
Temperature:	Cloud Cover: OVERCA ST	Wind Speed:	Wind Direction: CA Lm	
Start Time: 10	1.35 ", 30 Am	Stop Time: 5/30 /	10:35:30 AM 68	
Noise Sources: 1-76 TRAFFIC, BIFP S				
PLAN VIEW	900	19500	8	
NORTH GATE	PARVING LOT	GALDREE ENGUSARI	1-76	
ELEVATION VIEW		1		
NORTH GATE	380	24-2 R PETRINING	1-76 LA LINE FENCE	

Meter No: ___1976

Seq. No: _____


Cranberry Twp PA US -- Personal Weather Station MC3603 40.691 -80.079 1190 ft

2014
29,
May
Table
History
/eather

weather II	weather filstory Lable May 29, 2014	viay 23, 2014							
Time	Temperature	Dew Point	Humidity	Wind	Speed	Gust	Pressure	Precip.	Precip. Accum.
7:12 AM	61 °F	58 °F	91 %	SW	0 mph	0 mph	30.02 in	0 in	0 in
11:12 AM	4∘ 99	62 °F	% 98	WSW	1 mph	mph	30.06 in	- in	in
12:13 PM	4° 89	€2 °F	% 08	WSW	0 mph	mph	30.07 in	- in	in
1:13 PM	71 °F	4° 09	% 69	West	0 mph	mph	30.07 in	.u	in
2:12 PM	72 °F	4° 09	% 59	West	1 mph	mph	30.06 in	in -	- in
3:12 PM	74 °F	4° 68	% 09	West	1 mph	mph	30.05 in	- in	in
4:12 PM	75 °F	4° 09	% 65	WNW	0 mph	mph	30.03 in	au -	- in
5:11 PM	77 °F	₹° 75	51 %	WNW	1 mph	mph	30.02 in	.u.	in
7:12 PM	77 °F	54 °F	45 %	West	1 mph	mph	29.99 in	- iv	- in
9:42 PM	4° €9	53 °F	64 %	MN	0 mph	mph	30.06 in	- in	in
10:11 PM	63 °F	53 °F	% 69	WW	0 mph	udu	30.06 in	in I	ni
11:43 PM	4 ₀ 09	53 °F	% 62	WW	0 mph	mph	30.08 in	- in	- in

Weather History Table May 30, 2014

Time	Temperature	Dew Point	Humidity	Wind	Speed	Gust	Pressure	Precip.	Precip. Accum.
12:43 AM	4° 8€	53 °F	84 %	NW	0 mph	mph	30.08 in	.u I	m –
1:43 AM	€ 9°F	54 °F	83 %	W	0 mph	udm	30.09 in	n -	- in
2:42 AM	58 °F	55 °F	% 06	WW	0 mph	mph	30.09 in	- in	ni -
3:42 AM	₹ °F	4° 95	93 %	WN	0 mph	mph	30.08 in	ın II	n in
4:42 AM	₹ °F	4. 95	94 %	WW	0 mph	mph	30.09 in	in in	ni –
5:12 AM	58 °F	4° 9 €	94 %	N	0 mph	mph	30.09 in	u -	.i.
6:13 AM	58 ∘F	4° 9€	94 %	WN	0 mph	mph	30.09 in	ı.	ni
6:43 AM	₹ °F	4° 9€	94 %	WW	0 mph	ydm	30.1 in	.u •	- in
7:42 AM	57 °F	55 °F	94 %	WW	0 mph	mph	30.12 in	- in	u
8:43 AM	₹ °F	4∘95	93 %	NNN	0 mph	mph	30.15 in	. H	ın -
9:42 AM	4° 09	±° 95	87 %	SSW	0 mph	mph	30.16 in	- III	in in
10:42 AM	64 °F	57 °F	% 8.4	South	0 mph	ųdu	30.17 in	ı.u	n -
11:44 AM	4° 99	54 ∘F	% 99	SW	0 mph	ydu	30.17 in	B.E	n -
11:53 AM	4° 99	54 °F	% 99	SW	0 mph	mph	30.17 in	- in	ni –
12:04 PM	Но 99	54 °F	% 99	SW	0 mph	mph	30.17 in	.H -	.u -

Appendix 2

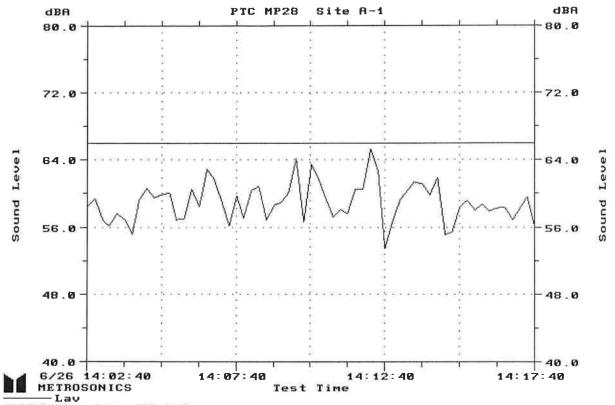
Short-term Noise Monitoring Data

Filename......310018

Logger..........db-3100 SN 2600

Test Location....PTC MP28 Site A-1

Employee Name....VRM


Employee Number...

Department......Environmental Assessment

Comment Field 1...765 Commonwealth Drive

Comment Field 2...73F P Cloudy Wind 0-5 E

Numeric Code #1... #2... #3... #4... #5...

_____Lav OVERALL: Lav= 59.6dB SCAN LINE: 6/26/14 14:02:40 Lav= 58.5dB

Project: PA Turnpik	e MP 28-31				
		Observer:	VRM		
Site ID: A - 1	Date: 6-26-14	Location: 765 Co	mmon we per us the.		
Site Surface: 6 RA	55	Landmark: GRASS	1 AREA NEAR		
Near Lane 760 Direction:	Pavement Type:	PARKI TREE	AREA NEAR NG LOT & LIME		
Temperature:	Cloud Cover: PARTLY GLOUDY	Wind Speed: 0-5 mPH	Wind Direction:		
Start Time: 1	1:02:00	Stop Time: 기년	,171,00		
Noise Sources: HIGHWAY BIRDS, JAKE BRAKE ON PAMP					
PLAN VIEW					
PARKING COMMONWEAGE					
ELEVATION VIEW					
76	A-1 745	- COMMCHWENCTH	Comment - Con ALTH		

Meter No: 2598

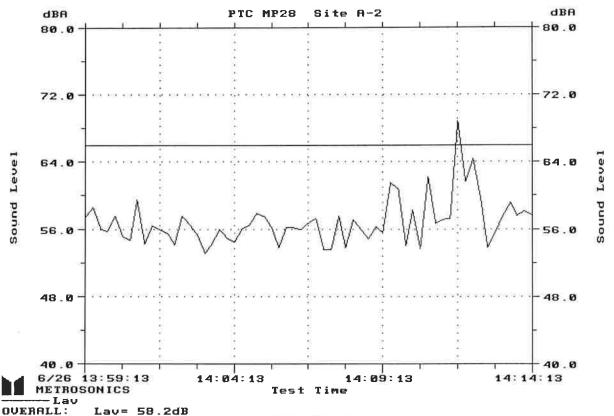
Seq. No: _______

```
Filename......31008

Logger.........db-3100 SN 3574

Test Location....PTC MP28 Site A-2

Employee Name....VRM


Employee Number...

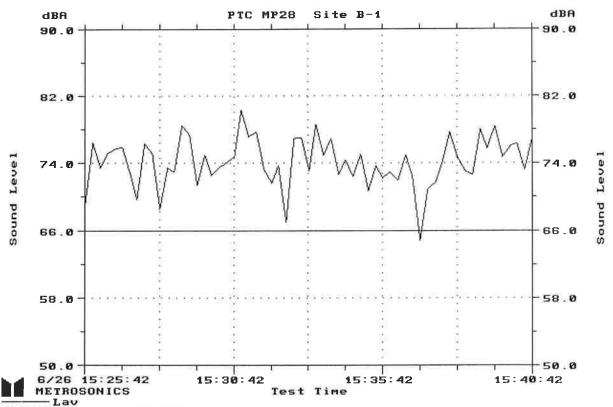
Department......Environmental Assessment

Comment Field 1...765 Commonwealth Drive

Comment Field 2...73F P Cloudy Wind 0-5 E

Numeric Code #1... #2... #3... #4... #5...
```


OVERALL: Lav= 58.2dB SCAN LINE: 6/26/14 13:59:13 Lav= 57.4dB


NOISE MONITORING DATA

Project: PA Turnpike MP 28-31 yem Observer: Site ID: A - 2 Date: 6-26-14 Location: 765 COMMONINE ACTAL DE GRASS BACK OF PARKING Site Surface: Landmark: LOT NEAR ENTRANCE 76 Pavement Type: Near Lane ASPHALT EB Direction: Temperature: 73 6 Cloud Cover: Wind Speed: Wind Direction: 0-5 MPH PARTLY CLOUPY Stop Time: 14:13:30 13:58:30 Start Time: Noise Sources: HIGHWAY BIEFS PLAN VIEW 765 commenuetoil PARKING 0 M **ELEVATION VIEW** 1 A-2 765 COMMONWERUTH COMMON.

7 6

Meter No: 3574

Seq. No: _______

Lav OVERALL: Lav= 75.0dB SCAN LINE: 6/26/14 15:25:42 Lav= 69.1dB

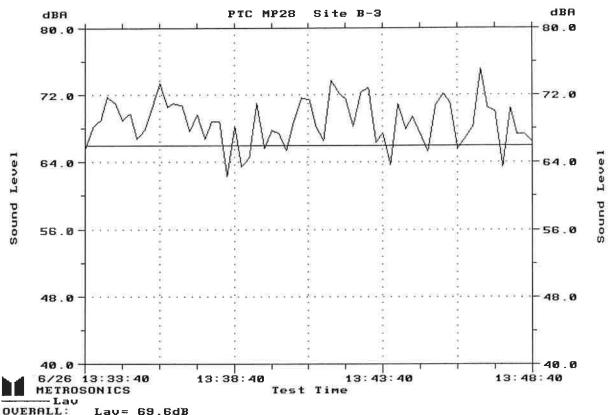
Project: PA Turnpike MP 28-31 Observer: VEM Site ID: Date: 6-26-14 Location: 20009 45 19 6 RH 55 GRASS NEAR MIGHWAY Site Surface: Landmark: & FENCE 716 Pavement Type: A 50 HAUT Near Lane WB Direction: Temperature: Cloud Cover: Wind Speed: Wind Direction: MOGFLY SUNNY 3-5 MPH Stop Time: 15,40,00 15:25:00 Start Time: Noise Sources: HIGHWAY PLAN VIEW 76 RED ROOF INN **ELEVATION VIEW** 200 POOF 76

Meter No: 35 74

Seq. No:

Filename......310020
Logger.......db-3100 SN 2600
Test Location....PTC MP28 Site B-2
Employee Name....VRM
Employee Number...
Department.....Environmental Assessment
Comment Field 1...20003 Perry Highway US19
Comment Field 2...78F Clear Wind 0-5 East
Numeric Code #1... #2... #3... #4... #5...

Project: PA Turnpike MP 28-31 VRM Observer: Site ID: 8-2 Location: 20003 US 19 Date: 6-26-14 GRA 35 Site Surface: GRASS NEAR-Landmark: LITTLE SIGN Near Lane 76 Pavement Type: WB ASPIALT Direction: Cloud Cover: Temperature: Wind Speed: Wind Direction: 3-5 MPH MOSTU SUNLY Stop Time: 15: 40:00 Start Time: 15: 25:00 Noise Sources: HIGH WAY
15:26 - 18 WHETEER PLAN VIEW RED HOLLDAY 1 1/2/ 200F 16 PARKING RED ROOF **ELEVATION VIEW** B 2 RED ROOF

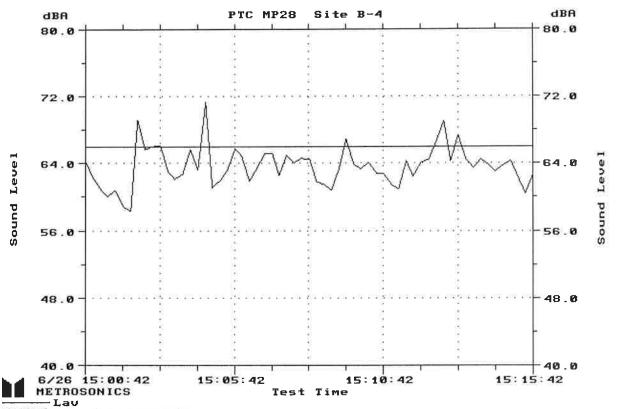

19

Meter No: 25 98

76

Seq. No:

Filename......31007
Logger..........db-3100 SN 3574
Test Location....PTC MP28 Site B-3
Employee Name....VRM
Employee Number...
Department......Environmental Assessment
Comment Field 1...19025 Perry Highway US19
Comment Field 2...73F P Cloudy Wind Lt Va
Numeric Code #1... #2... #3... #4... #5...

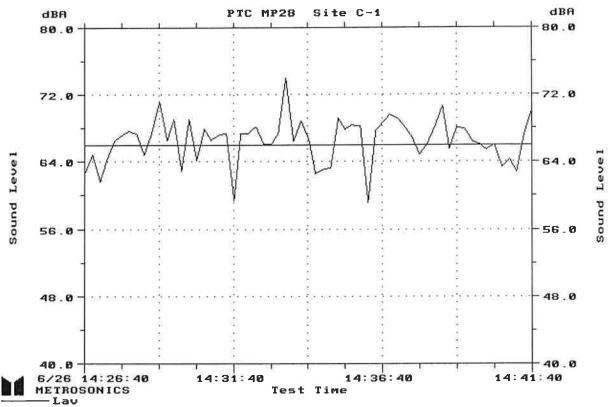

OVERALL: Lav= 69.6dB SCAN LINE: 6/26/14 13:33:40 Lav= 65.6dB

Project: PA Turnpik	e MP 28-31		
		Observer:	VPM
Site ID: 8-3	Date: 6-26-14	Location: 19025	PERRY HUY (US 19)
Site Surface: 64	PASS	Landmark: BACK	NEAD TREE
Near Lane 76 Direction: 58	Pavement Type:	E DET	ENTION FOND
Temperature:	Cloud Cover:	Wind Speed: 0-5 MPA	Wind Direction: ⊑
Start Time:	3:33:00	Stop Time: 131,	48,00
Noise Sources: H/6	SHWAY BIRDS		
PLAN VIEW			
	DETENTAL ED BASIN	PADKING MOTEL 6	19
ELEVATION VIEW			
7 (0	8-3	MOTEL	19

Meter No: __3574__

Seq. No:

```
Filename.......310010
Logger...........db-3100 SN 3574
Test Location....PTC MP28 Site B-4
Employee Name....VRM
Employee Number...
Department......Environmental Assessment
Comment Field 1...924 Sheraton Drive
Comment Field 2...78F Clear Wind Lt Var
Numeric Code #1... #2... #3... #4... #5...
```

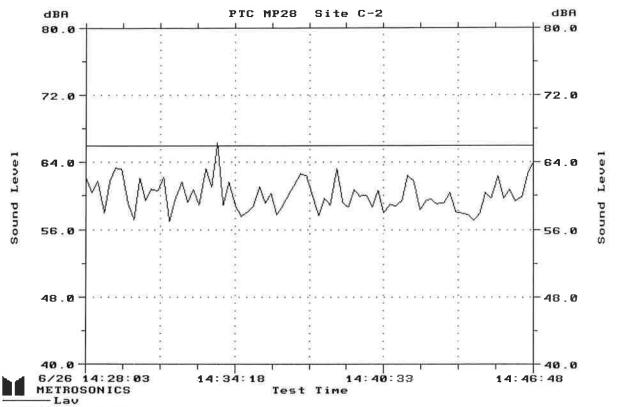


Project: PA Turnpike MP 28-31 Observer: VRM Site ID: 8-4 Date: 6-26-14 924 SHERATION IZE. Location: GRASS Landmark: PICNIC AREA Site Surface: COMFORT INN 19 Pavement Type: Near Lane EB ASPHALT Direction: Temperature: Wind Speed: Cloud Cover: Wind Direction: 0-3 MPH CALM MOSTLY SUMLY 15:00:00 Stop Time: 15:15:00 Start Time: Noise Sources: BIRDS SR 19 NOISE 15:101 - DEVERSE HLARM ON TRUCK PLAN VIEW 76 19 MOTEL 6 **ELEVATION VIEW** MOTEL SHELATON 6 7.6

Meter No: 35 74

Seq. No: _____/6

Filename......31009
Logger..........db-3100 SN 3574
Test Location....PTC MP28 Site C-1
Employee Name....VRM
Employee Number...
Department......Environmental Assessment
Comment Field 1...119 Commonwealth Drive
Comment Field 2...73F P Cloudy Wind 0-5 E
Numeric Code #1... #2... #3... #4... #5...

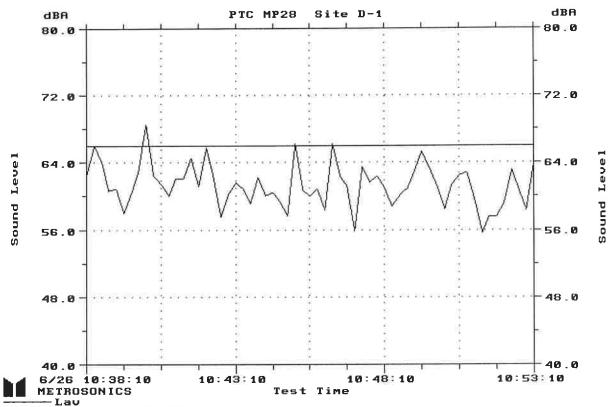

Lau OUERALL: Lau= 67.3dB SCAN LINE: 8/26/14 14:26:40 Lau= 62.7dB

NOISE MONITORING DATA

Project: PA Turnpike MP 28-31 VRM Observer: Date: 6-26-14 Location: 1/9 COMMON WEALTH DR: Site ID: GRASS GRASSY AREA NEAR WALK PATH Landmark: Site Surface: Pavement Type: Near Lane 76 * DRIVE ASPHALT Direction: EB Temperature: Cloud Cover: Wind Speed: Wind Direction: MUSTLY SUNNY 0-5 mell 14:26:00 Stop Time: 141, 60 Start Time: Noise Sources: HIGHWAY, BIRDS, LEAVES PLAN VIEW TVIDED BUILDING **ELEVATION VIEW** 1 BUILDING 76 CRACK

Meter No: 3574

```
Filename.....310019
Logger.....db-3100 SN 2600
Test Location....PTC MP28 Site C-2
Employee Name....VRM
Employee Number...
Department..... Environmental Assessment
Comment Field 1...765 Commonwealth Drive
Comment Field 2...73F P Cloudy Wind 0-5 E
Numeric Code #1...
                       #2...
                                   #3...
                                              #4...
                                                          #5...
```

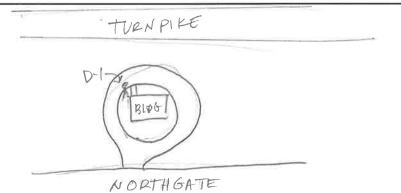


OVERALL: Lav= 60.5dB SCAN LINE: 6/26/14 14:28:03

Lav= 62.1dB

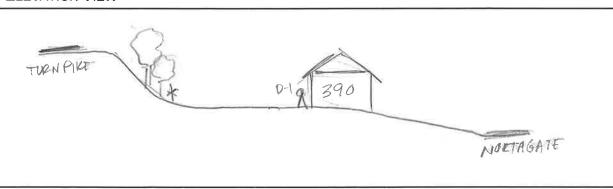
Project: PA Turnpike MP 28-31 VRM Observer: Location: 119 Common WEALTH DR Site ID: C-2 Date: 6-26-14 Site Surface: GRASS Landmark: GCASS KNOWE NEAR BACK BLOG. 76 Pavement Type: Near Lane & PINE TREE Direction: ASPHALT EB Temperature: Cloud Cover: Wind Speed: Wind Direction: 0-5 MPH MOSTLY BUNNY 14:28:00 Stop Time: 14". 46 . 00 Start Time: Noise Sources: BIRDS , HYGH WAY PLAN VIEW (YALK **ELEVATION VIEW** - REEK

Meter No: 25 98

Filename......31003
Logger...........db-3100 SN 3574
Test Location....PTC MP28 Site D-1
Employee Name....VRM
Employee Number...
Department......Environmental Assessment
Comment Field 1...390 Northgate
Comment Field 2...66F P Cloudy Wind Lt Va
Numeric Code #1... #2... #3... #4... #5...

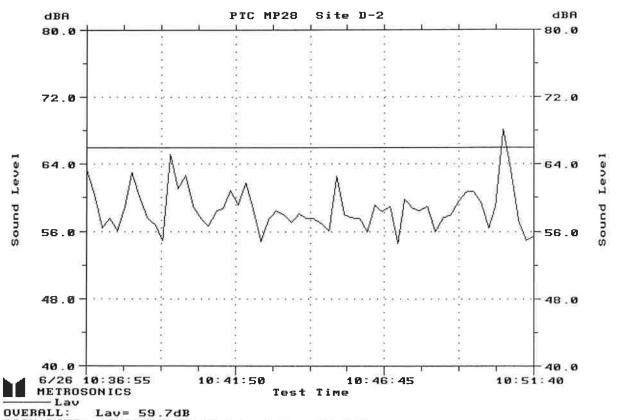

_____Lau OVERALL: Lav= 62.1dB SCAN LINE: 6/26/14 10:38:10 Lav= 62.6dB

Project: PA Turnpike MP 28-31


	Observer: VRM		
Site ID:	Date: 6-26-14	Location: 390 N	ORTH GATE
Site Surface: MULCH		Landmark: BACK	NEAR TREE
Near Lane 76 Direction:	Pavement Type:		
Temperature:	Cloud Cover:	Wind Speed: 0-3 MPH	Wind Direction:
Start Time: 10 \ 37 \ 38		Stop Time: 101.52 1 30	

Noise Sources: BIRDS, TURN PIKE

ELEVATION VIEW


NOPTH GATE 10,140-10,150

Meter No: 35 74

A 11

Seq. No: _____3___

Filename......310014 Logger......db-3100 SN 2600 Test Location....PTC MP28 Site D-2 Employee Name....VRM Employee Number ... Department..... Environmental Assessment Comment Field 1...385 Northgate Comment Field 2...66F P Cloudy Wind Lt Var #4... #5... Numeric Code #1... #2... #3...

OUERALL: Lav= 59.7dB SCAN LINE: 6/26/14 10:36:55 Lav= 63.2dB

Project: PA Turnpike MP 28-31 VRM Observer: Site ID: 7-2 Location: 385 NOFTH GATE Date: 6 - 26 - 14 GRASS Site Surface: Landmark: FRONT YARD Near Lane 76 Direction: EB Pavement Type: ASPHALT Temperature: Cloud Cover: Wind Speed: Wind Direction: 0-3 MPH OVEREAST CALM 10:36:15 10:51:15 Start Time: Stop Time: BIRDS , TURNPIKE Noise Sources: PLAN VIEW NORTH GATE **ELEVATION VIEW** TURNPIKE 390 NORTH. GRIT

Meter No: 2598

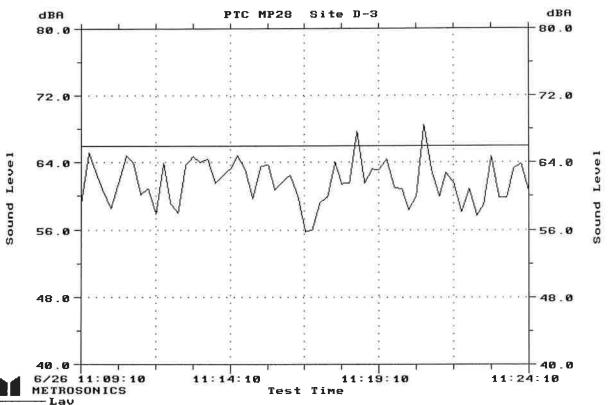
Seq. No: _____3___

```
Filename......31004

Logger..........db-3100 SN 3574

Test Location....PTC MP28 Site D-3

Employee Name....VRM

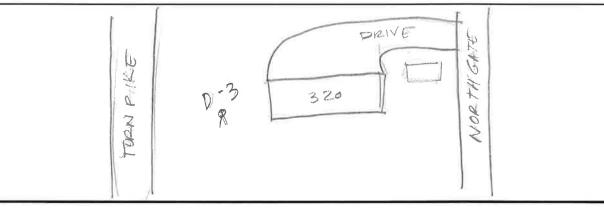

Employee Number...

Department......Environmental Assessment

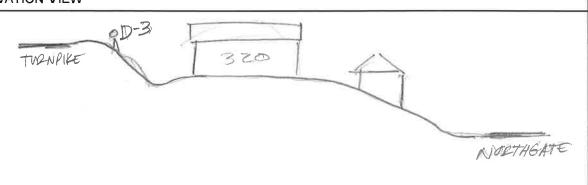
Comment Field 1...320 Northgate

Comment Field 2...66F P Cloudy Wind Lt Va

Numeric Code #1... #2... #3... #4... #5...
```



Project: PA Turnpike MP 28-31


5T-9T-9T-9T-9T-9T-9T-9T-9T-9T-9T-9T-9T-9T			
		Observer:	VRM
Site ID: 19-3	Date: 6-26-14	Location: 320 N	DOTH GATE
Site Surface:	A 55	Landmark:	
Near Lane Direction:	Pavement Type: A SPHALT	40P 0	F HILL
Temperature:	Cloud Cover:	Wind Speed:	Wind Direction:
601	OVER CAST	0-3	CALM
Start Time:	1:08:30	Stop Time: \1\2	-3° 30

Noise Sources: HIGH WAY , BIRDS

PLAN VIEW

ELEVATION VIEW

NODTHEATE 11:10-11:20

A HHI

m 11

MORTHORIT

11 8

Meter No: ___35 74

Filename......310015

Logger..........db-3100 SN 2600

Test Location....PTC MP28 Site D-4

Employee Name....VRM

Employee Number...

Department......Environmental Assessment

Comment Field 1...327 Northgate

Comment Field 2...66F P Cloudy Wind Lt Var

Numeric Code #1... #2... #3... #4... #5...

Lav OVERALL: Lav= 58.9dB SCAN LINE: 6/26/14 11:06:40 Lav= 56.6dB

Project: PA Turnpik	e MP 28-31				
		Observer:	VRM		
Site ID: D-4	Date: 6-26-14	Location: 327 NORTHGATE			
Site Surface: GR	A55	Landmark: FRON	T YARD		
Near Lane 76 Direction: 68	Pavement Type:		MATCROX		
Temperature:	Cloud Cover:	Wind Speed: 0-3 med	Wind Direction:		
Start Time:	1:06:00	Stop Time: 11	.21 '60		
Noise Sources: HV6	Noise Sources: HIGHWAY, AUTO SHOP HOISES, BUZZ OF AC WHIT				
PLAN VIEW					
320 327 327 327					
ELEVATION VIEW					
TURN 320		D-4 NODTH GATE	327		

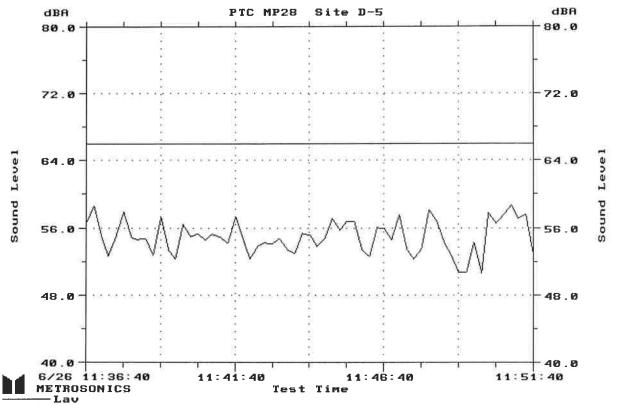
Meter No: 2598

Filename......31005

Logger..........db-3100 SN 3574

Test Location....PTC MP28 Site D-5

Employee Name....VRM

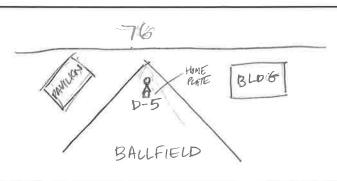

Employee Number...

Department......Environmental Assessment

Comment Field 1...140 Mt. Pleasent

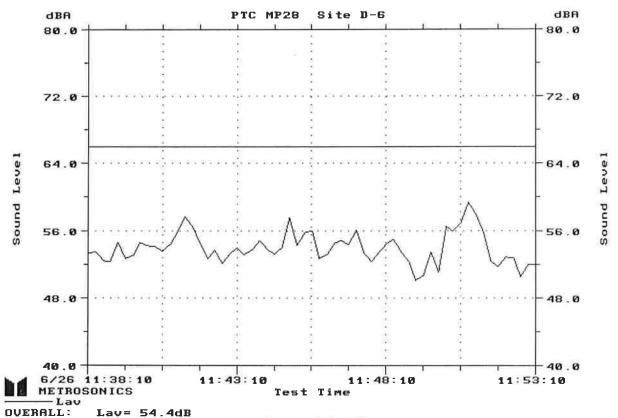
Comment Field 2...66F P Cloudy Wind Lt Va

Numeric Code #1... #2... #3... #4... #5...



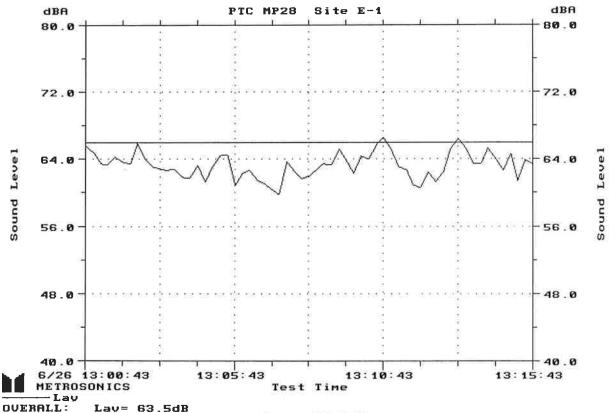
DUERALL: Lav= 55.4dB SCAN LINE: 6/26/14 11:36:40 Lav= 56.6dB

Project: PA Turnpike MP 28-31


		Observer:	VRM	
Site ID: D-5	Date: 6-26-14	Location: 140 MT.	PLEASANT ALE PARE	
Site Surface: //시	FIELP	Landmark: BALLE	ELD HOMEPLATE	
Near Lane 76 Direction: EB	Pavement Type: ASPHALT			
Temperature:	Cloud Cover:	Wind Speed:	Wind Direction:	
Start Time:	1: 36:00	Stop Time: 11,51;00		
Noise Sources:	SAWAY, BIRDS			
PLAN VIEW				
PARKAROES	BALL FIELD	WARE BUCKSTOP 76		

Meter No: 3574

Filename.....310016 Logger.....db-3100 SN 2600 Test Location....PTC MP28 Site D-6 Employee Name....VRM Employee Number ... Department......Environmental Assessment Comment Field 1...140 Mt Pleasent Comment Field 2...66F P Cloudy Wind Lt Var #2... #5... Numeric Code #1... #3... #4...

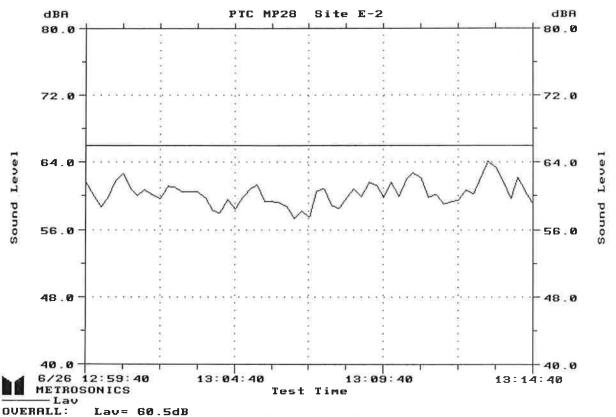


OVERALL: Lav= 54.4dB SCAN LINE: 6/26/14 11:38:10 Lav= 53.2dB

Project: PA Turnpik	e MP 28-31			
		Observer:	VPM	
Site ID: p . 6	Date: 6-26-14	Location: 140 MT. PLEASANT WARRENDINE PARK		
Site Surface: GRA	-55	Landmark: BALLFI	ELD CENTEFFIED	
Near Lane 76 Direction: E6	Pavement Type:	NEAR FENCE		
Temperature:	Cloud Cover:	Wind Speed:	Wind Direction:	
Start Time: 1	37130	Stop Time: [1	52.30	
Noise Sources: Hi	Noise Sources: HIGH WAY CREEK, BIRDS			
PLAN VIEW				
	76 D-6 R	CONC		
ELEVATION VIEW				
DAPK ALLESS		BACKSTUR	76	

Meter No: <u>2598</u>
Seq. No: <u>5</u>

Filename......31006 Logger.....db-3100 SN 3574 Test Location....PTC MP28 Site E-1 Employee Name....VRM Employee Number ... Department..... Environmental Assessment Comment Field 1...616 Chillwack Lane Comment Field 2...73F P Cloudy Wind Lt Va #4... #3... #5... Numeric Code #1... #2...

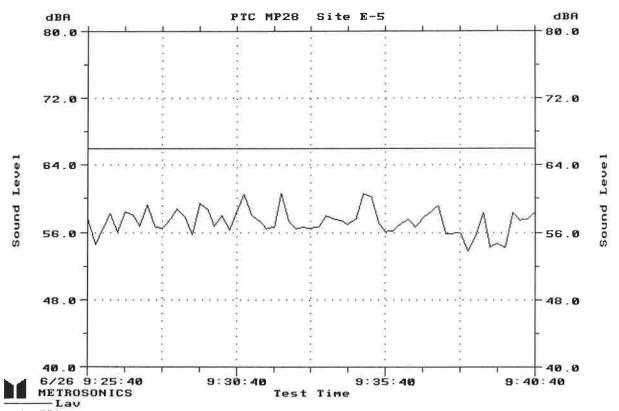


OUERALL: Lav= 63.5dB SCAN LINE: 6/26/14 13:00:43 Lav= 65.6dB

Project: PA Turnpik	e MP 28-31		
		Observer:	VZMI
Site ID:	Date: 6-26-14	Location: 616 CH	ILLIWACK LA
Site Surface: DIRT		Landmark: Lot	346
Near Lane 79 Direction: WB	Pavement Type:	36 (OFF ROAD
Temperature: 73°	Cloud Cover: OVERCA ST	Wind Speed:	Wind Direction:
	3:00:00	Stop Time: /3	
Noise Sources: 베	SHWAY TRAFFIC	(HAMMEDING)	CONSTRUCTION.
PLAN VIEW			
	70		
	MOES EN	LIGHT POST	> FENCE
	ENDOR 67.	CAILLIWACK	
ELEVATION VIEW			
CHICHWACK S	T FENCY.	79	

Meter No: <u>357</u>4

Filename.....310017 Logger.....db-3100 SN 2600 Test Location....PTC MP28 Site E-2 Employee Name....VRM Employee Number ... Department..... Environmental Assessment Comment Field 1...611 Chilliwack Comment Field 2...73F P Cloudy Wind Lt Var #4... #5... Numeric Code #1... #2... #3...

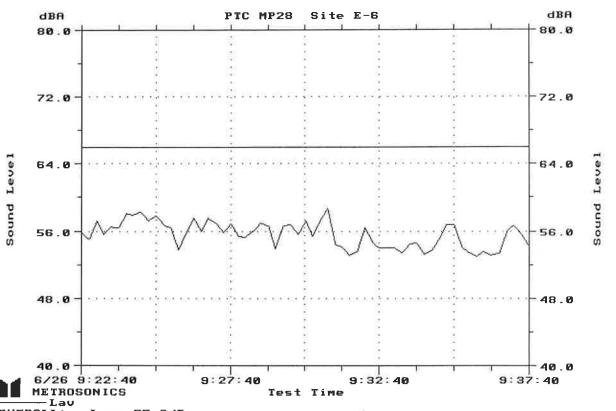

OUERALL: Lav= 60.5dB SCAN LINE: 6/26/14 12:59:40 Lav= 61.7dB

Project: PA Turnpike MP 28-31 VPM Observer: Site ID: E-2 Date: 6-26-14 611 CHILLY WACK IN Location: Landmark: DIRT Site Surface: Pavement Type: Near Lane WB Direction: ASPHALT Temperature: 136 Cloud Cover: Wind Speed: Wind Direction: 0-5 MPH OVI ER CAST CALM 12:59:00 Stop Time: 13, 14 60 Start Time: Noise Sources: HIGHWAY TRAFFIC, CONSTITUTION NOISE (HAMMERING) PLAN VIEW CHILLIWACK! LAN E-28 **ELEVATION VIEW**

CHILLIWACK

Meter No: 2568

```
Filename......31001
Logger.........db-3100 SN 3574
Test Location....PTC MP28 Site E-5
Employee Name....VRM
Employee Number...
Department......Environmental Assessment
Comment Field 1...901 Penticon Lane #449
Comment Field 2...Temp 71F Wind Lt. Var.
Numeric Code #1... #2... #3... #4... #5...
```



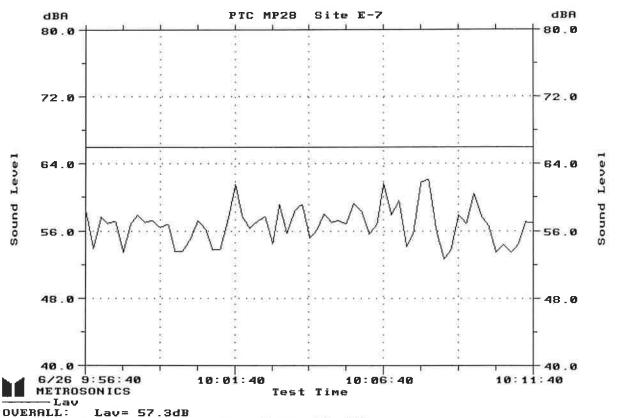
OVERALL: Lav= 57.5dB SCAN LINE: 6/26/14 9:25:40 Lav= 57.5dB

NOISE MONITORING DATA

Project: PA Turnpike MP 28-31 Observer: VE-m 901 PENTICON LA Site ID: 65 Date: Location: 6-26-14 Landmark: 50/ FROM FOAD GRASS Site Surface: 157 Lot 449 76 Pavement Type: Near Lane WB Direction: ASPHALT Temperature: Cloud Cover: Wind Speed: Wind Direction: 6-3 MPA CRUM Stop Time: 9:40:00 9:25:00 Start Time: Noise Sources: BIRDS, MICHWAY PLAN VIEW NON PILE NZ RE-5 0 - UGHT POST PENTICON LN **ELEVATION VIEW** F-5 PETTICEA) TURNPIKE

Meter No: __35 74

#5...

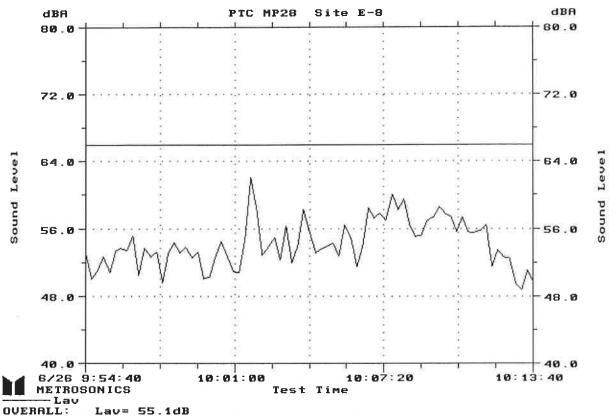

Lau OVERALL: Lav= 55.8dB SCAN LINE: 6/26/14 9:22:40 Lav= 55.8dB

NOISE MONITORING DATA

Project: PA Turnpik	e MP 28-31		
		Observer:	VPm
Site ID: E-6	Date: 6-26-14		Pentican La et 472
Site Surface: GRA55		Landmark: 50 0	
Near Lane 76 Direction: WB	Pavement Type:	LOTH	
Temperature:	Cloud Cover:	Wind Speed: 0-3 mpH	Wind Direction:
Start Time:	9:22:00	Stop Time:	1:37.00
Noise Sources: 816	208, Algaway		
PLAN VIEW			
TIENTIE	CB	9 E-6	6- LIGHT POST
ELEVATION VIEW			
\{\begin{align*} \text{\left\} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		*	PATICON F-6

Meter No: _2598___

Filename......31002 Logger.....db-3100 SN 3574 Test Location....PTC MP28 Site E-7 Employee Name....VRM Employee Number ... Department..... Environmental Assessment Comment Field 1...138 Warren Road Comment Field 2...Temp 71F Wind Lt. Var. Numeric Code #1... #2... #3. #4... #5...



OVERALL: Lav= 57.3dB SCAN LINE: 6/26/14 9:56:40 Lav= 58.4dB

Project: PA Turnpike MP 28-31 Observer: WRM Site ID: E-7 Date: 6-26-14 Location: 138 WARREN RD. Landmark: BACKYARD NEAR GRASS Site Surface: LAND SCAPING 76 Pavement Type: Near Lane WB Direction: ASPHALT Temperature: Cloud Cover: Wind Speed: Wind Direction: 0-3mPH DYERCAST CALIN 9156:00 Stop Time: |0 ; 11 ; 00 Start Time: Noise Sources: BIRDS, HI GHOWAY TRAFFIC PLAN VIEW TURN PIKE TOU PLAZA ACCESS LANDSCAPE DECK DENE BARN HOUSE **ELEVATION VIEW** WAPREN TURNPILE

Meter No: 3574

```
Filename......310013
Logger.....db-3100 SN 2600
Test Location....PTC MP28 Site E-8
Employee Name.....VRM
Employee Number ...
Department..... Environmental Assessment
Comment Field 1...XXX Warren Road
Comment Field 2...71F P Cloudy Wind Lt Var
                                               #4...
                                                           #5...
                        #2...
                                   #3...
Numeric Code #1...
```


OUERALL: Lav= 55.1dB SCAN LINE: 6/26/14 9:54:40 Lav= 53.0dB

Project: PA Turnpike MP 28-31 VRM Observer: Site ID: E-B Date: 6-26-14 D WARREN ED Location: Landmark: VACANIT LOT GR455 Site Surface: ALROSS FROM E-8 76 Pavement Type: Near Lane WB Direction: ASPHALT Wind Direction: Temperature: Cloud Cover: Wind Speed: 0-3 MPH OVERCAST CALM 9:54:00 Stop Time: 10:13:00 Start Time: Noise Sources: BIRDS / HISTORY TRAFFIC PLAN VIEW TURNAIKE HOUSE WARREN ROAD **ELEVATION VIEW** E-8 HOUSE TURNPILE

Meter No: 2598

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No.31478

Instrument:

Acoustical Calibrator

Model:

CL304

5245

Manufacturer:

Metrosonics

Serial number:

Class (IEC 60942):

Barometer type:

Barometer s/n:

Customer:

MS Consultants, Inc.

Date Calibrated: 6/10/2014 Cal Due:

Status:

Received Sent X Х

Out of tolerance:

In tolerance:

See comments:

Contains non-accredited tests: __Yes X No

Tel/Fax:

330-258-9920 / -9921

Address:

One South Main Street, Suite 801

Akron, OH 44308-1864

Tested in accordance with the following procedures and standards:

Calibration of Acoustical Calibrators, Scantek Inc., Rev. 10/1/2010

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	s/n	Cal. Date	Traceability evidence Cal. Lab / Accreditation	Cal. Due
483B-Norsonic	SME Cal Unit	25747	Jul 2, 2013	Scantek, Inc./ NVLAP	Jul 2, 2014
DS-360-SRS	Function Generator	61646	Nov 20, 2012	ACR Env./ A2LA	Nov 20, 2014
34401A-Agilent Technologies	Digital Voltmeter	MY41022043	Nov 22, 2013	ACR Env. / A2LA	Nov 22, 2014
DPI 141-Druck	Pressure Indicator	790/00-04	Nov 21, 2012	ACR Env./ A2LA	Nov 21, 2014
HMP233-Vaisala Oyj	Humidity & Temp. Transmitter	V3820001	Mar 17, 2014	ACR Env./ A2LA	Sep 17, 2015
8903A-HP	Audio Analyzer	2514A05691	Dec 12, 2013	ACR Env./ A2LA	Dec 12, 2016
PC Program 1018 Norsonic	Calibration software	v.5.2	Validated March 2011	Scantek, Inc.	127
4134-Brüel&Kjær	Microphone	456005	Nov 13, 2013	Scantek, Inc. / NVLAP	Nov 13, 2014
1203-Norsonic	Preamplifier	14059	Jan 2, 2014	Scantek, Inc./ NVLAP	Jan 2, 2015

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK)

Calibrated by: Valentin Buzduga		Authorized signatory:	Mariana Buzduga	
Signature	1000	Signature	lul-	
Date	6/10/2014	Date	6/16/2014	

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Cal 2014\M-CL304_5245_M1.doc

Page 1 of 2

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC and APLAC signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.28541

Instrument:

Acoustical Calibrator

Date Calibrated: 4/11/2013 Cal Due:

Model:

CL304

Status:

Received Sent

Manufacturer:

Metrosonics

In tolerance: Out of tolerance: X

Serial number: Class (IEC 60942): 5245

See comments:

Barometer type: Barometer s/n:

Contains non-accredited tests: __Yes X No

Customer:

MS Consultants, Inc.

Address:

1 South Main Street Suite 801

Х

Tel/Fax:

330-258-9920 / 330-258-9921

Akron, OH 44308-1864

Tested in accordance with the following procedures and standards:

Calibration of Acoustical Calibrators, Scantek Inc., Rev. 10/1/2010

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	C/N	Cal. Date	Traceability evidence	Cal. Due
mistrament - Manufacturer	Description	S/N	Cal. Date	Cal. Lab / Accreditation	Cal. Due
483B-Norsonic	SME Cal Unit	31052	Sep 14, 2012	Scantek, Inc./ NVLAP	Sep 14, 2013
DS-360-SRS	Function Generator	33584	Sep 9, 2011	ACR Env./ A2LA	Sep 9, 2013
34401A-Agilent Technologies	Digital Voltmeter	US36120731	Sep 12, 2012	ACR Env. / A2LA	Sep 12, 2013
HM30-Thommen	Meteo Station	1040170/39633	Dec 6, 2012	ACR Env./ AZLA	Dec 6, 2013
8903-HP	Audio Analyzer	2514A05691	Dec 1, 2010	ACR Env. / A2LA	Dec 1, 2013
PC Program 1018 Norsonic	Calibration software	v.5.2	Validated March 2011	Scantek, Inc.	-
4134-Brüel&Kjær	Microphone	950698	Dec 14, 2012	Scantek, Inc. / NVLAP	Dec 14, 2013
1203-Norsonic	Preamplifier	14052	Nov 19, 2012	Scantek, Inc./ NVLAP	Nov 19, 2013

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK)

Calibrated by:	Preston Mackin	Authorized signatory:	ValentinyBuzduga
Signature	Thest Wall	Signature	Ale
Date	4-11-2013	Date	4/11/2013

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Cal 2013\M-CL304_5245_M1.doc

Page 1 of 2

MILEPOST 28-31 ROADWAY AND BRIDGE RECONSTRUCTION PRELIMINARY DESIGN -- NOISE ANALYSIS REPORT

Appendix 3

Traffic Data

Mount Pleasant Road						
Existing Conditions 2013		Opening Year 2019		Design Year 2039		
ADT	2,599	ADT	2,914	ADT	3,964	
AM Peak	221	AM Peak	248	AM Peak	338	
PM Peak	315	PM Peak	354	PM Peak	481	
Daily Truck Percentage: Northbound = 6.00%, Southbound = 3.00%						
Directional Split: 52%	Northboun	d				

2.02% Annual Linear Growth Rate from SPC

Northgate Drive								
Existing Conditions 2013 Opening Year 2019 Design Year 2039								
ADT	2,425	3,699						
AM Peak	154	AM Peak	173	AM Peak	235			
PM Peak	291	PM Peak	327	PM Peak	444			
Daily Truck Percentage: Eastbound = 5.00%, Westbound = 3.00%								
Directional Split: 64% Eastbound								

2.02% Annual Linear Growth Rate from SPC

US Route 19									
Existing Conditions 2012 Opening Year 2019 Design Year 2039									
ADT	26,113	26,113 ADT 29,806 ADT							
AM Peak	1,456	AM Peak	AM Peak	2,251					
PM Peak	2,009	PM Peak	2,294	PM Peak	3,105				
Daily Truck Percentage: Northbound = 4.00%, Southbound = 5.00%									
Directional Split: 449	% Northboun	d	Directional Split: 44% Northbound						

2.02% Annual Linear Growth Rate from SPC

PA Turnpike (I-76)									
Existing Conditions	Design Year	2039							
Eastbound ADT	23,862	3,862 Eastbound ADT 26,092 Eastbound ADT 3							
Westbound ADT	23,209	Westbound ADT	25,378	Westbound ADT	34,181				
DHV Eastbound	2,093	DHV Eastbound	2,289	DHV Eastbound	3,083				
DHV Westbound	1,762	DHV Westbound	1,927	DHV Westbound	2,595				
Daily Truck Percentage: Eastbound = 8.00%, Westbound = 12.00%									
Directional Split: 51%	Eastbound	Directional Split: 51% Eastbound							

1.5% Annual Compounded Growth Rate from PTC

Interstate I-79								
Existing Conditions	2012	Opening Year 2019		Design Year 2039				
Northbound ADT 15,537 Northbound ADT 17,734 Northb					24,011			
Southbound ADT	19,642	Southbound ADT	22,420	Southbound ADT	30,355			
DHV Northbound	1,399	DHV Northbound	1,597	DHV Northbound	2,163			
DHV Southbound	1,964	DHV Southbound	2,242	DHV Southbound	3,036			
Daily Truck Percentage: Northbound = 8.00%, Southbound = 8.00%								
Directional Split: 44% Northbound								

2.02% Annual Linear Growth Rate from SPC

I-76 Eastbound On Ramp								
Existing Conditions 2013 Opening Year 2019 Design Year 2039								
ADT	9,713	9,713 ADT 10,621 ADT						
AM Peak	759	AM Peak	830	AM Peak	1,118			
PM Peak 1,223 PM Peak 1,338 PM Peak 1,80								
Daily Truck Percentage: 12.00%								

1.5% Annual Compounded Growth Rate from PTC

I-76 Westbound On Ramp from I-79 and US 19 Northbound								
Existing Conditions 2013 Opening Year 2019 Design Year 2039								
ADT	7,332	332 ADT 8,018 ADT						
AM Peak	394	AM Peak	431	AM Peak	581			
PM Peak 708 PM Peak 775 PM Peak 1,043								
Daily Truck Percentage: 16.00%								

1.5% Annual Compounded Growth Rate from PTC

I-76 Eastbound Off Ramp								
Existing Conditions 2013 Opening Year 2019 Design Year 2039								
ADT	ADT 8,679 ADT 9,490 ADT 12							
AM Peak	845	AM Peak	924	AM Peak	1,245			
PM Peak 544 PM Peak 595 PM Peak 802								
Daily Truck Percentage: 19.00%								

^{1.5%} Annual Compounded Growth Rate from PTC

I-76 Westbound Off Ramp to I-79								
Existing Conditions 2013 Opening Year 2019 Design Year 2039								
ADT	5,229	5,229 ADT 5,718 ADT						
AM Peak	753	AM Peak	824	AM Peak	1,109			
PM Peak 432 PM Peak 473 PM Peak 637								
Daily Truck Percentage: 17.00%								

1.5% Annual Compounded Growth Rate from PTC

I-76 Westbound Off Ramp to US 19								
Existing Conditions 2013 Opening Year 2019 Design Year 2039								
ADT	3,795	5,589						
AM Peak	472	AM Peak	517	AM Peak	696			
PM Peak 352 PM Peak 385 PM Peak 519								
Daily Truck Percentage: 18.00%								

1.5% Annual Compounded Growth Rate from PTC

I-76 Westbound On Ramp from US 19 Southbound								
Existing Conditions 2013 Opening Year 2019 Design Year 2039								
ADT	1,738	1,738 ADT 1,901 ADT						
AM Peak	94	AM Peak	103	AM Peak	139			
PM Peak 165 PM Peak 181 PM Peak 243								
Daily Truck Percentage: 14.00%								

^{1.5%} Annual Compounded Growth Rate from PTC

MILEPOST 28-31 ROADWAY AND BRIDGE RECONSTRUCTION PRELIMINARY DESIGN -- NOISE ANALYSIS REPORT

Appendix 4

TNM Validation Model

RESULTS: SOUND LEVELS

PA Turnpike MP 28-31

ms consultants, inc.

VRM

29 October 2014

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

PA Turnpike MP 28-31

RUN:

Validation NSA A, B and C

BARRIER DESIGN:

INPUT HEIGHTS

Average pavement type shall be used unless a State highway agency substantiates the use

of a different type with approval of FHWA.

ATMOSPHERICS:

68 deg F, 50% RH

ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ferent type with approval of FHWA.			
Receiver												
Name	No.	#DUs	Existing	No Barrier				With Barrier				
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
			Calculated Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal		
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
B-1	298	1	75.0	75.2	66	0.2	10	Snd Lvl	75.2	0.0	1	-8.0
B-2	299	1	62.9	62.5	66	-0.4	10		62.5	0.0	1	8 -8.0
B-3	300	1	69.6	68.7	66	-0.9	10	Snd Lvl	68.7	0.0	1	-8.0
B-4	301	1	64.4	65.3	66	0.9	10		65.3	0.0	1	8 -8.0
A-1	303	1	59.6	60.8	66	1.2	10		60.8	0.0	1	8 -8.0
A-2	304	1	58,2	57.2	66	-1.0	10		57.2	0.0	1 1	8 -8.0
C-1	305	1	67.3	68.0	66	0.7	10	Snd Lvl	68.0	0.0	1 8	8 -8.0
C-2	306	1	60.5	60.3	66	-0.2	10	1-4	60.3	0.0) 8	8 -8.0
Dwelling Units	nt nt	# DUs	Noise Re	duction								
						1						

Dwelling Units	# DUs N	Noise Red	Noise Reduction				
		Min	Avg	Max			
		dB	dB	dB			
All Selected	8	0.0	0.0	0.0			
All Impacted	3	0.0	0.0	0.0			
All that meet NR Goal	0	0.0	0.0	0.0			

PA Turnpike MP 28-31

ms consultants, inc.

VRM

12 November 2014

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

PA Turnpike MP 28-31 Validation NSA D and E

RUN: BARRIER DESIGN:

INPUT HEIGHTS

Average pavement type shall be used unless a State highway agency substantiates the use

of a different type with approval of FHWA.

ATMOSPHERICS:

68 dea F. 50% RH

Receiver													
Name	No.	#DUs	Existing	No Barrier					With Barrier				
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion		
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
E-1	440) 1	63.5	64.7	66	1.2	10		64.7	0.0		8 -8.0	
E-2	441	1	60.5	61.5	66	1.0	10		61.5	0.0		8 -8.0	
E-5	442	2 1	57.5	58.8	66	1.3	10		58.8	0.0	ŀ	8 -8.0	
E-6	443	3 1	55.8	55.2	66	-0.6	10		55.2	0.0		8 -8.0	
E-7	444	1 1	57.3	58.2	66	0.9	10		58.2	0.0		8 -8.0	
E-8	445	5 1	55.1	54.8	66	-0.3	10		54.8	0.0		8 -8.0	
D-1	446	6 1	62.1	64.9	66	2.8	10		64.9	0.0		8 -8.0	
D-2	447	1	59.7	61.9	66	2.2	10		61.9	0.0		8 -8.0	
D-3	448	3 1	62.4	64.6	66	2.2	. 10)	64.6	0.0		8 -8.0	
D-4	449) 1	58.9	58.7	66	-0.2	10)	58.7	0.0		8 -8.0	
D-5	450) 1	55.4	56.6	66	1.2	10		56.6	0.0		8 -8.0	
D-6	451	1 1	54.4	56.4	66	2.0	10		56.4	0.0		8 -8.0	
Dwelling Units		# DUs	Noise Re	duction									
_			Min	Avg	Max	1							
			dB	dB	dB	1							

Dwelling Units	# DUs	Noise Reduction				
-		Min	Avg	Max		
	d	dB	dB	dB		
All Selected	12	0.0	0.0	0.0		
All Impacted	0	0.0	0.0	0.0		
All that meet NR Goal	0	0.0	0.0	0.0		

MILEPOST 28-31 ROADWAY AND BRIDGE RECONSTRUCTION PRELIMINARY DESIGN -- NOISE ANALYSIS REPORT

Appendix 5

TNM Existing Conditions Model

ms consultants, inc.

VRM

RUN:

29 December 2014

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

PA Turnpike MP 28-31 Validation NSA A, B and C

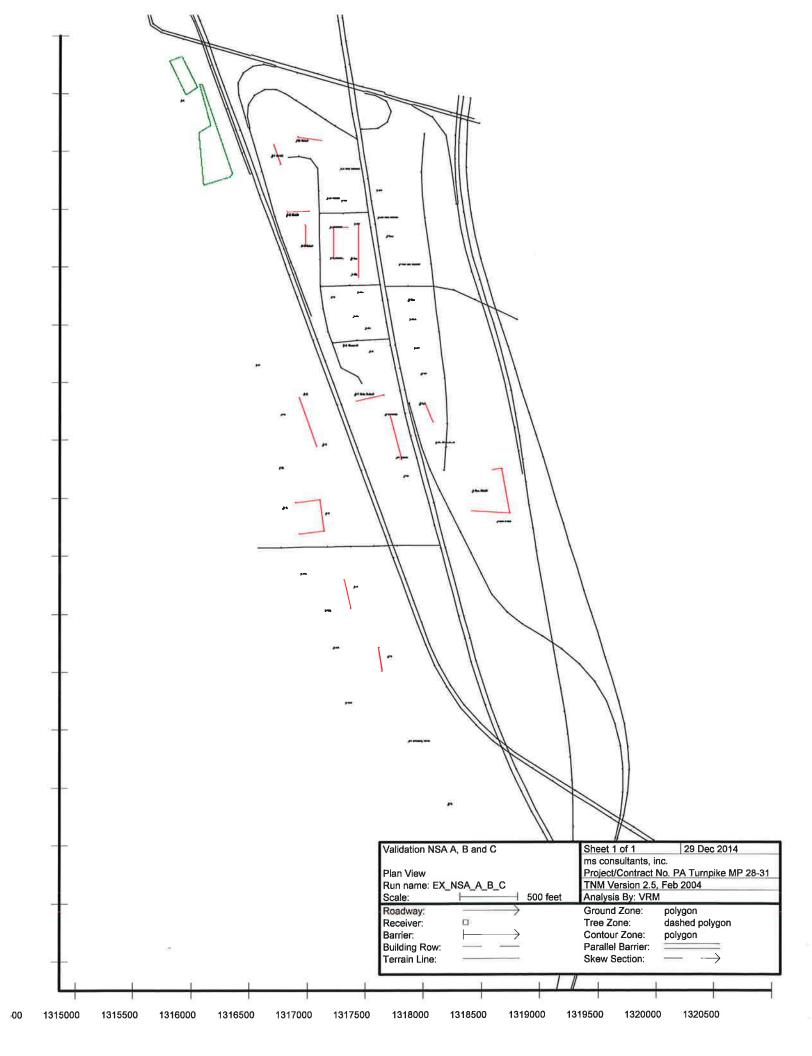
BARRIER DESIGN:

INPUT HEIGHTS

Average pavement type shall be used unless

a State highway agency substantiates the use of a different type with approval of FHWA.

ATMOSPHERICS:


Receiver										
Name	No.	#DUs	Existing	No Barrier					With Barrier	
			LAeq1h	LAeq1h		Increase ove	r existing	Туре	Calculated	N
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	C
					1					

Name No. #DUs Existing No Barrier With Barrier												
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
A-1	308	3	1 0.0	61.3	3 71	61.3	10	-	61.3	0.0		5 -5.
B-1 (Hotel)	309		1 0.0	68.8	66	68.8	3 10	Snd Lvl	68.8	0.0		5 -5.
B-2 (Hotel)	310) .	1 0.0	72.6	66	72.6	10	Snd Lvl	72.6	0.0		5 -5.
B-3 (Hotel)	311		1 0.0	70.€	66	70.6	10	Snd Lvl	70.6	0.0)	5 -5.
B-4 (Hotel)	312	2	1 0.0	64.7	66	64.7	10		64.7	0.0		5 -5.
B-5	313	3	1 0.0	67.0	71	67.0	10		67.0	0.0		5 -5.
B-6 (Daycare)	314		1 0.0	71.2	2 66	71.2	2 10	Snd Lvl	71.2	0.0		5 -5.
B-7 (Auto Dealer)	315	5	1 0.0	70.9	88	70.9	10		70.9	0.0)	5 -5.
B-8 (Hotel)	316	3	1 0.0	65.0	66	65.0	10		65.0	0.0)	5 -5.
B-9 (Hotel)	317	,	1 0.0	66.0	66	66.0	10	Snd Lvl	66.0	0.0)	5 -5.
B-10	318	3	1 0.0	67.1	71	67.1	10		67.1	0.0		5 -5.
B-1ii (Hotel)	319		1 0.0	60.9	66	60.9	10		60.9	0.0		5 -5.
B-1iii (Gas Station)	320)	1 0.0	64.9	88	64.9	10		64.9	0.0		5 -5.
B-2ii (Hotel)	321		1 0.0	63.3	3 66	63.3	3 10)	63.3	0.0)	5 -5.
B-2iii	322	2	1 0.0	63.7	7 71	63.7	7 10		63.7	0.0		5 -5.
B-2iv	323	3	1 0.0	70.3	3 71	70.3	3 10		70.3	0.0		5 -5.
B-3ii (Hotel)	324	ı	1 0.0	61.3	3 66	61.3	3 10		61.3	0.0)	5 -5 .
B-3iii	325	5	1 0.0	63.6	71	63.6	3 10)	63.6	0.0)	5 -5.
B-3iv (Gas Station)	326	3	1 0.0	72.5	5 88	72.5	5 10)	72.5	0.0		5 -5.
B-4iiia	327	7	1 0.0	61.6	71	61.6	3 10		61.6	0.0		5 -5.
B-4iiib	328	3	1 0.0	63.1	71	63.1	10		63.1	0.0)	5 -5.
B-4iva	329	9	1 0.0	69.6	71	69.6	3 10		69.6	0.0		5 -5.
B-4ivb (Gas Station)	330)	1 0.0	65.9	88	65.9	10) 	65.9	0.0		5 -5.
B-5iia	331		1 0.0	64.3	3 71	64.3	3 10		64.3	0.0)	5 -5.

RESULTS: SOUND LEVELS	PA Turnpike MP 28-31
-----------------------	----------------------

transaction of the contract of											
B-5iib	332	1 0.0	65.2	71	65.2	10		65.2	0.0	5	-5.0
B-5iic	333	1 0.0	64.5	71	64.5	10		64.5	0.0	5	-5.0
B-5iva	334	1 0.0	63.6	71	63.6	10		63.6	0.0	5	-5.0
B-5ivb	335	1 0.0	63.9	71	63.9	10		63.9	0.0	5	-5.0
B-6ii	336	1 0.0	65.5	71	65.5	10		65.5	0.0	5	-5.0
B-6iv	337	1 0.0	63.4	71	63.4	10		63.4	0.0	5	-5.0
B-7iv	338	1 0.0	63.6	71	63.6	10		63.6	0.0	5	-5.0
B-8iv	339	1 0.0	66.8	71	66.8	10	****	66.8	0.0	5	-5.0
B-9iv (Picnic Area)	340	1 0.0	65.3	66	65.3	10		65.3	0.0	5	-5.0
B-10iva (Hotel)	341	1 0.0	60.9	66	60.9	10		60.9	0.0	5	-5.0
B-10ivb (Pool)	342	1 0.0	61.9	66	61.9	10		61.9	0.0	5	-5.0
C-1	346	1 0.0	59.6	71	59.6	10		59.6	0.0	5	-5.0
C-2	347	1 0.0	66.7	71	66.7	10		66.7	0.0	5	-5.0
C-3	348	1 0.0	66.8	71	66.8	10		66.8	0.0	5	-5.0
C-4	349	1 0.0	62.9	71	62.9	10		62.9	0.0	5	-5.0
C-5	350	1 0.0	63.2	71	63.2	10		63.2	0.0	5	-5.0
C-6	351	1 0.0	63.9	71	63.9	10	***	63.9	0.0	5	-5.0
C-7 (Trucking Yard)	352	1 0.0	60.1	88	60.1	10		60.1	0.0	5	-5.0
C-8	353	1 0.0	60.6	71	60.6	10		60.6	0.0	5	-5.0
C-9	354	1 0.0	59.9	71	59.9	10	11-2-1	59.9	0.0	5	-5.0
C-2ii	355	1 0.0	58.3	71	58.3	10		58.3	0.0	5	-5.0
C-3ii	356	1 0.0	57.4	71	57.4	10		57.4	0.0	5	-5.0
C-4ii	357	1 0.0	58.4	71	58.4	10		58.4	0.0	5	-5.0
C-5iia	358	1 0.0	58.4	71	58.4	10		58.4	0.0	5	-5.0
C-5iib	359	1 0.0	56.3	71	56.3	10	. 	56.3	0.0	5	-5.0
C-6iia	360	1 0.0	56.7	71	56.7	10		56.7	0.0	5	-5.0
C-6iib	361	1 0.0	56.5	71	56.5	10		56.5	0.0	5	-5.0

Dwelling Units	# DUs	Noise Reduction				
		Min	Avg	Max		
	d	dB	dB	dB		
All Selected	51	0.0	0.0	0.0		
All Impacted	5	0.0	0.0	0.0		
All that meet NR Goal	0	0.0	0.0	0.0		

ms consultants, inc.

VRM

RUN:

29 December 2014

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

PA Turnpike MP 28-31

Existing

BARRIER DESIGN:

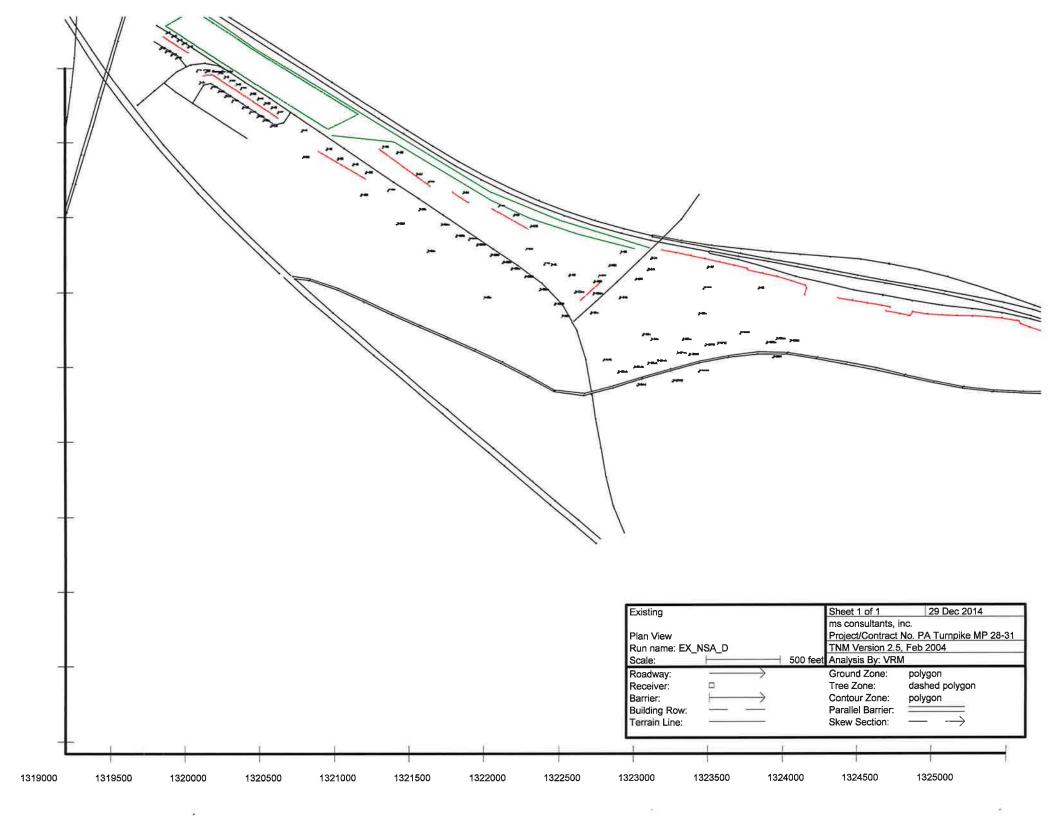
INPUT HEIGHTS

Average pavement type shall be used unless

ATMOSPHERICS:

68 deg F, 50% RH

a State highway agency substantiates the use of a different type with approval of FHWA.


Receiver		r		(c					V			
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h				Туре	Calculated	Noise Reduction		
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
D-1	296	2	0.0	67.4	66	67.4	10	Snd Lvl	67.4	0.0) :	5 -5.
D-2	297	3	0.0	67.3	66	67.3	10	Snd Lvl	67.3	0.0) ;	5 -5.
D-3	298	2	0.0	66.8	66	66.8	10	Snd Lvi	66.8	0.0) ;	5 -5.
D-4	299	3	0.0	66.8	66	66.8	3 10	Snd Lvl	66.8	0.0) ;	5 -5.
D-5	300	2	0.0	66.4	66	66.4	10	Snd Lvl	66.4	0.0) :	5 -5.
D-6 (Pool)	301	1	0.0	63.6	66	63.€	10		63.6	0.0) :	5 -5.
D-7 (Community Bldg)	302	1	0.0	62.9	66	62.9	10		62.9	0.0) :	5 -5.
D-8	303	. 2	0.0	63.5	66	63.5	10)	63.5	0.0) :	5 -5.
D-9	304	2	0.0	63.2	66	63.2	10		63.2	0.0) :	5 -5.
D-10	305	2	0.0	62.9	66	62.9	10		62.9	0.0) :	5 -5.
D-11	306	2	0.0	62.7	66	62.7	10		62.7	0.0) :	5 -5.
D-12	307	2	0.0	62.4	66	62.4	10		62.4	0.0) :	5 -5.
D-13	308	3	0.0	62.2	66	62.2	2 10		62.2	0.0) :	5 -5.
D-14	309	2	0.0	62.2	66	62.2	2 10		62.2	0.0) :	5 -5.
D-15	310	3	0.0	62.1	66	62.1	10		62.1	0.0) :	5 -5.
D-16	311	2	0.0	62.1	66	62.1	10		62.1	0.0) :	5 -5.
D-17	312	2	0.0	62.1	66	62.1	10		62.1	0.0) :	5 -5.
D-18	313	1	0.0	59.9	66	59.9	10		59.9	0.0) :	5 -5.
D-19	314	1	0.0	61.0	88	61.0	10		61.0	0.0) :	5 -5.
D-20	315	1	0.0	59.8	66	59.8	3 10		59.8	0.0		5 -5.
D-21	316	1	0.0	61.5	66	61.5	5 10		61.5	12		5 -5.
D-22	317	1	0.0	64.5	71	64.5	5 10)	64.5	0.0		5 -5.
D-23	318	1	0.0	65.0	71	65.0	10		65.0	0.0) :	5 -5.
D-24	319	1	0.0	63.4	- 66	63.4	10)	63.4	0.0)	5 -5.

RESULTS: SOUND LEVELS						PA Tur	npike MI	P 28-31				
D-25	320	1	0.0	62.8	66	62.8	10		62.8	0.0	5	-5.0
D-26	321	1	0.0	61.3	88	61.3	10		61.3	0.0	5	-5.0
D-27	322	1	0.0	61.7	88	61.7	10		61.7	0.0	5	-5.0
D-28	323	1	0.0	60.7	88	60.7	10		60.7	0.0	5	-5.0
D-30	324	1	0.0	59.0	66	59.0	10	920-	59.0	0.0	5	-5.0
D-31	325	1	0.0	58.7	71	58.7	10	222	58.7	0.0	5	-5.0
D-32	326	1	0.0	58.8	88	58.8	10		58.8	0.0	5	-5.0
D-33	327	1	0.0	69.5	88	69.5	10	-	69.5	0.0	5	-5.0
D-34	328	1	0.0	68.4	66	68.4	10	Snd Lví	68.4	0.0	5	-5.0
D-37	329	1	0.0	57.3	66	57.3	10		57.3	0.0	5	-5.0
D-38	330	1	0.0	56.5	66	56.5	10		56.5	0.0	5	-5.0
D-1ii	331	3	0.0	67.2	66	67.2	10	Snd Lvi	67.2	0.0	5	-5.0
D-2ii	332	2	0.0	66.7	66	66.7	10	Snd Lvl	66.7	0.0	5	-5.0
D-3ii	333	2	0.0	66.6	66	66.6	10	Snd Lvl	66.6	0.0	5	-5.0
D-4ii	334	2	0.0	66.4	66	66.4	10	Snd Lvl	66.4	0.0	5	-5.0
D-7ii	335	3	0.0	63.2	66	63.2	10	-	63.2	0.0	5	-5.0
D-8ii	336	3	0.0	62.6	66	62.6	10		62.6	0.0	5	-5.0
D-10ii	337	2	0.0	62.4	66	62.4	10		62.4	0.0	5	-5.0
D-11ii	338	3	0.0	62.1	66	62.1	10	HERE.	62.1	0.0	5	-5.0
D-12ii	339	2	0.0	61.9	66	61.9	10	DESIGN	61.9	0.0	5	-5.0
D-13ii	340	3	0.0	61.6	66	61.6	10	BEER .	61.6	0.0	5	-5.0
D-14ii	341	2	0.0	61.5	66	61.5	10	****	61.5	0.0	5	-5.0
D-15ii	342	3	0.0	61.3	66	61.3	10		61.3	0.0	5	-5.0
D-16ii	343	2	0.0	61.0	66	61.0	10		61.0	0.0	5	-5.0
D-17ii	344	3	0.0	60.5	66	60.5	10		60.5	0.0	5	-5.0
D-18ii	345	1	0.0	57.4	88	57.4	10		57.4	0.0	5	-5.0
D-22ii	346	1	0.0	62.2	88	62.2	10		62.2	0.0	5	-5.0
D-22iii	347	1	0.0	60.1	66	60.1	10		60.1	0.0	5	-5.0
D-23ii	348	1	0.0	62.7	71	62.7	10		62.7	0.0	5	-5.0
D-25ii	349	1	0.0	62.1	71	62.1	10		62.1	0.0	5	-5.0
D-25iii	350	1	0.0	59.9	71	59.9	10		59.9	0.0	5	-5.0
D-26iia	351	1	0.0	60.6	71	60.6	10		60.6	0.0	5	-5.0
D-26iib	352	1	0.0	60.2	66	60.2	10		60.2	0.0	5	-5.0
D-26iii	353	1	0.0	58.9	88	58.9	10		58.9	0.0	5	-5.0
D-27iia	354	1	0.0	61.2	66	61.2	10		61.2	0.0	5	-5.0
D-27iib	355	1	0.0	60.7	66	60.7	10		60.7	0.0	5	-5.0
D-28iia	356	1	0.0	60.3	66	60.3	10	-	60.3	0.0	5	-5.0
D-28iib	357	1	0.0	60.2	66	60.2	10		60.2	0.0	5	-5.0
D-28iii	358	1	0.0	56.8	71	56.8	10		56.8	0.0	5	-5.0
D-29a	359	1	0.0	61.6	88	61.6	10		61.6	0.0	5	-5.0
D-29b	360	1	0.0	59.5	71	59.5	10		59.5	0.0	5	-5.0
D-29iia	361	1	0.0	60.0	66	60.0	10		60.0	0.0	5	-5.0

RESULTS: SOUND LEVELS	PA Turnpike MP 28-31

Dwelling Units	# DI	ls Noise Reducti	on								
D-38vi	396	1 0.0	63.2	66	63.2	10		63.2	0.0	5	-5.0
D-38iiid	395	1 0.0	58.3	66	58.3	10		58.3	0.0	5	-5.0
D-38iiic	394	1 0.0	57.6	66	57.6	10	(1	57.6	0.0	5	-5.0
D-38iiib	393	1 0.0	58.4	66	58.4	10		58.4	0.0	5	-5.0
D-38iiia	392	1 0.0	55.8	66	55.8	10		55.8	0.0	5	-5.0
D-37viib	391	1 0.0	60.6	66	60.6	10	Y	60.6	0.0	5	-5.0
D-37viia	390	1 0.0	59.6	66	59.6	10	o sens	59.6	0.0	5	-5.0
D-37vc	389	1 0.0	57.2	66	57.2	10	2. 1011.1	57.2	0.0	5	-5.0
D-37vb	388	1 0.0	57.4	66	57.4	10	A tomi	57.4	0.0	5	-5.0
D-37vib	387	1 0.0	58.6	66	58.6	10		58.6	0.0	5	-5.0
D-37via	386	1 0.0	57.6	66	57.6	10	9. 2572 3	57.6	0.0	5	-5.0
D-37va	385	1 0.0	56.4	66	56.4	10		56.4	0.0	5	-5.0
D-37iv	384	1 0.0	56.5	66	56.5	10	o res	56.5	0.0	5	-5.0
D-37iii	383	1 0.0	57.8	66	57.8	10	S	57.8	0.0	5	-5.0
D-36vii	382	1 0.0	61.7	66	61.7	10		61.7	0.0	5	-5.0
D-36vib	381	1 0.0	58.0	66	58.0	10		58.0	0.0	5	-5.0
D-36via	380	1 0.0	58.1	66	58.1	10	7 <u>220</u>	58.1	0.0	5	-5.0
D-36v	379	1 0.0	56.3	66	56.3	10	/	56.3	0.0	5	-5.0
D-35vib	378	1 0.0	58.3	66	58.3	10		58.3	0.0	5	-5.0
D-35via	377	1 0.0	58.7	66	58.7	10	79312	58.7	0.0	5	-5.0
D-35v	376	1 0.0	56.6	66	56.6	10	22.2	56.6	0.0	5	-5.0
D-34vi	375	1 0.0	57.4	88	57.4	10	(2112	57.4	0.0	5	-5.0
D-34v	374	1 0.0	62.4	88	62.4	10	\ 	62.4	0.0	5	-5.0
D-34iv	373	1 0.0	61.0	88	61.0	10		61.0	0.0	5	-5.0
D-34iii	372	1 0.0	63.6	66	63.6	10	/,	63.6	0.0	5	-5.0
D-34ii	371	1 0.0	65.4	66	65.4	10	-	65.4	0.0	5	-5.0
D-33vi	370	1 0.0	60.4	66	60.4	10	-	60.4	0.0	5	-5.0
D-33vb	369	1 0.0	62.4	88	62.4	10		62.4	0.0	5	-5.0
D-33va	368	1 0.0	58.6	66	58.6	10		58.6	0.0	5	-5.0
D-33iv	367	1 0.0	59.8	66	59.8	10		59.8	0.0	5	-5.0
D-33iii	366	1 0.0	61.0	66	61.0	10		61.0	0.0	5	-5.0
D-33ii	365	1 0.0	63.4	66	63.4	10		63.4	0.0	5	-5.0
D-32iiib	364	1 0.0	60.3	88	60.3	10		60.3	0.0	5	-5.0
D-32iiia	363	1 0.0	59.7	71	59.7	10		59.7	0.0	5	-5.0
D-29iib	362	1 0.0	60.3	66	60.3	10	7777	60.3	0.0	5	-5.0

Dwelling Units	# DUs	Noise Reduction				
		Min	Avg	Max		
	d	dB	dB	dB		
All Selected	141	0.0	0.0	0.0		
All Impacted	22	0.0	0.0	0.0		
All that meet NR Goal	0	0.0	0.0	0.0		

ms consultants, inc.

VRM

RUN:

29 December 2014

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

PA Turnpike MP 28-31

Existing

BARRIER DESIGN:

INPUT HEIGHTS

Average pavement type shall be used unless

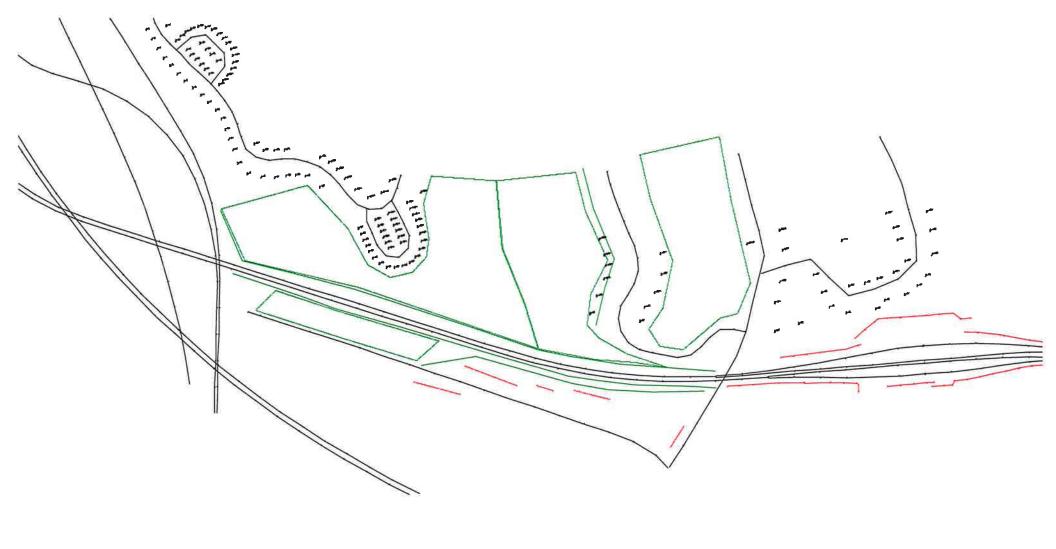
a State highway agency substantiates the use of a different type with approval of FHWA.

ATMOSPHERICS:

4	Vecelaci
-1	Namo

Receiver	T-		-									
Name	No.	#DUs	Existing	No Barrier					With Barrier	_		
			LAeq1h	LAeq1h		Increase over existing		Туре	Calculated	Noise Reduction		
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
E-1	301		1 0.0	65.0	66	65.0	10		65.0	0.0	5	-5.0
E-2	302	-	1 0.0	65.1	66	65.1	10	****	65.1	0.0	5	-5.0
E-3	303		1 0.0	65.3	66	65.3	10		65.3	0.0	5	-5.0
E-4	304		1 0.0	65.5	66	65.5	10		65.5	0.0	5	
E-5	305		1 0.0	65.2	66	65.2	10		65.2	0.0	5	-5.0
E-6	306		1 0.0	65.0	66	65.0	10	-	65.0	0.0	5	-5.0
E-7	307		1 0.0	64.7	66	64.7	10	-	64.7	0.0	5	
E-8	308		1 0.0	65.0	66	65.0	10		65.0	0.0	5	
E-9	309		1 0.0	64.5	66	64.5	10		64.5	0.0	5	
E-10	310		1 0.0	64.4	66	64.4	10		64.4	0.0	5	
E-11	311		1 0.0	64.2	66	64.2	10	2000	64.2	0.0	5	
E-12	312		1 0.0	64.4	66	64.4	10	2022	64.4	0.0	5	-5.0
E-13	313		1 0.0	64.8	66	64.8	10		64.8	0.0	5	
E-14	314		1 0.0	65.1	66	65.1	10		65.1	0.0	5	
E-15	315		1 0.0	64.8	66	64.8	10	-	64.8	0.0	5	
E-16	316		1 0.0	65.1	66	65.1	10	-	65.1	0.0	5	
E-17	317		1 0.0	64.6	66	64.6	10	-	64.6	0.0		
E-18	318		1 0.0	62.7			10		62.7	0.0	5	
E-19	319		1 0.0	61.1	66	61.1	10		61.1	0.0	5	-5.0
E-20	320		1 0.0	59.6				- 	59.6			
E-21	321		1 0.0	58.4	66	58.4	10	3555	58.4	0.0		
E-22	322		1 0.0	57.3					57.3			-5.0
E-23	323		1 0.0	52.9	66	52.9	10		52.9	0.0	5	
E-24	324		1 0.0	50.4	66	50.4	10	701151	50.4	0.0	5	-5.0

RESULTS: SOUND LEVELS	1 7				PA Tur	npike MP	28-31				
E-25	325	0.0	51.3	66	51.3	10		51.3	0.0	5	-5.0
E-26		0.0	52.0	66	52.0	10		52.0	0.0	5	-5.0
E-27	327	0.0	52.3	66	52.3	10		52.3	0.0	5	-5.0
E-28	328	0.0	51.7	66	51.7	10		51.7	0.0	5	-5.0
E-29	329	0.0	51.3	66	51.3	10		51.3	0.0	5	-5.0
E-30	330	0.0	52.5	66	52.5	10		52.5	0.0	5	-5.0
E-31	331	0.0	53.0	66	53.0	10		53.0	0.0	5	-5.0
E-32	332	0.0	53.6	66	53.6	10	2002 7	53.6	0.0	5	-5.0
E-33	333	0.0	52.0	66	52.0	10	*****	52.0	0.0	5	-5.0
E-34	334	0.0	50.8	66	50.8	10		50.8	0.0	5	-5.0
E-35	335	0.0	45.3	66	45.3	10		45.3	0.0	5	-5.0
E-36	336	0.0	64.5	66	64.5	10		64.5	0.0	5	-5.0
E-37	337	0.0	59.5	66	59.5	10		59.5	0.0	5	-5.0
E-38	338	0.0	60.7	66	60.7	10		60.7	0.0	5	-5.0
E-39	339	0.0	59.0	66	59.0	10		59.0	0.0	5	-5.0
E-40	340	0.0	57.8	66	57.8	10		57.8	0.0	5	-5.0
E-41	341	0.0	58.9	66	58.9	10		58.9	0.0	5	-5.0
E-42	342	0.0	56.6	66	56.6	10		56.6	0.0	5	-5.0
E-43	343	0.0	56.9	66	56.9	10		56.9	0.0	5	-5.0
E-44	344	0.0	55.3	66	55.3	10		55.3	0.0	5	-5.0
E-45	345	0.0	57.3	66	57.3	10	200	57.3	0.0	5	-5.0
E-46	346	0.0	56.0	66	56.0	10		56.0	0.0	5	-5.0
E-1ii	347	0.0	54.3	66	54.3	10		54.3	0.0	5	-5.0
E-2ii	348	0.0	58.0	66	58.0	10		58.0	0.0	5	-5.0
E-3ii	349	0.0	59.8	66	59.8	10		59.8	0.0	5	-5.0
E-3iii	350	0.0	59.6	66	59.6	10		59.6	0.0	5	-5.0
E-3iv	351	0.0	58.6	66	58.6	10		58.6	0.0	5	-5.0
E-3v	352	0.0	58.7	66	58.7	10		58.7	0.0	5	-5.0
E-3vi	353	0.0	58.1	66	58.1	10	====	58.1	0.0	5	-5.0
E-4ii	354	0.0	59.6	66	59.6	10		59.6	0.0	5	-5.0
E-4vi	355	0.0	57.6	66	57.6	10		57.6	0.0	5	-5.0
E-5ii	356	0.0	60.2	66	60.2	10		60.2	0.0	5	-5.0
E-5iii	357	0.0	57.2	66	57.2	10	3 222 5	57.2	0.0	5	-5.0
E-5vi	358	0.0	56.9	66	56.9	10		56.9	0.0	5	-5.0
E-6ii	359	0.0	60.8	66	60.8	10		60.8	0.0	5	-5.0
E-6iii	360	0.0	56.5	66	56.5	10	****	56.5	0.0	5	-5.0
E-6vi	361	0.0	56.9	66	56.9	10	4	56.9	0.0	5	-5.0
E-7ii	362	0.0	60.2	66	60.2	10		60.2	0.0	5	-5.0
E-7iii	363	0.0	56.5	66	56.5	10		56.5	0.0	5	-5.0
E-7vi	364	0.0	56.4	66	56.4	10	2	56.4	0.0	5	-5.0
E-8ii	365	0.0	60.1	66	60.1	10		60.1	0.0	5	-5.0
E-8iii	366	0.0	55.0	66	55.0	10		55.0	0.0	5	-5.0


RESULTS: SOUND LEVELS						PA Tur	npike MP	28-31				
E-8vi	367	1	0.0	56.1	66	56.1	10		56.1	0.0	5	-5.0
E-9ii	368	1	0.0	60.1	66	60.1	10	2	60.1	0.0	5	-5.0
E-9via	369	1	0.0	55.5	66	55.5	10	3.000	55.5	0.0	5	-5.0
E-9vib	370	1	0.0	55.1	66	55.1	10	2	55.1	0.0	5	-5.0
E-10ii	371	1	0.0	57.5	66	57.5	10		57.5	0.0	5	-5.0
E-10iii	372	1	0.0	56.9	66	56.9	10	S anta E	56.9	0.0	5	-5.0
E-10iv	373	1	0.0	55.8	66	55.8	10	9 9714 5	55.8	0.0	5	-5.0
E-10v	374	1	0.0	55.6	66	55.6	10	Server:	55.6	0.0	5	-5.0
E-10vi	375	1	0.0	55.3	66	55.3	10		55.3	0.0	5	-5.0
E-16ii	376	1	0.0	59.1	66	59.1	10		59.1	0.0	5	-5.0
E-17ii	377	1	0.0	57.9	66	57.9	10	:	57.9	0.0	5	-5.0
E-18ii	378	1	0.0	55.7	66	55.7	10	:	55.7	0.0	5	-5.0
E-19ii	379	1	0.0	55.2	66	55.2	10	-	55.2	0.0	5	-5.0
E-22ii	380	1	0.0	54.9	66	54.9	10	3-2-0-2×	54.9	0.0	5	-5.0
E-23iia	381	1	0.0	54.5	66	54.5	10		54.5	0.0	5	-5.0
E-23iib	382	1	0.0	53.7	66	53.7	10	2222	53.7	0.0	5	-5.0
E-23iic	383	1	0.0	52.7	66	52.7	10		52.7	0.0	5	-5.0
E-24iia	384	1	0.0	51.7	66	51.7	10		51.7	0.0	5	-5.0
E-24iib	385	1	0.0	51.6	66	51.6	10		51.6	0.0	5	-5.0
E-25ii	386	1	0.0	38.8	66	38.8	10	VALES	38.8	0.0	5	-5.0
E-26ii	387	1	0.0	37.5	66	37.5	10		37.5	0.0	5	-5.0
E-27ii	388	1	0.0	36.6	66	36.6	10		36.6	0.0	5	-5.0
E-28ii	389	1	0.0	36.2	66	36.2	10		36.2	0.0	5	-5.0
E-29ii	390	1	0.0	36.2	66	36.2	10	3000	36.2	0.0	5	-5.0
E-30ii	391	1	0.0	35.5	66	35.5	10) =====	35.5	0.0	5	-5.0
E-34ii	392	1	0.0	35.2	66	35.2	10	157776	35.2	0.0	5	-5.0
E-34iii	393	1	0.0	35.8	66	35.8	10		35.8	0.0	5	-5.0
E-34iv	394	1	0.0	37.0	66	37.0	10		37.0	0.0	5	-5.0
E-34ix	395	1	0.0	51.8	66	51.8	10	/ -	51.8	0.0	5	-5.0
E-34v	396	1	0.0	38.8	66	38.8	10	(*****)	38.8	0.0	5	-5.0
E-34vi	397	1	0.0	40.8	66	40.8	10	()	40.8	0.0	5	-5.0
E-34vii	398	1	0.0	45.3	66	45.3	10	::	45.3	0.0	5	-5.0
E-34viii	399	1	0.0	51.5	66	51.5	10		51.5	0.0	5	-5.0
E-35ii	400	1	0.0	42.6	66	42.6	10		42.6	0.0	5	-5.0
E-35iii	401	1	0.0	45.5	66	45.5	10		45.5	0.0	5	-5.0
E-35iv	402	1	0.0	45.3	66	45.3	10	1,444	45.3	0.0	5	-5.0
E-35ix	403	1	0.0	43.1	66	43.1	10		43.1	0.0	5	-5.0
E-35v	404	1	0.0	43.9	66	43.9	10		43.9	0.0	5	-5.0
E-35vi	405	1	0.0	43.6	66	43.6	10	****	43.6	0.0	5	-5.0
E-35vii	406	1	0.0	43.3	66	43.3	10		43.3	0.0	5	-5.0
E-35viii	407	1	0.0	42.8	66	42.8	10		42.8	0.0	5	-5.0
E-35x	408	1	0.0	47.9	66	47.9	10		47.9	0.0	5	-5.0

RESUL	TC.	COL	IND	1 =\/	/EI C
KESUL	_1.3.	OUL	JIND	\bot	ELG

PA Turnpike MP 28-31

Dwelling Units	1	# DUs	Noise Reducti	on								
E-46iv	437	1	0.0	48.6	66	48.6	10		48.6	0.0	5	-5.0
E-46iii	436	1		50.1	66	50.1	10		50.1	0.0	5	-5.0
E-46ii	435	1	0.0	52.6	66	52.6	10		52.6	0.0	5	-5.0
E-45v	434	1	0.0	54.6	66	54.6	10		54.6	0.0	5	-5.0
E-45iv	433	1	0.0	55.5	66	55.5	10		55.5	0.0	5	-5.0
E-45iii	432	1	0.0	56.3	66	56.3	10		56.3	0.0	5	-5.0
E-45ii	431	1	0.0	55.1	66	55.1	10	-	55.1	0.0	5	-5.0
E-44ii	430	1	0.0	54.7	66	54.7	10		54.7	0.0	5	-5.0
E-43ii	429	1	0.0	55.7	66	55.7	10		55.7	0.0	5	-5.0
E-42ii	427	1	0.0	55.5	66	55.5	10		55.5	0.0	5	-5.0
E-41iv	426	1	0.0	54.9	66	54.9	10	222	54.9	0.0	5	-5.0
E-41ii	425	1	0.0	55.2	66	55.2	10	222	55.2	0.0	5	-5.0
E-40iii	424	1	0.0	54.4	66	54.4	10		54.4	0.0	5	-5.0
E-40ii	423	1	0.0	56.3	66	56.3	10		56.3	0.0	5	-5.0
E-38vb	422	1	0.0	55.1	66	55.1	10	page	55.1	0.0	5	-5.0
E-38va	421	1	0.0	55.1	66	55.1	10		55.1	0.0	5	-5.0
E-38iv	420	1	0.0	55.7	66	55.7	10		55.7	0.0	5	-5.0
E-38iii	419	1	0.0	57.0	66	57.0	10		57.0	0.0	5	-5.0
E-38ii	418	1	0.0	57.9	66	57.9	10		57.9	0.0	5	-5.0
E-37v	417	1	0.0	51.1	66	51.1	10		51.1	0.0	5	-5.0
E-37iv	416	1	0.0	51.1	66	51.1	10		51.1	0.0	5	-5.0
E-37iii	415	1	0.0	53.5	66	53.5	10		53.5	0.0	5	-5.0
E-37ii	414	1	0.0	56.4	66	56.4	10		56.4	0.0	5	-5.0
E-36vi	413	1	0.0	55.4	66	55.4	10		55.4	0.0	5	-5.0
E-36v	412	1	0.0	56.1	66	56.1	10		56.1	0.0	5	-5.0
E-36iv	411	1	0.0	53.9	66	53.9	10		53.9	0.0	5	-5.0
E-36iii	410	1	0.0	58.2	66	58.2	10		58.2	0.0	5	-5.0
E-36ii	409	1	0.0	61.5	66	61.5	10		61.5	0.0	5	-5.0

Dwelling Units	# DUs	Noise Red	Noise Reduction					
·		Min	Avg	Max				
		dB	dB	dB				
All Selected	136	0.0	0.0	0.0				
All Impacted	0	0.0	0.0	0.0				
All that meet NR Goal	0	0.0	0.0	0.0				

Existing			Sheet 1 of 1	29 Dec 2014
			ms consultants, i	nc.
Plan View (rotat	ed)		Project/Contract	No. PA Turnpike MP 28-31
Run name: EX_	NSA_E		TNM Version 2.5	, Feb 2004
Scale:		500 feet	Analysis By: VRI	/
Roadway:	-	\rightarrow	Ground Zone:	polygon
Receiver:			Tree Zone:	dashed polygon
Barrier:		\rightarrow	Contour Zone:	polygon
Building Row:	_		Parallel Barrier:	
Terrain Line:			Skew Section:	$\overline{}$

MILEPOST 28-31 ROADWAY AND BRIDGE RECONSTRUCTION PRELIMINARY DESIGN -- NOISE ANALYSIS REPORT

Appendix 6

TNM No-Build Model

PA Turnpike MP 28-31

ms consultants, inc.

VRM

15 July 2015

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

PA Turnpike MP 28-31

RUN:

No Build 2039 - NSA A, B and C

BARRIER DESIGN:

INPUT HEIGHTS

Average pavement type shall be used unless a State highway agency substantiates the use

ATMOSPHERICS:

68 deg F, 50% RH

of a different type with approval of FHWA.

Receiver	No	#DUs	Eviatina	No Barrier					With Barrier				
Name	No.	#DUS	Existing				- 1-41	-					
			LAeq1h	LAeq1h		Increase over		Туре	Calculated		-		
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
A-1	308	1	61.3	62.9	71	1.6	10	\ 	62.9	0.0	5	-5.0	
B-1 (Hotel)	309	1	68.8	70.4	71	1.6	10	\ 	70.4	0.0	5	-5.0	
B-2 (Hotel)	310	1	72.6	74.2	71	1.6	10	Snd Lvl	74.2	0.0	5	-5.0	
B-3 (Hotel)	311	1	70.6	72.2	71	1.6	10	Snd Lvl	72.2	0.0	5	-5.0	
B-4 (Hotel)	312	1	64.7	66.3	71	1.6	10	: NAME	66.3	0.0	5	-5.0	
B-5	313	1	67.0	68.6	71	1.6	10	2000	68.6	0.0	5	-5.0	
B-6 (Daycare)	314	1	71.2	72.8	66	1.6	10	Snd Lvl	72.8	0.0	5	-5.0	
B-7 (Auto Dealer)	315	1	70.9	72.5	88	1.6	10		72.5	0.0	5	-5.0	
B-8 (Hotel)	316	1	65.0	66.7	71	1.7	10	(32315)	66.7	0.0	5	-5.0	
B-9 (Hotel)	317	1	66.0	67.6	71	1.6	10	S tema s	67.6	0.0	5	-5.0	
B-10	318	1	67.1	68.8	71	1.7	10	30000	68.8	0.0	5	-5.0	
B-1ii (Hotel)	319	1	60.9	62.5	71	1.6	10	:500.00	62.5	0.0	5	-5.0	
B-1iii (Gas Station)	320	1	64.9	66.6	88	1.7	10	2444	66.6	0.0	5	-5.0	
B-2ii (Hotel)	321	1	63.3	64.9	71	1.6	10		64.9	0.0	5	-5.0	
B-2iii	322	1	63.7	65.4	71	1.7	10		65.4	0.0	5	-5.0	
B-2iv	323	1	70.3	72.0	71	1.7	10	Snd Lvl	72.0	0.0	5	-5.0	
B-3ii (Hotel)	324	1	61.3	62.9	71	1.6	10	1.000	62.9	0.0	5	-5.0	
B-3iii	325	1	63.6	65.3	71	1.7	10	-	65.3	0.0	5	-5.0	
B-3iv (Gas Station)	326	1	72.5	74.2	88	1.7	10	-	74.2	0.0	5	-5.0	
B-4iiia	327	1	61.6	63.4	71	1.8	10	P <u>1525</u>	63.4	0.0	5		
B-4iiib	328	1	63.1	64.8	71	1.7	10	9,000	64.8	0.0	5		
B-4iva	329	1	69.6	71.3	71	1.7	10	Snd Lvl	71.3	0.0	5		
B-4ivb (Gas Station)	330	1	65.9	67.7	88	1.8	10		67.7	0.0	5		

RESULTS: SOUND LEVELS	PA Turnpike MP 28-31
RESOLIS. SOCIAD ELVELS	I A Idilipike iiii 20-01

			Min	Avg	Max							
Dwelling Units	# DUs	Noise Red	duction									
C-6iib	361	1	56.5	58.2	71	1.7	10	1 10000	58.2	0.0	5	-5.0
C-6iia	360	1	56.7	58.4	71	1.7	10		58.4	0.0	5	-5.0
C-5iib	359	1	56.3	58.0	71	1.7	10		58.0	0.0	5	-5.0
C-5iia	358	1	58.4	60.1	71	1.7	10	U erres	60.1	0.0	5	-5.0
C-4ii	357	1	58.4	60.0	71	1.6	10		60.0	0.0	5	-5.0
C-3ii	356	1	57.4	59.1	71	1.7	10	122	59.1	0.0	5	-5.0
C-2ii	355	1	58.3	59.9	71	1.6	10		59.9	0.0	5	-5.0
C-9	354	1	59.9	61.6	71	1.7	10		61.6	0.0	5	-5.0
C-8	353	1	60.6	62.3	71	1.7	10		62.3	0.0	5	-5.0
C-7 (Trucking Yard)	352	1	60.1	61.7	88	1.6	10	(10000	61.7	0.0	5	-5.0
C-6	351	1	63.9	65.6	71	1.7	10	V. (2000)	65.6	0.0	5	-5.0
C-5	350	1	63.2	64.9	71	1.7	10		64.9	0.0	5	-5.0
C-4	349	1	62.9	64.5	71	1.6	10	\	64.5	0.0	5	-5.0
C-3	348	1	66.8	68.4	71	1.6	10	5001100	68.4	0.0	5	-5.0
C-2	347	1	66.7	68.3	71	1.6	10	·	68.3	0.0	5	-5.0
C-1	346	1	59.6	61.3	71	1.7	10	::	61.3	0.0	5	-5.0
B-10ivb (Pool)	342	1	61.9	63.6	66	1.7	10	:: 	63.6	0.0	5	-5.0
B-10iva (Hotel)	341	1	60.9	62.7	71	1.8	10	3 7	62.7	0.0	5	-5.0
B-9iv (Picnic Area)	340	1	65.3	67.4	66	2.1	10	Snd Lvl	67.4	0.0	5	-5.0
B-8iv	339	1	66.8	69.6	71	2.8	10		69.6	0.0	5	-5.0
B-7iv	338	1	63.6	65.4	71	1.8	10	1922	65.4	0.0	5	-5.0
B-6iv	337	1	63.4	65.1	71	1.7	10	172000	65.1	0.0	5	-5.0
B-6ii	336	1	65.5	67.2	71	1.7	10		67.2	0.0	5	-5.0
B-5ivb	335	1	63.9	65.5	71	1.6	10	O ffice	65.5	0.0	5	-5.0
B-5iva	334	1	63.6	65.2	71	1.6	10		65.2	0.0	5	-5.0
B-5iic	333	1	64.5	66.2	71	1.7	10		66.2	0.0	5	-5.0
B-5iib	332	1	65.2	66.8	71	1.6	10	7231	66.8	0.0	5	-5.0
B-5iia	331	1	64.3	66.0	71	1.7	10	3,2000	66.0	0.0	5	-5.0

Dwelling Units	# DUs	Noise Red	Noise Reduction					
		Min	Avg	Max				
		dB	dB	dB				
All Selected	51	0.0	0.0	0.0				
All Impacted	6	0.0	0.0	0.0				
All that meet NR Goal	0	0.0	0.0	0.0				

15 July 2015

PA Turnpike MP 28-31

ms consultants, inc.

15 July 2015 **TNM 2.5**

VRM

RUN:

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

PA Turnpike MP 28-31 No Build 2039 - NSA D

BARRIER DESIGN:

INPUT HEIGHTS

Average pavement type shall be used unless a State highway agency substantiates the use

of a different type with approval of FHWA. 68 deg F, 50% RH ATMOSPHERICS:

Receiver		lum.		v. <u>-</u> .					harri D			
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over		Туре	Calculated	Noise Reduc		-
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
D-1	296	2	67.4	69.3	66	1.9	10	Snd Lvl	69.3	0.0	5	-5.0
D-2	297	3	67.3	69.2	66	1.9	10	Snd Lvl	69.2	0.0	5	-5.0
D-3	298	2	66.8	68.7	66	1.9	10	Snd Lvl	68.7	0.0	5	-5.0
D-4	299	3	66.8	68.7	66	1.9	10	Snd Lvl	68.7	0.0	5	-5.0
D-5	300	2	66.4	68.2	66	1.8	10	Snd Lvl	68.2	0.0	5	-5.0
D-6 (Pool)	301	1	63.6	65.5	66	1.9	10	1.55	65.5	0.0	5	-5.0
D-7 (Community Bldg)	302	1	62.9	64.7	66	1.8	10	11	64.7	0.0	5	-5.0
D-8	303	2	63.5	65.4	66	1.9	10	5 	65.4	0.0	5	-5.0
D-9	304	2	63.2	65.1	66	1.9	10	2-332	65.1	0.0	5	-5.0
D-10	305	2	62.9	64.7	66	1.8	10		64.7	0.0	5	-5.0
D-11	306	2	62.7	64.5	66	1.8	10		64.5	0.0	5	
D-12	307	2	62.4	64.3	66	1.9	10		64.3	0.0	5	-5.0
D-13	308	3	62.2	64.1	66	1.9	10		64.1	0.0	5	-5.0
D-14	309	2	62.2	64.0	66	1.8	10	R -200	64.0	0.0	5	-5.0
D-15	310	3	62.1	63.9	66	1.8	10	7	63.9	0.0	5	-5.0
D-16	311	2	62.1	63.9	66	1.8	10		63.9	0.0	5	
D-17	312	2	62.1	63.9	66	1.8	10	1222	63.9	0.0	5	-5.0
D-18	313	1	59.9	61.7	66	1.8	10		61.7	0.0	5	-5.0
D-19	314	1	61.0	62.7	88	1.7	10		62.7	0.0	5	
D-20	315	1	59.8	61.4	66	1.6	10		61.4	0.0	5	
D-21	316	1	61.5	63.2	66	1.7	10	1000000	63.2	0.0	5	
D-22	317	1	64.5	66.1	71	1.6	10		66.1	0.0		
D-23	318	1	65.0	66.6	71	1.6	10		66.6	0.0	5	

D-24		63.4	65.1	66	1.7	10	Constant	65.1	0.0	5	-5.0
D-25	319 320		64.5	66	1.7	10) 	64.5	0.0	5 5	-5.0
D-26	321		62.9	88	1.6	10		62.9	0.0	5	-5.0
D-27		61.7	63.3	88	1.6	10	7	63.3	0.0	5	-5.0
D-28		60.7	62.4	88	1.7	10		62.4	0.0	5	-5.0
	324		60.7	66	1.7	10		60.7	0.0	5	-5.0
D-30							-	60.7	0.0	5	-5.0
D-31		58.7	60.4	71	1.7	10					-5.0 -5.0
D-32	326		60.4	88	1.6	10		60.4	0.0	5	
D-33	327		71.1	88	1.6	10	0 11 1	71.1	0.0	5	-5.0
D-34	328		70.0	66	1.6	10	Snd Lvl	70.0	0.0	5	-5.0
D-37	329		58.9	66	1.6	10		58.9	0.0	5	-5.0
D-38	330		58.1	66	1.6	10		58.1	0.0	5	-5.0
D-1ìi	331 3		69.1	66	1.9	10	Snd Lvl	69.1	0.0	5	-5.0
D-2ii	332		68.6	66	1.9	10	Snd Lvl	68.6	0.0	5	-5.0
D-3ii	333		68.5	66	1.9	10	Snd Lvl	68.5	0.0	5	-5.0
D-4ii	334	66.4	68.2	66	1.8	10	Snd Lvi	68.2	0.0	5	-5.0
D-7ii	335	63.2	65.0	66	1.8	10	\	65.0	0.0	5	-5.0
D-8ii	336	62.6	64.4	66	1.8	10	57 2222	64.4	0.0	5	-5.0
D-10ii	337	62.4	64.2	66	1.8	10		64.2	0.0	5	-5.0
D-11ii	338	62.1	64.0	66	1.9	10		64.0	0.0	5	-5.0
D-12ii	339	61.9	63.7	66	1.8	10		63.7	0.0	5	-5.0
D-13ii	340	61.6	63.4	66	1.8	10	: :	63.4	0.0	5	-5.0
D-14ii	341 2	61.5	63.3	66	1.8	10	(63.3	0.0	5	-5.0
D-15ii	342	61.3	63.1	66	1.8	10		63.1	0.0	5	-5.0
D-16ii	343	61.0	62.8	66	1.8	10		62.8	0.0	5	-5.0
D-17ii	344	60.5	62.3	66	1.8	10		62.3	0.0	5	-5.0
D-18ii	345	57.4	59.2	88	1.8	10		59.2	0.0	5	-5.0
D-22ii	346	62.2	63.9	88	1.7	10		63.9	0.0	5	-5.0
D-22iii	347	60.1	61.8	66	1.7	10		61.8	0.0	5	-5.0
D-23ii	348	62.7	64.4	71	1.7	10		64.4	0.0	5	-5.0
D-25ii	349	62.1	63.7	71	1.6	10		63.7	0.0	5	-5.0
D-25iii	350	59.9	61.6	71	1.7	10		61.6	0.0	5	-5.0
D-26iia	351		62.3	71	1.7	10		62.3	0.0	5	-5.0
D-26iib	352	60.2	61.9	66	1.7	10		61.9	0.0	5	-5.0
D-26iii	353		60.5	88	1.6	10		60.5	0.0	5	-5.0
D-27iia	354		62.8	66	1.6	10		62.8	0.0	5	-5.0
D-27iib	355		62.4	66	1.7	10	7	62.4	0.0	5	-5.0
D-28iia	356		61.9	66	1.6	10	(New York)	61.9	0.0	5	-5.0
D-28iib	357		61.9	66	1.7	10	(mark)	61.9	0.0	5	-5.0
D-28iii	358		58.5	71	1.7	10		58.5	0.0	5	-5.0

· · · · · · · · · · · · · · · · · · ·		Min	Avg	Max						
Dwelling Units	# DUs	Noise Red	duction							
	96 1					10	 64.9	0.0	5	-5
	95 1					10	 59.8	0.0	5	-5
	94 1			66		10	59.1	0.0	5	-5
	93 1		59.9			10	59.9	0.0	5	-5
		55.8				10	 57.3	0.0	5	-5
	91 1				1.7	10	 62.3	0.0	5	-5
		59.6	61.2		1.6	10	 61.2	0.0	5	-5
		57.2	58.7	66		10	58.7	0.0	5	-5
		57.4				10	 58.9	0.0	5	-5
		58.6		66		10	60.1	0.0	5	-5
		57.6				10	59.2	0.0	5	-5
	35 1		57.9		1.5	10	57.9	0.0	5	-5
	34 1			66		10	 58.1	0.0	5	-5
		57.8				10	 59.4	0.0	5	-5
		61.7	63.4			10	 63.4	0.0	5	-5
	31 1					10	59.5	0.0	5	-5
	30 1		59.7	66		10	 59.7	0.0	5	-5
	79 1					10	57.9	0.0	5	-5
	78 1					10	59.9	0.0	5	-5
	77 1		60.3			10	60.3	0.0	5	-5
	76 1		58.2		1.6	10	 58.2	0.0	5	-5
	75 1					10	 59.0	0.0	5	-5
	74 1			88		10	64.1	0.0	5	-5
	73 1			88	1.7	10	62.7	0.0	5	-5
	72 1		65.3		1.7	10	65.3	0.0	5	-5
	71 1		67.0		1.6	10	67.0	0.0	5	-5
	70 1		62.1	66	1.7	10	62.1	0.0	5	-5
	39 1		64.1		1.7	10	64.1	0.0	5	-5
	88 1				1.6	10	60.2	0.0	5	-5
	S7 1		61.4		1.6	10	61.4	0.0	5	-5
	36 1				1.6	10	 62.6	0.0	5	-5 -5
	35 1		65.0		1.7	10	65.0	0.0	5	-5 -5
	is 1				1.7	10	62.0	0.0	5	-5
	63 1		61.4		1.7	10	61.4	0.0	5	-5 -5
	32 1		62.0			10	 62.0	0.0	5	-5
	61 1		61.6			10	61.6	0.0	5	-5
	50 1					10	61.2	0.0	5	-5 -5
	59 1					10	 63.2	0.0	5	

PA Turnpike MP 28-31

		dB	dB	dB	
All Selected	141	0.0	0.0		0.0
All Impacted	23	0.0	0.0		0.0
All that meet NR Goal	0	0.0	0.0		0.0

15 July 2015

TNM 2.5

RESULTS: SOUND LEVELS

ms consultants, inc.

VRM

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT: PA Turnpike MP 28-31
RUN: No Build 2039 - NSA E
BARRIER DESIGN: INPUT HEIGHTS

INPUT HEIGHTS

Average pavement type shall be used unless
a State highway agency substantiates the use

ATMOSPHERICS: 68 deg F, 50% RH of a different type with approval of FHWA.

Name	No.	#DUs	Existing	No Barrier					With Barrier			
Numo				LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
E-1	301	1	65.0	66.8	66	1.8	10	Snd Lvl	66.8	0.0	5	-5.0
E-2	302		65.1	66.9	66	1.8	10	Snd Lvl	66.9	0.0	5	-5.0
E-3	303	1	65.3	67.1	66	1.8	10	Snd Lvl	67.1	0.0	5	-5.0
E-4	304		65.5	67.2	66	1.7	10	Snd Lvl	67.2	0.0	5	-5.0
E-5	305	1	65.2	67.0	66	1.8	10	Snd Lvl	67.0	0.0	5	-5.0
E-6	306	1	65.0	66.7	66	1.7	10	Snd Lvl	66.7	0.0	5	-5.0
E-7	307	1	64.7	66.4	66	1.7	10	Snd Lvi	66.4	0.0	5	-5.0
E-8	308	1	65.0	66.7	66	1.7	10	Snd Lvi	66.7	0.0	5	-5.0
E-9	309		64.5	66.2	66	1.7	10	Snd Lvi	66.2	0.0	5	-5.0
E-10	310	1	64.4	66.1	66	1.7	10	Snd Lvl	66.1	0.0	5	-5.0
E-11	311	1	64.2	65.9	66	1.7	10		65.9	0.0	5	-5.0
E-12	312	1	64.4	66.1	66	1.7	10	Snd Lvl	66.1	0.0	5	-5.0
E-13	313		64.8	66.6	66	1.8	10	Snd Lvl	66.6	0.0	5	-5.0
E-14	314		65.1	66.8	66	1.7	10	Snd Lvl	66.8	0.0	5	-5.0
E-15	315		64.8	66.5	66	1.7	10	Snd Lvl	66.5	0.0	5	-5.0
E-16	316	1	65.1	66.8	66	1.7	10	Snd Lvl	66.8	0.0	5	-5.0
E-17	317	1	64.6	66.3	66	1.7	10	Snd Lvl	66.3	0.0	5	-5.0
E-18	318	1	62.7	64.4	66	1.7	10	2000	64.4	0.0	5	-5.0
E-19	319	1	61.1	62.8	66	1.7	10		62.8	0.0	5	-5.0
E-20	320		59.6	61.3	66	1.7	10		61.3	0.0	5	-5.0
E-21	321		58.4	60.1	66	1.7	10		60.1	0.0	5	-5.0
E-22	322	1	57.3	59.0	66	1.7	10	B220	59.0	0.0	5	-5.C
E-23	323		52.9	54.6	66	1.7	10		54.6	0.0	5	

RESULTS: SOUND LEVELS	5	PA Turnpike MP 28-31											
E-24	324	1 50.4	52.1	66	1.7	10		52.1	0.0	5	-5.0		
E-25	325	1 51.3	52.9	66	1.6	10		52.9	0.0	5	-5.0		
E-26	326	1 52.0	53.7	66	1.7	10		53.7	0.0	5	-5.0		
E-27	327	1 52.3	53.9	66	1.6	10	anes s	53.9	0.0	5	-5.0		
E-28	328	1 51.7	53.4	66	1.7	10	(MARK)	53.4	0.0	5	-5.0		
E-29	329	1 51.3	53.0	66	1.7	10	Section (53.0	0.0	5	-5.0		
E-30	330	1 52.5	54.2	66	1.7	10	11111 1	54.2	0.0	5	-5.0		
E-31	331	1 53.0	54.6	66	1.6	10	E	54.6	0.0	5	-5.0		
E-32	332	1 53.6	55.3	66	1.7	10		55.3	0.0	5	-5.0		
E-33	333	1 52.0	53.6	66	1.6	10	100 0	53.6	0.0	5	-5.0		
E-34	334	1 50.8	52.4	66	1.6	10	10000 0	52.4	0.0	5	-5.0		
E-35	335	1 45.3	46.9	66	1.6	10	#5 10	46.9	0.0	5	-5.0		
E-36	336	1 64.5	66.2	66	1.7	10 3	Snd Lvl	66.2	0.0	5	-5.0		
E-37	337	1 59.5	61.1	66	1.6	10		61.1	0.0	5	-5.0		
E-38	338	1 60.7	62.3	66	1.6	10	1800	62.3	0.0	5	-5.0		
E-39	339	1 59.0	60.6	66	1.6	10		60.6	0.0	5	-5.0		
E-40	340	1 57.8	59.4	66	1.6	10		59.4	0.0	5	-5.0		
E-41	341	1 58.9	60.6	66	1.7	10	H-100-1	60.6	0.0	5	-5.0		
E-42	342	1 56.6	58.2	66	1.6	10		58.2	0.0	5	-5.0		
E-43	343	1 56.9	58.5	66	1.6	10		58.5	0.0	5	-5.0		
E-44	344	1 55.3	56.9	66	1.6	10	3-4-3	56.9	0.0	5	-5.0		
E-45	345	1 57.3	58.9	66	1.6	10		58.9	0.0	5	-5.0		
E-46	346	1 56.0	57.6	66	1.6	10		57.6	0.0	5	-5.0		
E-1ii	347	1 54.3	56.1	66	1.8	10		56.1	0.0	5	-5.0		
E-2ii		1 58.0	59.8	66	1.8	10	(30003 2)	59.8	0.0	5	-5.0		
E-3ii	349	1 59.8	61.5	66	1.7	10		61.5	0.0	5	-5.0		
E-3iii	350	1 59.6	61.4	66	1.8	10		61.4	0.0	5	-5.0		
E-3iv		1 58.6	60.3	66	1.7	10		60.3	0.0	5	-5.0		
E-3v		1 58.7	60.4	66	1.7	10		60.4	0.0	5	-5.0		
E-3vi		1 58.1	59.9	66	1.8	10		59.9	0.0	5	-5.0		
E-4ii		1 59.6	61.4	66	1.8	10	enes:	61.4	0.0	5	-5.0		
E-4vi		1 57.6	59.3	66	1.7	10	****	59.3	0.0	5	-5.0		
E-5ii		1 60.2	61.9	66	1.7	10	: :	61.9	0.0	5	-5.0		
E-5iii		1 57.2	58.9	66	1.7	10		58.9	0.0	5	-5.0		
E-5vi	358	1 56.9	58.7	66	1.8	10		58.7	0.0	5	-5.0		
E-6ii	359	1 60.8	62.6	66	1.8	10		62.6	0.0	5	-5.0		
E-6iii	360	1 56.5	58.3	66	1.8	10		58.3	0.0	5	-5.0		
E-6vi		1 56.9	58.7	66	1.8	10	c ano a s	58.7	0.0	5	-5.0		
E-7ii	362	1 60.2	62.0	66	1.8	10	1 11111 2	62.0	0.0	5	-5.0		
E-7iii	363	1 56.5	58.2	66	1.7	10		58.2	0.0	5	-5.0		

DECLUTO, COUND LEVELO	PA Turnpike MP 28-31
RESULTS: SOUND LEVELS	PA TUTTIDIKE INF 20-31

E-7vi	364	56.4	58.2	66	1.8	10	F1.50	58.2	0.0	5	-5.0
E-8ii	365	60.1	61.8	66	1.7	10		61.8	0.0	5	-5.0
E-8iii	366	55.0	56.7	66	1.7	10		56.7	0.0	5	-5.0
E-8vi	367	56.1	57.9	66	1.8	10		57.9	0.0	5	-5.0
E-9ii	368	60.1	61.8	66	1.7	10		61.8	0.0	5	-5.0
E-9via	369	55.5	57.2	66	1.7	10	11-0-2 /1	57.2	0.0	5	-5.0
E-9vib	370	55.1	56.9	66	1.8	10		56.9	0.0	5	-5.0
E-10ii	371 1	57.5	59.3	66	1.8	10	1);	59.3	0.0	5	-5.0
E-10iii	372 1	56.9	58.6	66	1.7	10		58.6	0.0	5	-5.0
E-10iv	373 1	55.8	57.6	66	1.8	10		57.6	0.0	5	-5.0
E-10v	374 1	55.6	57.4	66	1.8	10		57.4	0.0	5	-5.0
E-10vi	375	55.3	57.1	66	1.8	10		57.1	0.0	5	-5.0
E-16ii	376	59.1	60.8	66	1.7	10		60.8	0.0	5	-5.0
E-17ii	377	57.9	59.6	66	1.7	10		59.6	0.0	5	-5.0
E-18ii		55.7	57.4	66	1.7	10	2000EC	57.4	0.0	5	-5.0
E-19ii	379	55.2	56.9	66	1.7	10		56.9	0.0	5	-5.0
E-22ii	380 1	54.9	56.7	66	1.8	10		56.7	0.0	5	-5.0
E-23iia	381	54.5	56.2	66	1.7	10		56.2	0.0	5	-5.0
E-23iib	382	53.7	55.4	66	1.7	10		55.4	0.0	5	-5.0
E-23iic	383	52.7	54.4	66	1.7	10	5000	54.4	0.0	5	-5.0
E-24iia	384	51.7	53.4	66	1.7	10	2000	53.4	0.0	5	-5.0
E-24iib	385	51.6	53.3	66	1.7	10	Heren.	53.3	0.0	5	-5.0
E-25ii	386	1 38.8	40.5	66	1.7	10	Harris .	40.5	0.0	5	-5.0
E-26ii	387	1 37.5	39.2	66	1.7	10		39.2	0.0	5	-5.0
E-27ii	388	36.6	38.3	66	1.7	10		38.3	0.0	5	-5.0
E-28ii	389	36.2	37.8	66	1.6	10		37.8	0.0	5	-5.0
E-29ii	390	1 36.2	37.8	66	1.6	10		37.8	0.0	5	-5.0
E-30ii	391	1 35.5	37.1	66	1.6	10		37.1	0.0	5	-5.0
E-34ii	392	1 35.2	36.9	66	1.7	10		36.9	0.0	5	-5.0
E-34iii	393	1 35.8	37.5	66	1.7	10	Annalia :	37.5	0.0	5	-5.0
E-34iv	394	1 37.0	38.7	66	1.7	10		38.7	0.0	5	-5.0
E-34ix	395	51.8	53.5	66	1.7	10		53.5	0.0	5	-5.0
E-34v		1 38.8	40.6	66	1.8	10		40.6	0.0	5	-5.0
E-34vi	397	1 40.8	42.5	66	1.7	10		42.5	0.0	5	-5.0
E-34vii	398	1 45.3	47.0	66	1.7	10		47.0	0.0	5	-5.0
E-34viii	399	51.5	53.2	66	1.7	10		53.2	0.0	5	-5.0
E-35ii	400	1 42.6	44.3	66	1.7	10	See See	44.3	0.0	5	-5.0
E-35iii	401	1 45.5	47.1	66	1.6	10		47.1	0.0	5	-5.0
E-35iv		1 45.3	46.9	66	1.6	10	NAME OF THE PERSON NAME OF THE P	46.9	0.0	5	-5.0
E-35ix	403	1 43.1	44.7	66	1.6	10		44.7	0.0	5	-5.0

RESULTS: SOUND LEVELS	PA Turnpike MP 28-31
RESOLIS. SOUND ELVELS	TA Tarripine iii 20 01

Dwelling Units		# DUs	Noise Reduct	ion								
E-46iv	437	1	48.6	50.2	66	1.6	10		50.2	0.0	5	-5.0
E-46iii	436	1		51.7	66	1.6	10		51.7	0.0	5	-5.0
E-46ii	435	1		54.2	66	1.6	10	THE STATE OF THE S	54.2	0.0	5	-5.0
E-45v	434	1	54.6	56.2	66	1.6	10		56.2	0.0	5	-5.0
E-45iv	433	1	55.5	57.1	66	1.6	10		57.1	0.0	5	-5.0
E-45iii	432	1	56.3	57.9	66	1.6	10		57.9	0.0	5	-5.0
E-45ii	431	1	55.1	56.8	66	1.7	10		56.8	0.0	5	-5.0
E-44ii	430	1	54.7	56.3	66	1.6	10		56.3	0.0	5	-5.0
E-43ii	429	1	55.7	57.3	66	1.6	10		57.3	0.0	5	-5.0
E-42ii	427	1	55.5	57.1	66	1.6	10	1440	57.1	0.0	5	-5.0
E-41iv	426	1	54.9	56.5	66	1.6	10		56.5	0.0	5	-5.0
E-41ii	425	1	55.2	56.9	66	1.7	10	****	56.9	0.0	5	-5.0
E-40iii	424	1	54.4	56.0	66	1.6	10		56.0	0.0	5	-5.0
E-40ii	423	1	56.3	57.9	66	1.6	10		57.9	0.0	5	-5.0
E-38vb	422	1	55.1	56.8	66	1.7	10		56.8	0.0	5	-5.0
E-38va	421	1	55.1	56.9	66	1.8	10	Sauces:	56.9	0.0	5	-5.0
E-38iv	420	1	55.7	57.5	66	1.8	10		57.5	0.0	5	-5.0
E-38iii	419	1	57.0	58.7	66	1.7	10	****	58.7	0.0	5	-5.0
E-38ii	418	1	57.9	59.6	66	1.7	10	3-11-12-12-12-12-12-12-12-12-12-12-12-12-	59.6	0.0	5	-5.0
E-37v	417	1	51.1	52.7	66	1.6	10		52.7	0.0	5	-5.0
E-37iv	416	1	51.1	52.7	66	1.6	10		52.7	0.0	5	-5.0
E-37iii	415	1	53.5	55.1	66	1.6	10		55.1	0.0	5	-5.0
E-37ii	414	1	56.4	58.0	66	1.6	10		58.0	0.0	5	-5.0
E-36vi	413	1	55.4	57.1	66	1.7	10		57.1	0.0	5	-5.0
E-36v	412	1	56.1	57.7	66	1.6	10		57.7	0.0	5	-5.0
E-36iv	411	1	53.9	55.5	66	1.6	10		55.5	0.0	5	-5.0
E-36iii	410	1	58.2	59.9	66	1.7	10		59.9	0.0	5	-5.0
E-36ii	409	1	61.5	63.1	66	1.6	10		63.1	0.0	5	-5.0
E-35x	408	1	47.9	49.5	66	1.6	10		49.5	0.0	5	-5.0
E-35viii	407	1	42.8	44.4	66	1.6	10		44.4	0.0	5	-5.0
E-35vii	406	1	43.3	44.9	66	1.6	10		44.9	0.0	5	-5.0
E-35vi	405	1	43.6	45.3	66	1.7	10		45.3	0.0	5	-5.0
E-35v	404	1	43.9	45.6	66	1.7	10	2 2	45.6	0.0	5	-5.0

Dwelling Units	# DUs	Noise Red	Noise Reduction						
		Min	Avg	Max					
	d	dB	dB	dB					
All Selected	136	0.0	0.0	0.0					
All Impacted	17	0.0	0.0	0.0					
All that meet NR Goal	0	0.0	0.0	0.0					

MILEPOST 28-31 ROADWAY AND BRIDGE RECONSTRUCTION PRELIMINARY DESIGN -- NOISE ANALYSIS REPORT

Appendix 7

TNM Build with Warrendale Toll Plaza Model

PA Turnpike MP 28-31

ms consultants, inc.

15 July 2015 TNM 2.5

VRM

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

PA Turnpike MP 28-31

RUN:

Proposed NSA A, B and C with Plaza

BARRIER DESIGN:

INPUT HEIGHTS

Average pavement type shall be used unless a State highway agency substantiates the use

of a different type with approval of FHWA.

ATMOSPHERICS:

Receiver Name	No.	#DUs	Existing	No Barrier					With Barrier			
Name	NO.	#DUS	_			Incresses successive	aviating	Tuno		Noise Reduc	tion	
			LAeq1h	LAeq1h	0.10	Increase over		Туре	Calculated			10 1 1 1
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
-			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
A-1	308	1	61.3	62.1	71	8,0	10	=	62.1	0.0		5 -5.0
B-1 (Hotel)	309	1	68.8	70.8	71	2.0	10		70.8	0.0		5 -5.0
B-2 (Hotel)	310	1	72.6	75.5	71	2.9	10	Snd Lvl	75.5	0.0		5 -5.0
B-3 (Hotel)	311	1	70.6	74.4	71	3.8	10	Snd Lvl	74.4	0.0		5 -5.0
B-4 (Hotel)	312	1	64.7	66.5	71	1.8	10	5 -1-1-1	66.5	0.0		5 -5.0
B-5	313	1	67.0	69.3	71	2.3	10	1944	69.3	0.0		5 -5.0
B-6 (Daycare)	314	1	71.2	73.8	66	2.6	10	Snd Lvi	73.8	0.0		5 -5.0
B-7 (Auto Dealer)	315	1	70.9	75.0	88	4.1	10		75.0	0.0		5 -5.0
B-8 (Hotel)	316	1	65.0	66.1	71	1.1	10		66.1	0.0		5 -5.0
B-9 (Hotel)	317	1	66.0	67.8	71	1.8	10		67.8	0.0		5 -5.0
B-10	318	1	67.1	68.8	71	1.7	10		68.8	0.0		5 -5.0
B-1ii (Hotel)	319	1	60.9	62.3	71	1.4	10	: 	62.3	0.0		5 -5.0
B-1iii (Gas Station)	320	1	64.9	66.5	88	1.6	10		66.5	0.0		5 -5.0
B-2ii (Hotel)	321	1	63.3	64.9	71	1.€	10		64.9	0.0		5 -5.0
B-2iii	322	1	63.7	65.4	71	1.7	10		65.4	0.0		5 -5.0
B-2iv	323	1	70.3	70.6	71	0.3	10		70.6	0.0		5 -5.0
B-3ii (Hotel)	324	1	61.3	63.1	71	1.8	10		63.1	0.0		5 -5.0
B-3iii	325	1	63.6	65.4	71	1.8	10		65.4	0.0		5 -5.0
B-3iv (Gas Station)	326	1	72.5	74.2	88	1.7	10		74.2	0.0		5 -5.0
B-4iiia	327	1	61.6	63.8	71	2.2	10		63.8	0.0		5 -5.0
B-4iiib	328	1	63.1	65.2	71	2.1	10		65.2	0.0		5 -5.0
B-4iva	329	1	69.6	70.8	71	1.2	10		70.8	0.0		5 -5.0
B-4ivb (Gas Station)	330	1	65.9	67.7	88	1.8	10		67.7	0.0		5 -5.0

RESULTS: SOUND LEVELS	004	4	040	00.0	74		A Turnpike		00.0	0.0	F	
B-5iia	331	1				2.0	10	3 5855	66.3	0.0	5	
B-5iib	332					1.6	10	: Northe	66.8	0.0	5	
B-5iic	333					2.1	10	*****	66.6	0.0	5	
B-5iva	334	1				1.6	10	(2222)	65.2	0.0	5	
B-5ivb	335					1.7	10		65.6	0.0	5	
B-6ii	336			67.3		1.8	10		67.3	0.0	5	
B-6iv	337	1		65.1	71	1.7	10		65.1	0.0	5	
B-7iv	338			65.3		1.7	10	S anas :	65.3	0.0	5	
B-8iv	339			68.4	71	1.6	10	() () () (68.4	0.0	5	
B-9iv (Picnic Area)	340	1	65.3	65.7	66	0.4	10		65.7	0.0	5	
B-10iva (Hotel)	341	1		63.0		2.1	10		63.0	0.0	5	
B-10ivb (Pool)	342		61.9	63.9		2.0	10		63.9	0.0	5	
C-1	346	1	59.6	61.5	71	1.9	10	-	61.5	0.0	5	
C-2	347	1	66.7	68.8		2.1	10		68.8	0.0	5	
C-3	348	1	66.8	68.9	71	2.1	10		68.9	0.0	5	
C-4	349	1	62.9	64.3	71	1.4	10		64.3	0.0	5	
C-5	350	1	63.2	64.5	71	1.3	10		64.5	0.0	5	
C-6	351	1	63.9	64.1	71	0.2	10		64.1	0.0	5	
C-7 (Trucking Yard)	352	1	60.1	61.9	88	1.8	10		61.9	0.0	5	
C-8	353	1	60.6	62.4	71	1.8	10		62.4	0.0	5	
C-9	354	1	59.9	61.7	71	1.8	10		61.7	0.0	5	
C-2ii	355	1	58.3	60.2	71	1.9	10		60.2	0.0	5	
C-3ii	356	1	57.4	60.1	71	2.7	10		60.1	0.0	5	
C-4ii	357	1	58.4	61.0	71	2.6	10		61.0	0.0	5	
C-5iia	358	1	58.4	60.4	71	2.0	10		60.4	0.0	5	
C-5iib	359	1	56.3	58.3	71	2.0	10		58.3	0.0	5	
C-6iia	360	1	56.7	58.8	71	2.1	10		58.8	0.0	5	
C-6iib	361	1	56.5	58.2	71	1.7	10	-	58.2	0.0	5	
Dwelling Units		# DUs	Noise Red	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		51	0.0	0.0	0.0							
All Impacted		3	0.0	0.0	0.0							
All that meet NR Goal		0	0.0	0.0	0.0							

RESULTS: SOUND LEVELS 60-06726-20

ms consultants, inc.

15 July 2015

TNM 2.5

KLC 54200

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed with Plaza

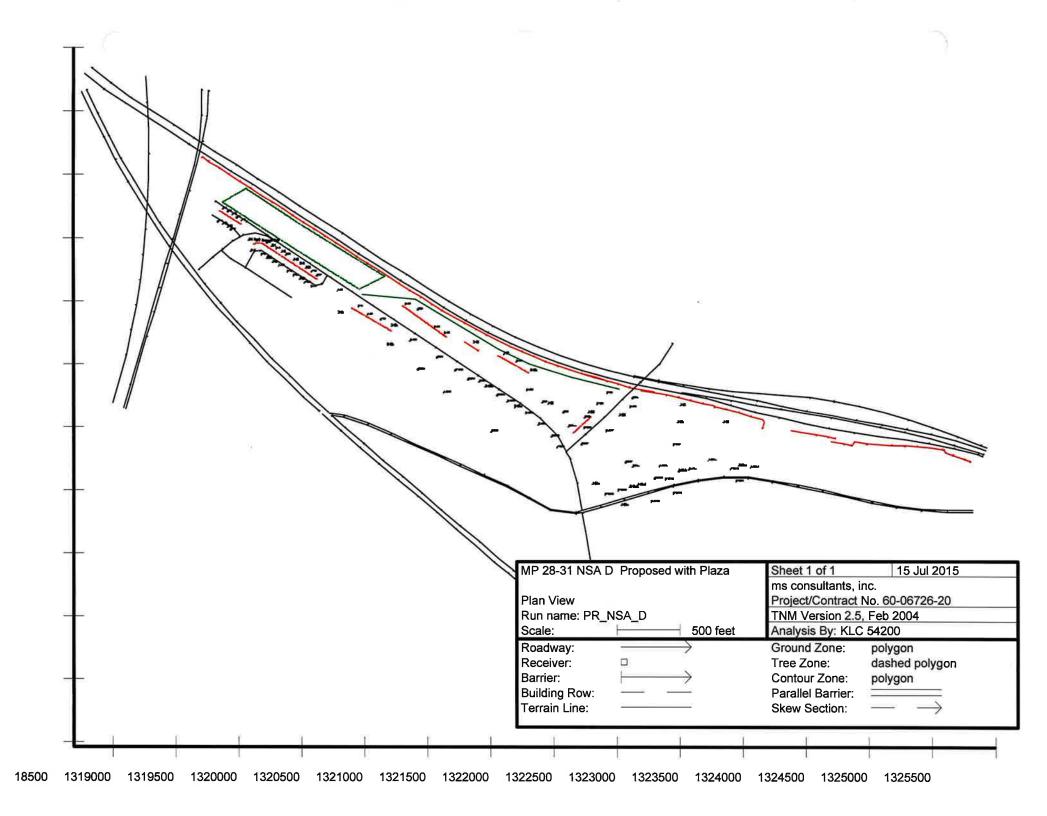
BARRIER DESIGN:

INPUT HEIGHTS

Average pavement type shall be used unless a State highway agency substantiates the use

of a different type with approval of FHWA.

ATMOSPHERICS:


Name	No.	#DUs	Existing	No Barrier					With Barrier				
Tullio	No.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	LAeq1h	LAeq1h		Increase over	existina	Туре	Calculated	Noise Reduction			
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
D-1	296	2	67.4	68.7	66	1.3	10	Snd Lvl	68.2	0.5	5	-4.5	
D-2	297	3	67.3	68.1	66	0.8	10	Snd Lvl	67.8	0.3	5	-4.7	
D-3	298	2	66.8	67.5	66	0.7	10	Snd Lvl	67.1	0.4	5	-4.6	
D-4	299	3	66.8	67.5	66	0.7	10	Snd Lvl	67.1	0.4	5	-4.6	
D-5	300	2	66.4	67.1	66	0.7	10	Snd Lvl	66.7	0.4	5	-4.6	
D-6 (Pool)	301	1	63.6	64.9	66	1.3	10	()	64.3	0.6	5	-4.4	
D-7 (Community Bldg)	302	1	62.9	64.2	66	1.3	10	(Salvinii)	63.5	0.7	5	-4.3	
D-8	303	2	63.5	64.3	66	0.8	10	7222	63.5	0.8	5	-4.2	
D-9	304	2	63.2	63.5	66	0.3	10	200	62.7	0.8	5	-4.2	
D-10	305	2	62.9	62.9	66	0.0	10		62.0	0.9	5	-4.1	
D-11	306	2	62.7	62.5	66	-0.2	10	(3188)	61.7	0.8	5	-4.2	
D-12	307	2	62.4	62.3	66	-0.1	10		61.4	0.9	5	-4.1	
D-13	308	3	62.2	62.2	66	0.0	10		61.2	1.0	5	-4.0	
D-14	309	2	62.2	62.3	66	0.1	10		61.1	1.2	. 5	-3.8	
D-15	310	3	62.1	62.1	66	0.0	10	-	60.9	1.2	5		
D-16	311	2	62.1	62.2	66	0.1	10		60.9	1.3	5		
D-17	312	2	62.1	62.3	66	0.2	10	S 2202	60.8	1.5	5		
D-18	313	1	59.9	61.5	66	1.6	10	: 	59.6	1.9	5		
D-19	314	1	61.0	62.7	88	1.7	10	S ee se.	59.6				
D-20	315	1	59.8	61.5	66	1.7	10	04444	57.5	4.0			
D-21	316	1	61.5	63.2	66			7200	59.5		5		
D-22	317	1	64.5	64.6	71	0.1	10		58.9				
D-23	318	1	65.0	65.1	71	0.1	10		58.7				

RESULTS: SOUND LEVELS	S		60-06726-20										
D-24	319	1 63.4	64.8	66	1.4	10		58.1	6.7	5	1.7		
D-25	320	1 62.8	64.8	66	2.0	10	-	58.0	6.8	5	1.8		
D-26	321	1 61.3	64.9	88	3.6	10		57.7	7.2	5	2.2		
D-27	322	1 61.7	66.8	88	5.1	10		59.0	7.8	5	2.8		
D-28	323	1 60.7	65.5	88	4.8	10		58.4	7.1	5	2.1		
D-30	324	1 59.0	61.2	66	2.2	10		57.8	3.4	5	-1.6		
D-31	325	1 58.7	61.0	71	2.3	10		57.2	3.8	5	-1.2		
D-32	326	1 58.8	60.9	88	2.1	10		56.7	4.2	5	-0.8		
D-33	327	1 69.5	71.2	88	1.7	10		61.4	9.8	5	4.8		
D-34	328	1 68.4	68.7	66	0.3	10	Snd Lvl	63.9	4.8	5	-0.2		
D-37	329	1 57.3	59.7	66	2.4	10		58.6	1.1	5	-3.9		
D-38	330	1 56.5	58.2	66	1.7	10		57.8	0.4	5	-4.6		
D-1ii	331	3 67.2	68.2	66	1.0	10	Snd Lvl	67.6	0.6	5	-4.4		
D-2ii	332	2 66.7	67.5	66	0.8	10	Snd Lvl	66.9	0.6	5	-4.4		
D-3ii	333	2 66.6	67.0	66	0.4	10	Snd Lvl	66.4	0.6	5	-4.4		
D-4ii	334	2 66.4	66.6	66	0.2	10	Snd Lvl	66.1	0.5	5	-4.5		
D-7ii	335	3 63.2	64.1	66	0.9	10		63.4	0.7	5	-4.3		
D-8ii	336	3 62.6	62.9	66	0.3	10		62.1	8.0	5	-4.2		
D-10ii	337	2 62.4	62.6	66	0.2	10		61.8	0.8	5	-4.2		
D-11ii	338	3 62.1	62.4	66	0.3	10		61.5	0.9	5	-4.1		
D-12ii	339	2 61.9	61.9	66	0.0	10		60.9	1.0	5	-4.0		
D-13ii	340	3 61.6	61.6	66	0.0	10		60.5	1.1	5	-3.9		
D-14ii	341	2 61.5	61.4	66	-0.1	10		60.3	1.1	5	-3.9		
D-15ii	342	3 61.3	61.0	66	-0.3	10		59.9	1.1	5	-3.9		
D-16ii	343	2 61.0	61.1	66	0.1	10	****	59.7	1.4	5	-3.6		
D-17ii	344	3 60.5	61.3	66	0.8	10		59.6	1.7	5	-3.3		
D-18ii	345	1 57.4	59.3	88	1.9	10	2004	57.1	2.2	5	-2.8		
D-22ii	346	1 62.2	63.7	88	1.5	10	Waste	59.8	3.9	5	-1.1		
D-22iii	347	1 60.1	61.6	66	1.5	10	1	56.5	5.1	5	0.1		
D-23ii	348	1 62.7	64.1	71	1.4	10	THE STATE OF THE S	59.6	4.5	5	-0.5		
D-25ii	349	1 62.1	64.4	71	2.3	10	रतसम	59.7	4.7	5	-0.3		
D-25iii	350	1 59.9	62.2	71	2.3	10	*****	56.2	6.0	5	1.0		
D-26iia	351	1 60.6	63.5	71	2.9	10		59.3	4.2	5	-0.8		
D-26iib	352	1 60.2	62.7	66	2.5	10		59.0	3.7	5	-1.3		
D-26iii	353	1 58.9	62.1	88	3.2	10		55.9	6.2	5	1.2		
D-27iia	354	1 61.2	63.4	66	2.2	10	-	60.9	2.5	5	-2.5		
D-27iib	355	1 60.7	62.9	66	2.2	10		60.3	2.6	5	-2.4		
D-28iia	356	1 60.3	62.3	66	2.0	10		60.0	2.3	5	-2.7		
D-28iib	357	1 60.2	62.2	66	2.0	10		60.2	2.0	5	-3.0		
D-28iii	358	1 56.8	59.1	71	2.3	10		55.1	4.0	5	-1.0		

RESULTS: SOUND LEVELS		60-06726-20											
D-29a	359	1	61.6	64.7	88	3.1	10		58.4	6.3	5	1.3	
D-29b	360	1	59.5	61.7	71	2.2	10		57.8	3.9	5	-1.1	
D-29iia	361	1	60.0	61.9	66	1.9	10		59.9	2.0	5	-3.0	
D-29iib	362	1	60.3	62.1	66	1.8	10	- Line	60.6	1.5	5	-3.5	
D-32iiia	363	1	59.7	61.6	71	1.9	10		59.9	1.7	5	-3.3	
D-32iiib	364	1	60.3	62.5	88	2.2	10		60.9	1.6	5	-3.4	
D-33ii	365	1	63.4	65.8	66	2.4	10		59.9	5.9	5	0.9	
D-33iii	366	1	61.0	63.6	66	2.6	10		58.7	4.9	5	-0.1	
D-33iv	367	1	59.8	62.3	66	2.5	10		57.3	5.0	5	0.0	
D-33va	368	1	58.6	60.9	66	2.3	10		57.6	3.3	5	-1.7	
D-33vb	369	1	62.4	64.2	88	1.8	10		63.1	1.1	5	-3.9	
D-33vi	370	1	60.4	62.4	66	2.0	10		61.1	1.3	5	-3 .7	
D-34ii	371	1	65.4	68.0	66	2.6	10	Snd Lvl	61.5	6.5	5	1.5	
D-34iii	372	1	63.6	66.0	66	2.4	10	Snd Lvl	61.3	4.7	5	-0.3	
D-34iv	373	1	61.0	63.1	88	2.1	10		59.8	3.3	5	-1.7	
D-34v	374	1	62.4	64.4	88	2.0	10	4444	63.4	1.0	5	-4.0	
D-34vi	375	1	57.4	59.5	88	2.1	10	11-12	57.2	2.3	5	-2.7	
D-35v	376	1	56.6	58.7	66	2.1	10	-	54.9	3.8	5	-1.2	
D-35via	377	1	58.7	60.5	66	1.8	10		59.1	1.4	5	-3.6	
D-35vib	378	1	58.3	60.1	66	1.8	10	1000	58.6	1.5	5	-3.5	
D-36v	379	1	56.3	58.5	66	2.2	10		54.8	3.7	5	-1.3	
D-36via	380	1	58.1	59.8	66	1.7	10		58.2	1.6	5	-3.4	
D-36vib	381	1	58.0	59.6	66	1.6	10		57.9	1.7	5	-3.3	
D-36vii	382	1	61.7	63.5	66	1.8	10		62.9	0.6	5	-4.4	
D-37iii	383	1	57.8	59.9	66	2.1	10		57.5	2.4	5	-2.6	
D-37iv	384	1	56.5	58.8	66	2.3	10		56.0	2.8	5	-2.2	
D-37va	385	1	56.4	58.5	66	2.1	10		55.8	2.7	5	-2.3	
D-37via	386	1			66	1.7	10		57.5	1.8	5	-3.2	
D-37vib	387	1				1.7	10	****	58.9	1.4	5	-3.6	
D-37vb	388	1				1.5	10	2002	57.4	1.5	5	-3.5	
D-37vc	389	1	57.2	58.7	66	1.5	10		57.3	1.4	5	-3.6	
D-37viia	390	1	59.6	61.6	66	2.0	10	2000	59.9	1.7	5	-3.3	
D-37viib	391	1	60.6	62.6	66	2.0	10	1177	61.4	1.2	5	-3.8	
D-38iiia	392					1.9	10		56.6	1.1	5	-3.9	
D-38iiib	393	1				1.9	10		59.4	0.9	5	-4.1	
D-38iiic	394	1	57.6	59.3	66	1.7	10	***	58.6	0.7	5	-4.3	
D-38iiid	395	1	58.3	60.2	66	1.9	10	222	59.4	0.8	5	-4.2	
D-38vi	396	1	63.2	65.0	66	1.8	10		64.7	0.3	5	-4.7	
Dwelling Units		# DUs	Noise Red	duction				-					
			Min	Avg	Max								

60-06726-20

		dB	dB	dB	
All Selected	141	0.3	2.6		9.8
All Impacted	24	0.3	1.7		6.5
All that meet NR Goal	15	5.0	6.6	5	9.8

60-06726-20

ms consultants, inc.

15 July 2015

KLC 54200

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA E Proposed with Plaza

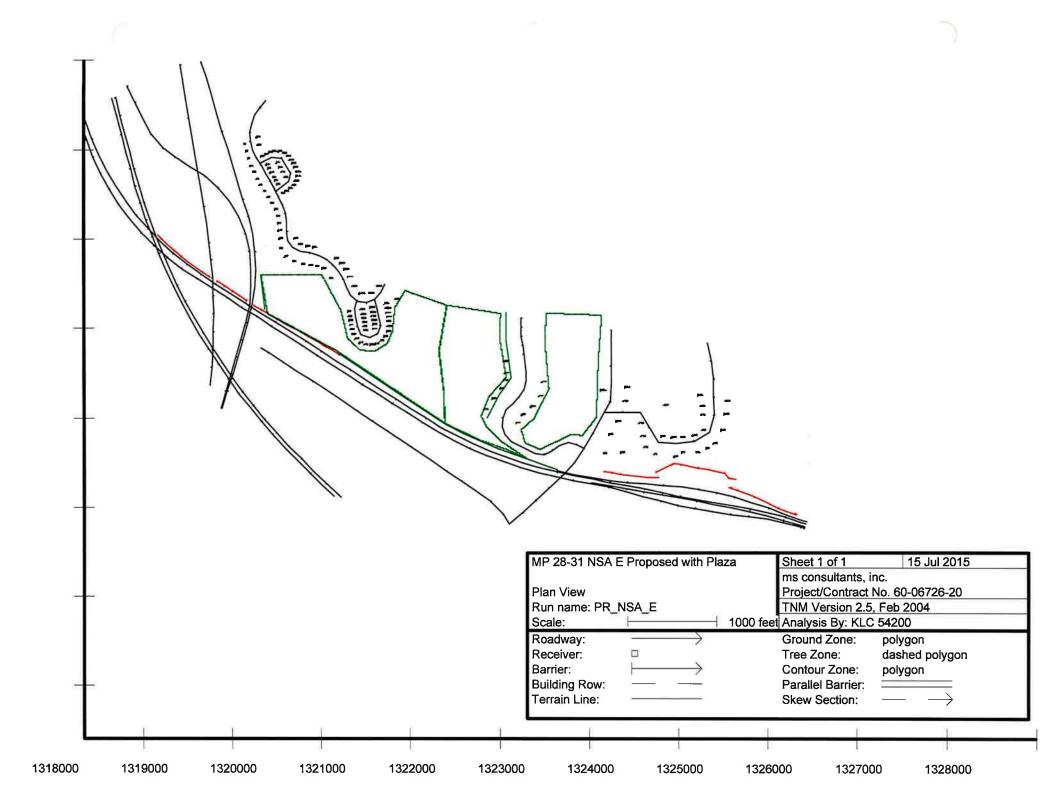
BARRIER DESIGN:

INPUT HEIGHTS

Average pavement type shall be used unless a State highway agency substantiates the use

ATMOSPHERICS:

68 deg F, 50% RH


of a different type with approval of FHWA.

Receiver													
Name	No.	#DUs	Existing	No Barrier				With Barrier					
			LAeq1h	LAeq1h Increase over			existing	Туре	Calculated	Noise Reduc	tion		
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
E-1	301	1	65.0	66.9	66	1.9	10	Snd Lvi	66.8	0.1	5	-4.	
E-2	302	1	65.1	66.9	66	1.8	10	Snd Lvl	66.9	0.0	5	-5.	
E-3	303	1	65.3	67.1	66	1.8	10	Snd Lvl	67.1	0.0	5	-5.	
E-4	304	1	65.5	67.3	66	1.8	10	Snd Lvl	67.2	0.1	5	-4.	
E-5	305	1	65.2	67.0	66	1.8	10	Snd Lvl	66.9	0.1	5	-4.	
E-6	306	1	65.0	66.8	66	1.8	10	Snd Lvl	66.7	0.1	5	-4.5	
E-7	307	1	64.7	66.5	66	1.8	10	Snd Lvl	66.4	0.1	5	-4.	
E-8	308	1	65.0	66.7	66	1.7	10	Snd Lvl	66.5	0.2	5	-4.	
E-9	309	1	64.5	66.2	66	1.7	10	Snd Lvl	65.9	0.3	5	-4.	
E-10	310	1	64.4	66.0	66	1.6	10	Snd Lvl	65.7	0.3	5		
E-11	311	1	64.2	65.9	66	1.7	10	(enex)	65.5	0.4	5		
E-12	312	1	64.4	66.1	66	1.7	10	Snd Lvl	65.6	0.5	5		
E-13	313	1	64.8	66.6	66	1.8	10	Snd Lvl	66.1	0.5	5		
E-14	314	1	65.1	66.7	66	1.6	10	Snd Lvl	66.2	0.5	5		
E-15	315	1	64.8	66.5	66	1.7	10	Snd Lvl	65.9	0.6	5		
E-16	316	1	65.1	66.7	66	1.6	10	Snd Lvl	66.2	0.5	5		
E-17	317	1	64.6	66.2	66	1.6	10	Snd Lvl	65.6	0.6	5		
E-18	318	1	62.7	64.5	66	1.8	10		63.9	0.6	5		
E-19	319	1	61.1	63.0	66	1.9	10		62.5	0.5	5		
E-20	320	1	59.6	61.5	66	1.9	10		61.0				
E-21	321	1	58.4	60.5	66	2.1	10		60.1				
E-22	322	1	57.3	59.4	66	2.1	10		59.0	0.4			
E-23	323	1	52.9	54.9	66	2.0	10		54.4				

RESULTS: SOUND LEVELS		60-06726-20											
E-24	324	1 50.4	52.4	66	2.0	10		51.8	0.6	5	-4.4		
E-25	325	1 51.3	52.9	66	1.6	10	A	52.1	0.8	5	-4.2		
E-26	326	1 52.0	53.5	66	1.5	10		52.6	0.9	5	-4.1		
E-27	327	1 52.3	53.9	66	1.6	10		52.8	1.1	5	-3.9		
E-28	328	1 51.7	53.6	66	1.9	10		52.8	0.8	5	-4.2		
E-29	329	1 51.3	53.5	66	2.2	10	- 1244	52.8	0.7	5	-4.3		
E-30	330	1 52.5	55.8	66	3.3	10		55.5	0.3	5	-4.7		
E-31	331	1 53.0	56.2	66	3.2	10		56.0	0.2	5	-4.8		
E-32	332	1 53.6	57.9	66	4.3	10	A-1777	57.8	0.1	5	-4.9		
E-33	333	1 52.0	55.7	66	3.7	10	A lexan	55.6	0.1	5	-4.9		
E-34	334	1 50.8	53.3	66	2.5	10	(53.3	0.0	5	-5.0		
E-35	335	1 45.3	47.3	66	2.0	10	(14.44)	47.2	0.1	5	-4.9		
E-36	336	1 64.5	66.4	66	1.9	10 8	Snd Lvl	66.4	0.0	5	-5.0		
E-37	337	1 59.5	62.2	66	2.7	10		62.2	0.0	5	-5.0		
E-38	338	1 60.7	62.3	66	1.6	10	232	62.3	0.0	5	-5.0		
E-39	339	1 59.0	60.7	66	1.7	10		60.7	0.0	5	-5.0		
E-40	340	1 57.8	59.5	66	1.7	10		59.5	0.0	5	-5.0		
E-41	341	1 58.9	60.8	66	1.9	10		60.8	0.0	5	-5.0		
E-42	342	1 56.6	58.3	66	1.7	10	Name of the last	58.3	0.0	5	-5.0		
E-43	343	1 56.9	58.5	66	1.6	10	12022	58.5	0.0	5	-5.0		
E-44	344	1 55.3	56.9	66	1.6	10		56.9	0.0	5	-5.0		
E-45	345	1 57.3	59.0	66	1.7	10	-	59.0	0.0	5	-5.0		
E-46	346	1 56.0	57.6	66	1.6	10		57.6	0.0	5	-5.0		
E-1ii	347	1 54.3	56.1	66	1.8	10		55.9	0.2	5	-4.8		
E-2ii	348	1 58.0	59.9	66	1.9	10		59.7	0.2	5	-4.8		
E-3ii	349	1 59.8	61.6	66	1.8	10		61.4	0.2	5	-4.8		
E-3iii	350	1 59.6	61.4	66	1.8	10		61.1	0.3	5	-4.7		
E-3iv	351	1 58.6	60.3	66	1.7	10		60.1	0.2	5	-4.8		
E-3v	352	1 58.7	60.4	66	1.7	10	- 100	60.1	0.3	5	-4.7		
E-3vi	353	1 58.1	59.8	66	1.7	10		59.7	0.1	5	-4.9		
E-4ii	354	1 59.6	61.4	66	1.8	10		61.2	0.2	5	-4.8		
E-4vi	355	1 57.6	59.2	66	1.6	10		59.1	0.1	5	-4.9		
E-5ii	356	1 60.2	62.0	66	1.8	10	-	61.8	0.2	5	-4.8		
E-5iii	357	1 57.2	59.0	66	1.8	10		58.9	0.1	5	-4.9		
E-5vi	358	1 56.9	58.8	66	1.9	10	-	58.6	0.2	5	-4.8		
E-6ii	359	1 60.8	62.5	66	1.7	10		62.4	0.1	5	-4.9		
E-6iii	360	1 56.5	58.4	66	1.9	10	10000	58.3	0.1	5	-4.9		
E-6vi	361	1 56.9	58.8	66	1.9	10		58.7	0.1	5	-4.9		
E-7ii	362	1 60.2	61.9	66	1.7	10		61.8	0.1	5	-4.9		
E-7iii	363	1 56.5	58.3	66	1.8	10		58.2	0.1	5	-4.9		

RESULTS: SOUND LEVELS					60-0	6726-20					
E-7vi	364	56.4	58.3	66	1.9	10		58.2	0.1	5	-4.9
E-8ii	365	1 60.1	61.9	66	1.8	10		61.7	0.2	5	-4.8
E-8iii	366	1 55.0	56.9	66	1.9	10		56.8	0.1	5	-4.9
E-8vi	367	1 56.1	58.0	66	1.9	10		57.9	0.1	5	-4.9
E-9ii	368	1 60.1	61.9	66	1.8	10	2.72	61.7	0.2	5	-4.8
E-9via	369	1 55.5	57.4	66	1.9	10		57.3	0.1	5	-4.9
E-9vib	370	1 55.1	57.1	66	2.0	10	27.00	57.0	0.1	5	-4.9
E-10ii	371	1 57.5	59.4	66	1.9	10		59.2	0.2	5	-4.8
E-10iii	372	56.9	58.8	66	1.9	10		58.7	0.1	5	-4.9
E-10iv	373	55.8	57.7	66	1.9	10		57.6	0.1	5	-4.9
E-10v	374	55.6	57.6	66	2.0	10		57.5	0.1	5	-4.9
E-10vi	375	55.3	57.3	66	2.0	10		57.2	0.1	5	-4.9
E-16ii	376	59.1	60.7	66	1.6	10		60.4	0.3	5	-4.7
E-17ii	377	57.9	59.3	66	1.4	10	7000	59.0	0.3	5	-4.7
E-18ii	378	1 55.7	57.0	66	1.3	10	****	56.5	0.5	5	-4.5
E-19ii	379	1 55.2	56.4	66	1.2	10		56.0	0.4	5	-4.6
E-22ii	380	1 54.9	56.9	66	2.0	10		56.5	0.4	5	-4.6
E-23iia	381	1 54.5	56.6	66	2.1	10	2,22	56.2	0.4	5	-4.6
E-23iib	382	1 53.7	55.8	66	2.1	10		55.4	0.4	5	-4.6
E-23iic	383	1 52.7	55.0	66	2.3	10		54.4	0.6	5	-4.4
E-24iia	384	1 51.7	54.1	66	2.4	10		53.6	0.5	5	-4.5
E-24iib	385	51.6	53.8	66	2.2	10		53.4	0.4	5	-4.6
E-25ii	386	1 38.8	40.6	66	1.8	10		40.6	0.0	5	-5.0
E-26ii	387	1 37.5	39.2	66	1.7	10		39.3	-0.1	5	-5.1
E-27ii	388	1 36.6	38.3	66	1.7	10		38.5	-0.2	5	-5.2
E-28ii	389	1 36.2	37.8	66	1.6	10		38.1	-0.3	5	-5.3
E-29ii	390	1 36.2	37.9	66	1.7	10	7000	38.2	-0.3	5	-5.3
E-30ii	391	1 35.5	37.2	66	1.7	10		37.9	-0.7	5	-5.7
É-34ii	392	1 35.2	37.0	66	1.8	10		37.1	-0.1	5	-5.1
E-34iii	393	1 35.8	37.6	66	1.8	10		37.6	0.0	5	-5.0
E-34iv	394	37.0	38.7	66	1.7	10		38.7	0.0	5	-5.0
E-34ix	395	51.8	54.0	66	2.2	10		53.3	0.7	5	-4.3
E-34v		38.8	40.6	66	1.8	10	-	40.5	0.1	5	-4.9
E-34vi	397	40.8	42.6	66	1.8	10	лели	42.6	0.0	5	-5.0
E-34vii	398	1 45.3	47.3	66	2.0	10		47.3	0.0	5	-5.0
E-34viii	399	51.5	54.0	66	2.5	10	жини	53.5	0.5	5	-4.5
E-35ii		42.6	44.4	66	1.8	10		44.3	0.1	5	-4.9
E-35iii	401	45.5	47.5	66	2.0	10	2222	47.5	0.0	5	-5.0
E-35iv	402	45.3	47.6	66	2.3	10		47.6	0.0	5	-5.0
E-35ix	403	1 43.1	45.2	66	2.1	10		45.1	0.1	5	-4.9

RESULTS: SOUND LEVELS						6	0-06726-20					
E-35v	404	1	43.9	46.1	66	2.2	10		46.1	0.0	5	-5.0
E-35vi	405	1	43.6	45.7	66	2.1	10		45.7	0.0	5	-5.0
E-35vii	406	1	43.3	45.3	66	2.0	10		45.3	0.0	5	-5.0
E-35viii	407	1	42.8	44.9	66	2.1	10		44.9	0.0	5	-5.0
E-35x	408	1	47.9	49.9	66	2.0	10		49.8	0.1	5	-4.9
E-36ii	409	1	61.5	63.6	66	2.1	10		63.6	0.0	5	-5.0
E-36iii	410	1	58.2	61.4	66	3.2	10		61.4	0.0	5	-5.0
E-36iv	411	1	53.9	56.7	66	2.8	10		56.7	0.0	5	-5.0
E-36v	412	1	56.1	58.6	66	2.5	10		58.6	0.0	5	-5.0
E-36vi	413	1	55.4	58.2	66	2.8	10		58.2	0.0	5	-5.0
E-37ii	414	1	56.4	58.7	66	2.3	10		58.6	0.1	5	-4.9
E-37iii	415	1	53.5	55.6	66	2.1	10		55.6	0.0	5	-5.0
E-37iv	416	1	51.1	53.0	66	1.9	10		53.0	0.0	5	-5.0
E-37v	417	1	51.1	53.0	66	1.9	10		53.0	0.0	5	-5.0
E-38ii	418	1	57.9	60.0	66	2.1	10		60.0	0.0	5	-5.0
E-38iii	419	1	57.0	58.9	66	1.9	10		58.9	0.0	5	-5.0
E-38iv	420	1	55.7	57.8	66	2.1	10		57.8	0.0	5	-5.0
E-38va	421	1	55.1	56.9	66	1.8	10		56.9	0.0	5	-5.0
E-38vb	422	1	55.1	57.1	66	2.0	10		57.1	0.0	5	-5.0
E-40ii	423	1	56.3	57.9	66	1.6	10	See Control	57.9	0.0	5	-5.0
E-40iii	424	1	54.4	56.5	66	2.1	10	(E-1-1)	56.5	0.0	5	-5.0
E-41ii	425	1	55.2	56.8	66	1.6	10		56.8	0.0	5	-5.0
E-41iv	426	1	54.9	57.0	66	2.1	10	1000 D	57.0	0.0	5	-5.0
E-42ii	427	1	55.5	57.4	66	1.9	10		57.4	0.0	5	-5.0
E-43ii	429	1	55.7	57.5	66	1.8	10	(1888)).	57.5	0.0	5	-5.0
E-44ii	430	1	54.7	56.4	66	1.7	10		56.4	0.0	5	-5.0
E-45ii	431	1	55.1	56.9	66	1.8	10	1200	56.9	0.0	5	-5.0
E-45iii	432	1	56.3	58.3	66	2.0	10	944448	58.3	0.0	5	-5.0
E-45iv	433	1	55.5	57.5	66	2.0	10	FEET 6	57.5	0.0	5	-5.0
E-45v	434	1	54.6	56.7	66	2.1	10	-	56.7	0.0	5	-5.0
E-46ii	435	1	52.6	54.2	66	1.6	10	enes:	54.2	0.0	5	-5.0
E-46iii	436	1	50.1	51.7	66	1.6	10	2000 2	51.7	0.0	5	-5.0
E-46iv	437	1	48.6	50.2	66	1.6	10	*****	50.2	0.0	5	-5.0
Dwelling Units		# DUs	Noise Red	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		136	-0.7	0.2	1.1							
All Impacted		17										
All that meet NR Goal		0										

60-06726-20

ms consultants, inc.

KLC 54200

18 July 2015

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed with Plaza

BARRIER DESIGN:

Barr D All

Average pavement type shall be used unless a State highway agency substantiates the use

of a different type with approval of FHWA.

ATMOSPHERICS:

Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
D-1	296	2	67.4	68.7	66	1.3	10	Snd Lvl	68.3	0.4		5 -4.6
D-2	297	3	67.3	68.1	66	0.8	10	Snd Lvi	67.8	0.3		5 -4.7
D-3	298	2	66.8	67.5	66	0.7	10	Snd Lvi	67.1	0.4		5 -4.6
D-4	299	3	66.8	67.5	66	0.7	10	Snd Lvl	67.1	0.4		5 -4.6
D-5	300	2	66.4	67.1	66	0.7	10	Snd Lvl	66.7	0.4		5 -4.6
D-6 (Pool)	301	1	63.6	64.9	66	1.3	10	- Line	64.3	0.6		5 -4.4
D-7 (Community Bldg)	302	1	62.9	64.2	66	1.3	10		63.5	0.7		5 -4.3
D-8	303	2	63.5	64.3	66	3.0	10		63.6	0.7		5 -4.3
D-9	304	2	63.2	63.5	66	0.3	10		62.8	0.7		5 -4.3
D-10	305	2	62.9	62.9	66	0.0	10	Neerie.	62.1	0.8		5 -4.2
D-11	306	2	62.7	62.5	66	-0.2	10		61.8	0.7		5 -4.3
D-12	307	2	62.4	62.3	66	-0.1	10		61.5	0.8		5 -4.2
D-13	308	3	62.2	62.2	66	0.0	10	S -	61.2	1.0		5 -4.0
D-14	309	2	62.2	62.3	66	0.1	10	£ 1100 2	61.2	1.1		5 -3.9
D-15	310	3	62.1	62.1	66	0.0	10		61.1	1.0		5 -4.0
D-16	311	2	62.1	62.2	66	0.1	10		61.0	1.2		5 -3.8
D-17	312	2	62.1	62.3	66	0.2	10		60.9	1.4		5 -3.6
D-18	313	1	59.9	61.5	66	1.6	10		59.7	1.8		5 -3.2
D-19	314	1	61.0	62.7	88	1.7	10		59.8	2.9		5 -2.1
D-20	315	1	59.8	61.5	66	1.7	10		57.8	3.7		5 -1.3
D-21	316	1	61.5	63.2	66	1.7	10		59.8	3.4		5 -1.6
D-22	317	1	64.5	64.6	71	0.1	10		59.5	5.1		5 0.1
D-23	318	1	65.0	65.1	71	0.1	10	-	59.3	5.8		5 0.8
D-24	319	1	63.4	64.8	66	1.4	10		58.7	6.1		5 1.1

RESULTS: SOUND LEVELS						60-06726-20							
D-25	320	1	62.8	64.8	66	2.0	10		58.6	6.2	5	1.2	
D-26	321	1	61.3	64.9	88	3.6	10		58.2	6.7	5	1.7	
D-27	322	1	61.7	66.8	88	5.1	10		59.5	7.3	5	2.3	
D-28	323	1	60.7	65.5	88	4.8	10	1	58.9	6.6	5	1.6	
D-30	324	1	59.0	61.2	66	2.2	10	1	58.0	3.2	5	-1.8	
D-31	325	1	58.7	61.0	71	2.3	10	77 <u>2-1112</u>	57.4	3.6	5	-1.4	
D-32	326	1	58.8	60.9	88	2.1	10		57.0	3.9	5	-1.1	
D-33	327	1	69.5	71.2	88	1.7	10	-	62.2	9.0	5	4.0	
D-34	328	1	68.4	68.7	66	0.3	10	Snd Lvl	64.1	4.6	5	-0.4	
D-1ii	331	3	67.2	68.2	66	1.0	10	Snd Lvl	67.6	0.6	5	-4.4	
D-2ii	332	2	66.7	67.5	66	0.8	10	Snd Lvl	67.0	0.5	5	-4.5	
D-3ii	333	2	66.6	67.0	66	0.4	10	Snd Lvl	66.4	0.6	5	-4.4	
D-4ii	334	2	66.4	66.6	66	0.2	10	Snd Lvl	66.1	0.5	5	-4.5	
D-7ii	335	3	63.2	64.1	66	0.9	10	·	63.4	0.7	5	-4.3	
D-8ii	336	3	62.6	62.9	66	0.3	10		62.1	0.8	5	-4.2	
D-10ii	337	2	62.4	62.6	66	0.2	10		61.8	0.8	5	-4.2	
D-11ii	338	3	62.1	62.4	66	0.3	10		61.5	0.9	5	-4.1	
D-12ii	339	2	61.9	61.9	66	0.0	10		61.0	0.9	5	-4.1	
D-13ii	340	3	61.6	61.6	66	0.0	10		60.6	1.0	5	-4.0	
D-14ii	341	2	61.5	61.4	66	-0.1	10	1	60.4	1.0	5	-4.0	
D-15ii	342	3	61.3	61.0	66	-0.3	10	- 20014	60.0	1.0	5	-4.0	
D-16ii	343	2	61.0	61.1	66	0.1	10		59.8	1.3	5	-3.7	
D-17ii	344	3	60.5	61.3	66	0.8	10		59.7	1.6	5	-3.4	
D-18ii	345	1	57.4	59.3	88	1.9	10		57.3	2.0	5	-3.0	
D-22ii	346	1	62.2	63.7	88	1.5	10		60.1	3.6	5	-1.4	
D-22iii	347	1	60.1	61.6	66	1.5	10		56.9	4.7	5	-0.3	
D-23ii	348	1	62.7	64.1	71	1.4	10		59.9	4.2	5	-0.8	
D-25ii	349	1	62.1	64.4	71	2.3	10		59.9	4.5	5	-0.5	
D-25iii	350	1	59.9	62.2	71	2.3	10		56.6	5.6	5	0.6	
D-26iia	351	1	60.6	63.5	71	2.9	10		59.6	3.9	5	-1.1	
D-26iib	352	1	60.2	62.7	66	2.5	10		59.3	3.4	5	-1.6	
D-26iii	353	1	58.9	62.1	88	3.2	10		56.2	5.9	5	0.9	
D-27iia	354	1	61.2	63.4	66	2.2	10		61.1	2.3	5	-2.7	
D-27iib	355	1	60.7	62.9	66	2.2	10		60.5	2.4	5	-2.6	
D-28iia	356	1	60.3	62.3	66	2.0	10		60.2	2.1	5	-2.9	
D-28iib	357	1	60.2	62.2	66	2.0	10		60.3	1.9	5	-3.1	
D-28iii	358	1	56.8	59.1	71	2.3	10		55.4	3.7	5	-1.3	
D-29a	359	1	61.6	64.7	88	3.1	10	1000	58.9	5.8	5	0.8	
D-29b	360	1	59.5	61.7	71	2.2	10		58.0	3.7	5	-1.3	
D-29iia	361	1	60.0	61.9	66	1.9	10		60.0	1.9	5	-3.1	
D-29iib	362	1	60.3	62.1	66	1.8	10		60.7	1.4	5	-3.6	
D-32iiia	363	1	59.7	61.6	71	1.9	10		60.0	1.6	5	-3.4	

60-06726-20

D-32iiib	364	60.3	62.5	88	2.2	10		60.9	1.6	5	-3.4
D-33ii	365	63.4	65.8	66	2.4	10		60.4	5.4	5	0.4
D-33iii	366	61.0	63.6	66	2.6	10		59.1	4.5	5	-0.5
D-33iv	367	59.8	62.3	66	2.5	10		57.7	4.6	5	-0.4
D-33va	368	58.6	60.9	66	2.3	10	,	57.8	3.1	5	-1.9
D-33vb	369	62.4	64.2	88	1.8	10		63.2	1.0	5	-4.0
D-33vi	370	60.4	62.4	66	2.0	10	****	61.2	1.2	5	-3.8
D-34ii	371	65.4	68.0	66	2.6	10	Snd Lvl	61.8	6.2	5	1.2
D-34iii	372	63.6	66.0	66	2.4	10	Snd Lvl	61.6	4.4	5	-0.6
D-34iv	373	61.0	63.1	88	2.1	10		60.0	3.1	5	-1.9
D-34v	374	62.4	64.4	88	2.0	10		63.4	1.0	5	-4.0

Dwelling Units	# DUs N	Noise Reduction					
		Min	Avg	Max			
	d	dB	dB	dB			
All Selected	117	0.3	2.7	9.0			
All Impacted	24	0.3	1.6	6.2			
All that meet NR Goal	13	5.1	6.3	9.0			

60-06726-20

ms consultants, inc.

18 July 2015

KLC 54200

TNM 2.5

RESULTS: BARRIER DESCRIPTIONS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed with Plaza

BARRIER DESIGN:

Barr D All

-					
_	-	-		_	~~
0	a	rr			
_			-		

Name	Туре	Heights al	Heights along Barrier			if Wali	If Berm			Cost
		Min	Avg	Max		Area	Volume cu yd	Top Width	Run:Rise ft:ft	\$
		ft	ft	ft	ft	sq ft		ft		
Barrier D	W	12.00	12.00	12.00	4063	48755				
									Total Cost:	

بيويد برديد Č,

MP 28-31 NSA D Proposed with Plaza	Sheet 1 of 1	18 Jul 2015
Barrier View-Barr D All	ms consultants, in Project/Contract	
Run name: PR_NSA_D Scale: <dna -="" due="" perspective="" to=""></dna>	TNM Version 2.5 Analysis By: KLC	
Roadway:	Ground Zone:	polygon
Receiver:	Tree Zone:	dashed polygon
Barrier:	Contour Zone:	polygon
Building Row: — —	Parallel Barrier:	
Terrain Line:	Skew Section:	\longrightarrow

60-06726-20

ms consultants, inc.

KLC 54200

18 July 2015

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed with Plaza

BARRIER DESIGN:

Barr D West Final

Average pavement type shall be used unless

a State highway agency substantiates the use of a different type with approval of FHWA.

ATMOSPHERICS:

Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier	2		
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
D-1	296	2	67.4	68.7	66	1.3	10	Snd Lvl	68.2	0.5	5	-4.5
D-2	297	3	67.3	68.1	66	0.8	10	Snd Lvl	67.7	0.4	5	-4.6
D-3	298	2	66.8	67.5	66	0.7	10	Snd Lvl	67.1	0.4	5	-4.6
D-4	299	3	66.8	67.5	66	0.7	10	Snd Lvl	67.1	0.4	5	-4.6
D-5	300	2	66.4	67.1	66	0.7	10	Snd Lvl	66.7	0.4	5	-4.6
D-6 (Pool)	301	1	63.6	64.9	66	1.3	10		64.2	0.7	5	-4.3
D-7 (Community Bldg)	302	1	62.9	64.2	66	1.3	10		63.4	0.8	5	-4.2
D-8	303	2	63.5	64.3	66	0.8	10		63.5	0.8	5	-4.2
D-9	304	2	63.2	63.5	66	0.3	10		62.6	0.9	5	-4.1
D-10	305	2	62.9	62.9	66	0.0	10		62.0	0.9	5	-4.
D-11	306	2	62.7	62.5	66	-0.2	10		61.6	0.9	5	-4.
D-12	307	2	62.4	62.3	66	-0.1	10		61.3	1.0	5	-4.0
D-13	308	3	62.2	62.2	66	0.0	10		61.0	1.2	5	-3.8
D-14	309	2	62.2	62.3	66	0.1	10		61.0	1.3	5	-3.7
D-15	310	3	62.1	62.1	66	0.0	10		60.8	1.3	5	-3.7
D-16	311	2	62.1	62.2	66	0.1	10		60.7	1.5	5	-3.5
D-17	312	2	62.1	62.3	66	0.2	10		60.6	1.7	5	-3.3
D-18	313	1	59.9	61.5	66	1.6	10		59.4	2.1	5	-2.9
D-19	314	1	61.0	62.7	88	1.7	10	-	59.3	3.4	5	-1.6
D-20	315	1	59.8	61.5	66	1.7	10	U sers	57.1	4.4	5	-0.6
D-21	316	1	61.5	63.2	66	1.7	10		59.3	3.9	5	-1.1
D-1ii	331	3	67.2	68.2	66	1.0	10	Snd Lvl	67.6	0.6	5	-4.4
D-2ii	332	2	66.7	67.5	66	0.8	10	Snd Lvl	66.9	0.6	5	-4.4
D-3ii	333	2	66.6	67.0	66	0.4	10	Snd Lvl	66.4	0.6	5	-4.4

RESULTS: SOUND LEVELS	60-06726-20

D-4ii	334	2	66.4	66.6	66	0.2	10	Snd Lvl	66.0	0.6	5	-4.4
D-7ii	335	3	63.2	64.1	66	0.9	10		63.3	8.0	5	-4.2
D-8ii	336	3	62.6	62.9	66	0.3	10	, heat	62.0	0.9	5	-4.1
D-10ii	337	2	62.4	62.6	66	0.2	10	****	61.7	0.9	5	-4.1
D-11ii	338	3	62.1	62.4	66	0.3	10	****	61.4	1.0	5	-4.0
D-12ii	339	2	61.9	61.9	66	0.0	10		60.8	1.1	5	-3.9
D-13ii	340	3	61.6	61.6	66	0.0	10		60.4	1.2	5	-3.8
D-14ii	341	2	61.5	61.4	66	-0.1	10		60.2	1.2	5	-3.8
D-15ii	342	3	61.3	61.0	66	-0.3	10		59.8	1.2	5	-3.8
D-16ii	343	2	61.0	61.1	66	0.1	10		59.6	1.5	5	-3.5
D-17ii	344	3	60.5	61.3	66	0.8	10		59.4	1.9	5	-3.1
D-18ii	345	1	57.4	59.3	88	1.9	10		56.9	2.4	5	-2.6

Dwelling Units	# DUs	Noise Red	Noise Reduction				
		Min	Avg	Max			
		dB	dB	dB			
All Selected	76	0.4	1.3	4.4			
All Impacted	21	0.4	0.5	0.6			
All that meet NR Goal	0	0.0	0.0	0.0			

60-06726-20

ms consultants, inc.

18 July 2015

KLC 54200

TNM 2.5

RESULTS: BARRIER DESCRIPTIONS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed with Plaza

BARRIER DESIGN:

Barr D West Final

Name	Туре	pe Heights along Barrier			Length	If Wall	If Berm			Cost
		Min	Avg	Max		Area	Volume	Top Width	Run:Rise	
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$
Barrier D	W	18.00	18.00	18.00	2971	53483	S			
									Total Cost:	

LE LE PERSONALE L'ALLE L'ALLE

MP 28-31 NSA	D Proposed with Plaza	Sheet 1 of 1	18 Jul 2015	
		ms consultants, i		
Barrier View-Ba	rr D West Final	Project/Contract	No. 60-06726-20	
Run name: PR_	NSA_D	TNM Version 2.5	Feb 2004	
Scale: < DNA - c	ue to perspective>	Analysis By: KLC	54200	
Roadway:	\longrightarrow	Ground Zone:	polygon	
Receiver:		Tree Zone:	dashed polygon	
Barrier:	\longmapsto	Contour Zone:	polygon	
Building Row:		Parallel Barrier:		
Terrain Line:	8	Skew Section:	$ \rightarrow$	

60-06726-20

ms consultants, inc.

15 July 2015

KLC 54200

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed with Plaza

BARRIER DESIGN:

Barr D East Final

Average pavement type shall be used unless a State highway agency substantiates the use

of a different type with approval of FHWA.

ATMOSPHERICS:

Nome	No.	#DUs	Evicting	No Barrier			With Barrier					
Name	NO.	#DUS						T		Natas Badus	41	
			LAeq1h	LAeq1h		Increase over	19-11-11-1	Туре	Calculated	Noise Reduc		
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
D-33	327	1	69.5	71.2	88	1.7	10	- SAME:	61.3	9.9		5 4.9
D-32	326	1	58.8	60.9	88	2.1	10	1200	58.4	2.5		5 -2.5
D-34	328	1	68.4	68.7	66	0.3	10	Snd Lvl	63.7	5.0	ļ.	5 0.0
D-32iiia	363	1	59.7	61.6	71	1.9	10	See	60.9	0.7		5 -4.3
D-32iiib	364	1	60.3	62.5	88	2.2	10	S eene :	61.5	1.0		5 -4.0
D-33ii	365	1	63.4	65.8	66	2.4	10		60.5	5.3		5 0.3
D-33iii	366	1	61.0	63.6	66	2.6	10	SHAME	59.5	4.1		5 -0.9
D-33iv	367	1	59.8	62.3	66	2.5	10		58.2	4.1		5 -0.9
D-33va	368	1	58.6	60.9	66	2.3	10		58.5	2.4		5 -2.6
D-33vb	369	1	62.4	64.2	88	1.8	10	-	63.2	1.0		5 -4.0
D-33vi	370	1	60.4	62.4	66	2.0	10	500000	61.6	0.8		5 -4.2
D-34ii	371	1	65.4	68.0	66	2.6	10	Snd Lvl	61.4	6.6		5 1.6
D-34iii	372	1	63.6	66.0	66	2.4	10	Snd Lvl	61:4	4.6		5 -0.4
D-34iv	373	1	61.0	63.1	88	2.1	10	1944	60.2	2.9		5 -2.1
D-34v	374	1	62.4	64.4	88	2.0	10		63.5	0.9		5 -4.1
Dwelling Units		# DUs	Noise Rec	duction								
			Min	Avg	Max					*		

Dweiling Units	# DUS	Noise Red	Noise Reduction			
		Min	Avg	Max		
		dB	dB	dB		
All Selected	15	0.7	3.5	9.9		
All Impacted	3	4.6	5.4	6.6		
All that meet NR Goal	3	5.3	7.3	9.9		

60-06726-20

ms consultants, inc.

15 July 2015

KLC 54200

TNM 2.5

RESULTS: BARRIER DESCRIPTIONS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed with Plaza

BARRIER DESIGN:

Barr D East Final

rriers

Name	Туре	Type Heights along Barrier			Length	If Wall	If Berm		Cost	
		Min	Avg	Max		Area	Volume cu yd	Top Width ft	Run:Rise	\$
		ft	ft	ft	ft	sq ft			ft:ft	
Barrier D	W	12.00	15.11	16.00	689	10407				
SB-4A	W	13.50	14.44	17.50	1070	15455				
									Total Cost:	

MP 28-31 NSA D	Proposed with Plaza	Sheet 1 of 1	15 Jul 2015
		ms consultants, inc.	
Barrier View-Barr	D East Final	Project/Contract No.	60-06726-20
Run name: PR_N	SA_D	TNM Version 2.5, Fe	b 2004
Scale: <dna -="" du<="" td=""><td>e to perspective></td><td>Analysis By: KLC 542</td><td>200</td></dna>	e to perspective>	Analysis By: KLC 542	200
Roadway:	\longrightarrow	Ground Zone: po	olygon
Receiver:		Tree Zone: da	shed polygon
Barrier:	\longmapsto	_	olygon
Building Row:		Parallel Barrier:	
Terrain Line:	2	Skew Section: -	$\overline{} \rightarrow$

RESULTS: SOUND LEVELS 60-06726-20

ms consultants, inc.

15 July 2015

TNM 2.5

KLC 54200

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed with Plaza

BARRIER DESIGN:

Barr D East Extended

Average pavement type shall be used unless a State highway agency substantiates the use

ATMOSPHERICS:

68 deg F, 50% RH

a State highway agency substantiates the use of a different type with approval of FHWA.

Receiver Name	No.	#DUs	Existing	No Barrier					With Barrier			
Name	NO.	#DUS	LAeq1h	LAeg1h		Ingresses aver	a vlatina	Tuna	Calculated	Naisa Badua	41	
			LACQIII			Increase over		Туре		Noise Reduc		
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
D-1	296	2	67.4	68.7	66	1.3	10	Snd Lvl	68.7	0.0	5	-5.0
D-2	297	3	67.3	68.1	66	0.8	10	Snd Lvl	68.1	0.0	5	-5.0
D-3	298	2	66.8	67.5	66	0.7	10	Snd Lvl	67.5	0.0	5	
D-4	299	3	66.8	67.5	66	0.7	10	Snd Lvl	67.5	0.0	5	-5.0
D-5	300	2	66.4	67.1	66	0.7	10	Snd Lvl	67.1	0.0	5	-5.0
D-6 (Pool)	301	1	63.6	64.9	66	1.3	10		64.9	0.0	5	
D-7 (Community Bldg)	302	1	62.9	64.2	66	1.3	10	-	64.2	0.0	5	
D-8	303	2	63.5	64.3	66	0.8	10		64.3	0.0	5	
D-9	304	2	63.2	63.5	66	0.3	10	1,000,000	63.5	0.0	5	
D-10	305	2	62.9	62.9	66	0.0	10		62.9	0.0	5	-5.0
D-11	306	2	62.7	62.5	66	-0.2	10	(******	62.5	0.0	5	
D-12	307	2	62.4	62.3	66	-0.1	10		62.3	0.0	5	
D-13	308	3	62.2	62.2	66	0.0	10		62.2	0.0	5	
D-14	309	2	62.2	62.3	66	0.1	10		62.2	0.1	5	
D-15	310	3	62.1	62.1	66	0.0	10		62.1	0.0	5	
D-16	311	2	62.1	62.2	66	0.1	10		62.2	0.0	5	
D-17	312	2	62.1	62.3	66	0.2	10		62.2	0.1	5	
D-18	313	1	59.9	61.5	66	1.6	10	(****	61.3	0.2	5	
D-19	314	1	61.0	62.7	88	1.7	10	344445	62.2			
D-20	315	1	59.8	61.5	66	1.7	10		60.7			
D-21	316	1	61.5	63.2	66	1.7	10		62.2			
D-22	317	1	64.5	64.6	71	0.1	10		63.4			
D-23	318	1	65.0	65.1	71	0.1	10	:	62.2			

RESULTS: SOUND LEVEL		- 4	00.4	24.0	20		06726-20					
D-24	319	1	63.4	64.8	66	1.4	10	S20000	59.7	5.1	5	0.1
D-25	320	1	62.8	64.8	66	2.0	10		59.1	5.7	5	0.7
D-26	321	1	61.3	64.9	88	3.6	10		58.1	6.8	5	1.8
D-27	322	1	61.7	66.8	88	5.1	10		59.2	7.6	5	2.6
D-28	323	1	60.7	65.5	88	4.8	10	S-1000	58.5	7.0	5	2.0
D-30	324	1	59.0	61.2	66	2.2	10	:	57.9	3.3	5	-1.7
D-31	325	1	58.7	61.0	71	2.3	10	(2000)	57.2	3.8	5	-1.2
D-32	326	1	58.8	60.9	88	2.1	10	Parallel .	56.7	4.2	5	-0.8
D-33	327	1	69.5	71.2	88	1.7	10		61.4	9.8	5	4.8
D-34	328	1	68.4	68.7	66	0.3	10	Snd Lvl	63.9	4.8	5	-0.2
D-1ii	331	3	67.2	68.2	66	1.0	10	Snd Lvl	68.2	0.0	5	-5.0
D-2ii	332	2	66.7	67.5	66	8.0	10	Snd Lvl	67.5	0.0	5	-5.0
D-3ii	333	2	66.6	67.0	66	0.4	10	Snd Lvl	67.0	0.0	5	-5.0
D-4ii	334	2	66.4	66.6	66	0.2	10	Snd Lvl	66.6	0.0	5	-5.0
D-7ii	335	3	63.2	64.1	66	0.9	10		64.1	0.0	5	-5.0
D-8ii	336	3	62.6	62.9	66	0.3	10	****	62.8	0.1	5	-4.9
D-10ii	337	2	62.4	62.6	66	0.2	10	(April)	62.6	0.0	5	-5.0
D-11ii	338	3	62.1	62.4	66	0.3	10	1000	62.3	0.1	5	-4.9
D-12ii	339	2	61.9	61.9	66	0.0	10	D ecerto)	61.9	0.0	5	-5.0
D-13ii	340	3	61.6	61.6	66	0.0	10		61.5	0.1	5	-4.9
D-14ii	341	2	61.5	61.4	66	-0.1	10		61.3	0.1	5	-4.9
D-15ii	342	3	61.3	61.0	66	-0.3	10		60.9	0.1	5	-4.9
D-16ii	343	2	61.0	61.1	66	0.1	10		60.9	0.2	5	-4.8
D-17ii	344	3	60.5	61.3	66	0.8	10		61.1	0.2	5	-4.8
D-18ii	345	1	57.4	59.3	88	1.9	10	CHANNEL CO.	59.0	0.3	5	-4.7
D-22ii	346	1	62.2	63.7	88	1.5	10		62.3	1.4	5	-3.6
D-22iii	347	1	60.1	61.6	66	1.5	10		59.6	2.0	5	-3.0
D-23ii	348	1	62.7	64.1	71	1.4	10		61.6	2.5	5	-2.5
D-25ii	349	1	62.1	64.4	71	2.3	10		61.0	3.4	5	-1.6
D-25iii	350	1	59.9	62.2	71	2.3	10		58.7	3.5	5	-1.5
D-26iia	351	1	60.6	63.5	71	2.9	10		60.4	3.1	5	-1.9
D-26iib	352	1	60.2	62.7	66	2.5	10		60.0	2.7	5	-2.3
D-26iii	353	1	58.9	62.1	88	3.2	10		58.4	3.7	5	-1.3
D-27iia	354	1	61.2	63.4	66	2.2	10	-	61.3	2.1	5	-2.9
D-27iib	355	1	60.7	62.9	66	2.2	10		60.6	2.3	5	-2.7
D-28iia	356	1	60.3	62.3	66	2.0	10		60.2	2.1	5	-2.9
D-28iib	357	1	60.2	62.2	66	2.0	10		60.3	1.9	5	-3.1
D-28iii	358	1	56.8	59.1	71	2.3	10		55.9	3.2	5	-1.8
D-29a	359	1	61.6	64.7	88	3.1	10		58.5	6.2	5	1.2
D-29b	360	1	59.5	61.7	71	2.2	10	9866	57.9	3.8	5	-1.2

RESULTS: SOUND LEVELS 60-06726-20

361	1	60.0	61.9	66	1.9	10		60.0	1.9	5	-3.1
362	1	60.3	62.1	66	1.8	10	2000	60.7	1.4	5	-3.6
363	1	59.7	61.6	71	1.9	10	(*****	60.0	1.6	5	-3.4
364	1	60.3	62.5	88	2.2	10	(Planta :	60.9	1.6	5	-3.4
365	1	63.4	65.8	66	2.4	10	15445	59.9	5.9	5	0.9
366	1	61.0	63.6	66	2.6	10	FERRE	58.7	4.9	5	-0.1
367	1	59.8	62.3	66	2.5	10		57.4	4.9	5	-0.1
368	1	58.6	60.9	66	2.3	10		57.7	3.2	5	-1.8
369	1	62.4	64.2	88	1.8	10	:	63.1	1.1	5	-3.9
370	1	60.4	62.4	66	2.0	10		61.1	1.3	5	-3.7
371	1	65.4	68.0	66	2.6	10	Snd Lvl	61.5	6.5	5	1.5
372	1	63.6	66.0	66	2.4	10	Snd Lvl	61.3	4.7	5	-0.3
373	1	61.0	63.1	88	2.1	10	-	59.8	3.3	5	-1.7
374	1	62.4	64.4	88	2.0	10		63.4	1.0	5	-4.0
	362 363 364 365 366 367 368 369 370 371 372 373	362 1 363 1 364 1 365 1 366 1 367 1 368 1 369 1 370 1 371 1 372 1 373 1	362 1 60.3 363 1 59.7 364 1 60.3 365 1 63.4 366 1 61.0 367 1 59.8 368 1 58.6 369 1 62.4 370 1 60.4 371 1 65.4 372 1 63.6 373 1 61.0	362 1 60.3 62.1 363 1 59.7 61.6 364 1 60.3 62.5 365 1 63.4 65.8 366 1 61.0 63.6 367 1 59.8 62.3 368 1 58.6 60.9 369 1 62.4 64.2 370 1 60.4 62.4 371 1 65.4 68.0 372 1 63.6 66.0 373 1 61.0 63.1	362 1 60.3 62.1 66 363 1 59.7 61.6 71 364 1 60.3 62.5 88 365 1 63.4 65.8 66 366 1 61.0 63.6 66 367 1 59.8 62.3 66 368 1 58.6 60.9 66 369 1 62.4 64.2 88 370 1 60.4 62.4 66 371 1 65.4 68.0 66 372 1 63.6 66.0 66 373 1 61.0 63.1 88	362 1 60.3 62.1 66 1.8 363 1 59.7 61.6 71 1.9 364 1 60.3 62.5 88 2.2 365 1 63.4 65.8 66 2.4 366 1 61.0 63.6 66 2.6 367 1 59.8 62.3 66 2.5 368 1 58.6 60.9 66 2.3 369 1 62.4 64.2 88 1.8 370 1 60.4 62.4 66 2.0 371 1 65.4 68.0 66 2.6 372 1 63.6 66.0 66 2.4 373 1 61.0 63.1 88 2.1	362 1 60.3 62.1 66 1.8 10 363 1 59.7 61.6 71 1.9 10 364 1 60.3 62.5 88 2.2 10 365 1 63.4 65.8 66 2.4 10 366 1 61.0 63.6 66 2.6 10 367 1 59.8 62.3 66 2.5 10 368 1 58.6 60.9 66 2.3 10 369 1 62.4 64.2 88 1.8 10 370 1 60.4 62.4 66 2.0 10 371 1 65.4 68.0 66 2.6 10 372 1 63.6 66.0 66 2.4 10 373 1 61.0 63.1 88 2.1 10	362 1 60.3 62.1 66 1.8 10 — 363 1 59.7 61.6 71 1.9 10 — 364 1 60.3 62.5 88 2.2 10 — 365 1 63.4 65.8 66 2.4 10 — 366 1 61.0 63.6 66 2.6 10 — 367 1 59.8 62.3 66 2.5 10 — 368 1 58.6 60.9 66 2.3 10 — 369 1 62.4 64.2 88 1.8 10 — 370 1 60.4 62.4 66 2.0 10 — 371 1 65.4 68.0 66 2.6 10 Snd Lvl 372 1 63.6 66.0 66 2.4 10 Snd Lvl 373 1 61.0 63.1 88 2.1 10 —	362 1 60.3 62.1 66 1.8 10 — 60.7 363 1 59.7 61.6 71 1.9 10 — 60.0 364 1 60.3 62.5 88 2.2 10 — 60.9 365 1 63.4 65.8 66 2.4 10 — 59.9 366 1 61.0 63.6 66 2.6 10 — 58.7 367 1 59.8 62.3 66 2.5 10 — 57.4 368 1 58.6 60.9 66 2.3 10 — 57.7 369 1 62.4 64.2 88 1.8 10 — 63.1 370 1 60.4 62.4 66 2.0 10 — 61.1 371 1 65.4 68.0 66 2.6 10 Snd Lvl 61.5 372 1 63.6 66.0 66 2.4 10 Snd Lvl 61.3 373 1 61.0 63.1 88 2.1 10 — 59.8	362 1 60.3 62.1 66 1.8 10 — 60.7 1.4 363 1 59.7 61.6 71 1.9 10 — 60.0 1.6 364 1 60.3 62.5 88 2.2 10 — 60.9 1.6 365 1 63.4 65.8 66 2.4 10 — 59.9 5.9 366 1 61.0 63.6 66 2.6 10 — 58.7 4.9 367 1 59.8 62.3 66 2.5 10 — 57.4 4.9 368 1 58.6 60.9 66 2.3 10 — 57.7 3.2 369 1 62.4 64.2 88 1.8 10 — 63.1 1.1 370 1 60.4 62.4 66 2.0 10 — 61.1 1.3	362 1 60.3 62.1 66 1.8 10 — 60.7 1.4 5 363 1 59.7 61.6 71 1.9 10 — 60.0 1.6 5 364 1 60.3 62.5 88 2.2 10 — 60.9 1.6 5 365 1 63.4 65.8 66 2.4 10 — 59.9 5.9 5 366 1 61.0 63.6 66 2.6 10 — 58.7 4.9 5 367 1 59.8 62.3 66 2.5 10 — 57.4 4.9 5 368 1 58.6 60.9 66 2.3 10 — 57.7 3.2 5 369 1 62.4 64.2 88 1.8 10 — 63.1 1.1 5 370 1 60.4 62.4 66 2.0 10 — 61.1 1.3 5 371 1 65.4 68.0 66 2.6 10 Snd Lvl 61.5 6.5 5 372 1 63.6 66.

Dwelling Units	# DUs	Noise Red	Noise Reduction					
		Min	Avg	Max				
	d	dB	dB	dB				
All Selected	117	0.0	2.0	9.8				
All Impacted	24	0.0	1.3	6.5				
All that meet NR Goal	9	5.1	6.7	9.8				

60-06726-20

ms consultants, inc.

15 July 2015

KLC 54200

TNM 2.5

RESULTS: BARRIER DESCRIPTIONS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed with Plaza

BARRIER DESIGN:

Barr D East Extended

Barriers										
Name	Туре	Heights al	ong Barrie	r	Length	If Wall	If Berm			Cost
		Min	Avg	Max		Area	Volume	Тор	Run:Rise	
			E/E					Width		
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$
Barrier D	W	12.00	13.30	14.00	2003	26633				
									Total Cost:	

MP 28-31 NSA D	Proposed with Plaza	Sheet 1 of 1	15 Jul 2015
		ms consultants, inc	>.
Barrier View-Barr	D East Extended	Project/Contract No	o. 60-06726-20
Run name: PR_N	ISA_D	TNM Version 2.5, I	eb 2004
Scale: <dna -="" du<="" td=""><td>e to perspective></td><td>Analysis By: KLC 5</td><td>54200</td></dna>	e to perspective>	Analysis By: KLC 5	54200
Roadway:	\longrightarrow	Ground Zone:	polygon
Receiver:		Tree Zone:	dashed polygon
Barrier:	\longmapsto	Contour Zone:	polygon
Building Row:	 :	Parallel Barrier:	
Terrain Line:	3 //	Skew Section:	$ \rightarrow$
1			

RESULTS: SOUND LEVELS 60-06726-20

ms consultants, inc.

15 July 2015

TNM 2.5

KLC 54200

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA E Proposed with Plaza

BARRIER DESIGN:

Barrier E Final

Average pavement type shall be used unless a State highway agency substantiates the use

of a different type with approval of FHWA.

ATMOSPHERICS:

ATMOSPTILITIOS.		00 009	1,0070107									
Receiver									learner -			
Name	No.	#DUs	-	No Barrier					With Barrier			
				LAeq1h		Increase over		Туре		Noise Reduc		
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
E-1	301	1	65.0	66.9	66	1.9	10	Snd Lvl	66.8	0.1	5	-4.9
E-2	302	1	65.1	66.9	66	1.8	10	Snd Lvl	66.9	0.0	5	
E-3	303	1	65.3	67.1	66	1.8	10	Snd Lvl	67.1	0.0	5	-5.C
E-4	304	1	65.5	67.3	66	1.8	10	Snd Lvl	67.2	0.1	5	-4.9
E-5	305	1	65.2	67.0	66	1.8	10	Snd Lvl	66.9	0.1	5	-4.9
E-6	306	1	65.0	66.8	66	1.8	10	Snd Lvl	66.7	0.1	5	
E-7	307	1	64.7	66.5	66	1.8	10	Snd Lvl	66.4	0.1	5	
E-8	308	1	65.0	66.7	66	1.7	10	Snd Lvl	66.4	0.3	5	-4.7
E-9	309	1	64.5	66.2	66	1.7	10	Snd Lvl	65.8	0.4	5	
E-10	310	1	64.4	66.0	66	1.6	10	Snd Lvl	65.6	0.4	- 5	
E-11	311	1	64.2	65.9	66	1.7	10	7777	65.4	0.5	5	-4.5
E-12	312	1	64.4	66.1	66	1.7	10	Snd Lvl	65.5	0.6	5	-4.4
E-13	313	1	64.8	66.6	66	1.8	10	Snd Lvl	65.9	0.7	5	
E-14	314	1	65.1	66.7	66	1.6	10	Snd Lvl	66.0	0.7	5	-4.3
E-15	315	1	64.8	66.5	66	1.7	10	Snd Lvl	65.7	0.8	5	
E-16	316	1	65.1	66.7	66	1.6	10	Snd Lvi	65.9	0.8	5	
E-17	317	1	64.6	66.2	66	1.6	10	Snd Lvl	65.3	0.9	5	-4.1
E-18	318	1	62.7	64.5	66	1.8	10		63.6	0.9	5	-4.1
E-19	319	1	61.1	63.0	66	1.9	10		62.1	0.9	5	
E-20	320		59.6	61.5	66	1.9	10		60.7	0.8	5	
E-21	321		58.4	60.5	66	2.1	10		59.8	0.7	5	-4.3
E-22	322		57.3	59.4	66	2.1	10	<u> </u>	58.8	0.6	5	
E-23	323	'	52.9	54.9	66	2.0	10		54.2	0.7	5	-4.3

			Min dB	Avg dB	Max dB								
Dwelling Units		# DUs	Noise Red		1								
E-23iic	383	1			.0	66	2.3	10	: === 2	53.9	1.1	5	-3.
E-23iib	382				_	66	2.1	10		55.0	8.0	5	-4.
E-23iia	381	1	54.5	56	.6	66	2.1	10		55.9	0.7	5	-4.
E-22ii	380	1				66	2.0	10		56.2	0.7	5	-4.
E-19ii	379	1	55.2	56	.4	66	1.2	10	34000	55.6	0.8	5	-4.
E-18ii	378		55.7	57	.0	66	1.3	10	Section 1	56.2	0.8	5	-4.
E-17ii	377	1	57.9	59	.3	66	1.4	10		58.6	0.7	5	-4.
E-16ii	376	1	59.1	60	.7	66	1.6	10		60.1	0.6	5	-4.
E-10vi	375	1	55.3	57	.3	66	2.0	10	-	57.2	0.1	5	-4.
E-10v	374	1	55.6	57	.6	66	2.0	10		57.4	0.2	5	-4.
E-10iv	373	1	55.8	57	.7	66	1.9	10		57.6	0.1	5	-4.
E-10iii	372	1	56.9	58	.8	66	1.9	10		58.6	0.2	5	-4.
E-10ii	371	1	57.5	59	.4	66	1.9	10		59.2	0.2	5	-4.
E-9vib	370					66	2.0	10		56.9	0.2	5	-4.
E-9via	369					66	1.9	10		57.2	0.2	5	-4.
E-9ii	368	1	60.1	61	.9	66	1.8	10		61.6	0.3	5	-4.
E-8vi	367	1	56.1	58	.0	66	1.9	10		57.9	0.1	5	-4.
E-8iii	366	1	55.0	56	.9	66	1.9	10	2442	56.7	0.2	5	-4.
E-8ii	365	1	60.1	61	.9	66	1.8	10		61.7	0.2	5	-4.
E-7vi	364	1	56.4	58	.3	66	1.9	10		58.1	0.2	5	-4.
E-7iii	363	1	56.5	58	.3	66	1.8	10		58.2	0.1	5	-4.
E-7ii	362	1	60.2	61	.9	66	1.7	10		61.7	0.2	5	-4.
E-6vi	361					66	1.9	10		58.7	0.1	5	-4.
E-6iii	360	1			.4	66	1.9	10	222	58.3	0.1	5	-4.
E-6ii	359	1	60.8	62	.5	66	1.7	10		62.4	0.1	5	-4.
E-5vi	358	1				66	1.9	10	(APAIN):	58.6	0.2	5	-4.
E-5iii	357	1				66	1.8	10		58.9	0.1	5	-4.
E-5ii	356					66	1.8	10		61.8	0.2	5	-4.
E-4vi	355					66	1.6	10		59.1	0.1	5	-4.
E-4ii	354	1				66	1.8	10		61.2	0.2	5	-4.
E-3vi	353			59		66	1.7	10		59.7	0.1	5	-4.
E-3v	352					66	1.7	10		60.1	0.3	5	-4.
E-3iv	351	1				66	1.7	10		60.1	0.2	5	-4.
E-3iii	350	1			_	66	1.8	10	****	61.1	0.3	5	-4.
E-3ii	349					66	1.8	10		61.4	0.2	5	-4.
E-2ii	348					66	1.9	10	7000	59.7	0.2	5	-4.
E-1ii	347	1	54.3	56	.1	66	1.8	10		55.9	0.2	5	-4.

RESULTS: SOUND LEVELS 60-06726-20

All Selected	60	0.0	0.4	1.1
All Impacted	16	0.0	0.4	0.9
All that meet NR Goal	0	0.0	0.0	0.0

60-06726-20

ms consultants, inc.

15 July 2015

KLC 54200

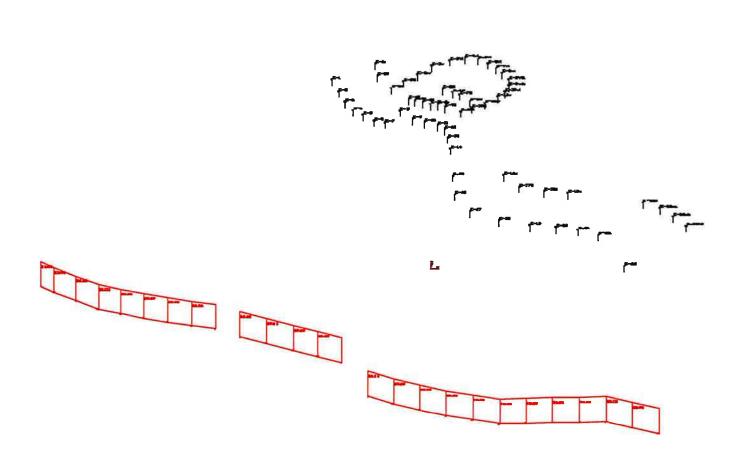
TNM 2.5

RESULTS: BARRIER DESCRIPTIONS

PROJECT/CONTRACT:

60-06726-20

RUN:


MP 28-31 NSA E Proposed with Plaza

BARRIER DESIGN:

Barrier E Final

Name	Туре	Heights along Barrier			Length	If Wall	If Berm			Cost
		Min	Avg	Max		Area	Volume	Top Width	Run:Rise	
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$
Barrier E West	W	20.00	20.00	20.00	746	14926				

								Width		
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$
Barrier E West	W	20.00	20.00	20.00	746	14926				0
Barrier E Center	W	20.00	20.00	20.00	400	7993				0
Barrier E	W	20.00	20.00	20.00	1105	22107				0
									Total Cost:	0

MP 28-31 NSA E	Proposed with Plaza	Sheet 1 of 1	15 Jul 2015
		ms consultants, inc.	
Barrier View-Barr	rier E Final	Project/Contract No	. 60-06726-20
Run name: PR_N	ISA_E	TNM Version 2.5, F	eb 2004
Scale: <dna -="" du<="" td=""><td>ie to perspective></td><td>Analysis By: KLC 54</td><td>1200</td></dna>	ie to perspective>	Analysis By: KLC 54	1200
Roadway:	\longrightarrow	Ground Zone: p	olygon
Receiver:		Tree Zone:	ashed polygon
Barrier:	\longmapsto	Contour Zone: p	olygon
Building Row:		Parallel Barrier:	
Terrain Line:		Skew Section:	$ \rightarrow$

MILEPOST 28-31 ROADWAY AND BRIDGE RECONSTRUCTION PRELIMINARY DESIGN -- NOISE ANALYSIS REPORT

Appendix 8

TNM Build without Warrendale Toll Plaza Model

ms consultants, inc.

VRM

15 July 2015 TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

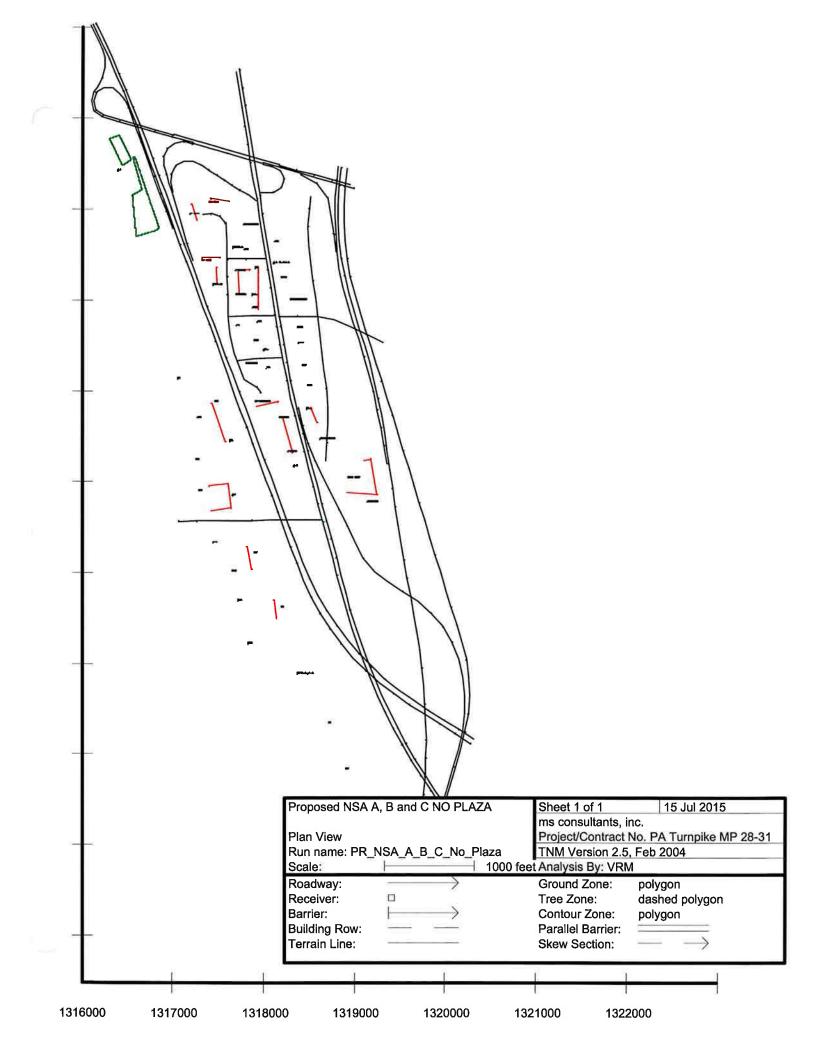
PA Turnpike MP 28-31

RUN:

Proposed NSA A, B and C NO PLAZA

BARRIER DESIGN:

INPUT HEIGHTS


Average pavement type shall be used unless a State highway agency substantiates the use of a different type with approval of FHWA.

ATMOSPHERICS:

Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
A-1	308	1	61.3	62.1	71	0.8	10	7-11-1	62.1	0.0		5 -5.0
B-1 (Hotel)	309	1	68.8	70.8	71	2.0	10		70.8	0.0		5 -5.1
B-2 (Hotel)	310	1	72.6	75.5	71	2.9	10	Snd Lvl	75.5	0.0		5 -5.0
B-3 (Hotel)	311	1	70.6	74.4	71	3.8	10	Snd Lvl	74.4	0.0		5 -5.0
B-4 (Hotel)	312	1	64.7	66.5	71	1.8	10	:	66.5	0.0		5 -5.0
B-5	313	1	67.0	69.3	71	2.3	10	CHANNE	69.3	0.0		5 -5.0
B-6 (Daycare)	314	1	71.2	73.8	66	2.6	10	Snd Lvl	73.8	0.0		5 -5.0
B-7 (Auto Dealer)	315	1	70.9	75.0	88	4.1	10		75.0	0.0		5 -5.0
B-8 (Hotel)	316	1	65.0	66.1	71	1.1	10		66.1	0.0		5 -5.0
B-9 (Hotel)	317	1	66.0	67.8	71	1.8	10		67.8	0.0		5 -5.0
B-10	318	1	67.1	68.8	71	1.7	10	E-STATE:	68.8	0.0		5 -5.0
B-1ii (Hotel)	319	1	60.9	62.3	71	1.4	10	:===	62.3	0.0		5 -5.0
B-1iii (Gas Station)	320	1	64.9	66.5	88	1.6	10	THE STATE OF THE S	66.5	0.0		5 -5.0
B-2ii (Hotel)	321	1	63.3	64.9	71	1.6	10		64.9	0.0		5 -5.0
B-2iii	322	1	63.7	65.4	71	1.7	10		65.4	0.0		5 -5.0
B-2iv	323	1	70.3	70.6	71	0.3	10		70.6	0.0		5 -5.0
B-3ii (Hotel)	324	1	61.3	63.1	71	1.8	10		63.1	0.0		5 -5.0
B-3iii	325	1	63.6	65.4	71	1.8	10		65.4	0.0		5 -5.0
B-3iv (Gas Station)	326	1	72.5	74.2	88	1.7	10		74.2	0.0		5 -5.0
B-4iiia	327	1	61.6	63.8	71	2.2	10		63.8			5 -5.0
B-4iiib	328	1	63.1	65.2	71		10		65.2			5 -5.0
B-4iva	329	1	69.6	70.8	71				70.8			5 -5.0
B-4ivb (Gas Station)	330	1	65.9	67.7	88				67.7			5 -5.0

			Min Av	_	May							H.
Dwelling Units		# DUs	Noise Reduct	ion								
C-6iib	361	1	56.5	58.2	71	1.7	10		58.2	0.0	5	-5.0
C-6iia	360	1	56.7	58.8	71	2.1	10		58.8	0.0	5	-5.0
C-5iib	359	1	56.3	58.3	71	2.0	10		58.3	0.0	5	-5.0
C-5iia	358	1	58.4	60.4	71	2.0	10	(Marie)	60.4	0.0	5	-5.0
C-4ii	357	1	58.4	61.0	71	2.6	10		61.0	0.0	5	-5.0
C-3ii	356	1	57.4	60.1	71	2.7	10	1 2-112)	60.1	0.0	5	-5.0
C-2ii	355	1	58.3	60.2	71	1.9	10	SETTE:	60.2	0.0	5	-5.0
C-9	354	1	59.9	61.7	71	1.8	10	-	61.7	0.0	5	-5.0
C-8	353	1	60.6	62.4	71	1.8	10		62.4	0.0	5	-5.0
C-7 (Trucking Yard)	352	1	60.1	61.9	88	1.8	10	1222	61.9	0.0	5	-5.0
C-6	351	1	63.9	64.1	71	0.2	10	(2000)	64.1	0.0	5	-5.0
C-5	350	1	63.2	64.5	71	1.3	10	200000	64.5	0.0	5	-5.0
C-4	349	1	62.9	64.3	71	1.4	10) 	64.3	0.0	5	-5.0
C-3	348	1	66.8	68.9	71	2.1	10	iseme:	68.9	0.0	5	-5.0
C-2	347	1	66.7	68.8	71	2.1	10		68.8	0.0	5	-5.0
C-1	346	1	59.6	61.5	71	1.9	10	72000	61.5	0.0	5	-5.0
B-10ivb (Pool)	342	1	61.9	63.9	66	2.0	10		63.9	0.0	5	-5.0
B-10iva (Hotel)	341	1	60.9	63.0	71	2.1	10	-	63.0	0.0	5	-5.0
B-9iv (Picnic Area)	340	1	65.3	65.7	66	0.4	10		65.7	0.0	5	-5.0
B-8iv	339	1	66.8	68.4	71	1.6	10	S	68.4	0.0	5	-5.0
B-7iv	338	1	63.6	65.3	71	1.7	10	Latine:	65.3	0.0	5	-5.0
B-6iv	337	1	63.4	65.1	71	1.7	10		65.1	0.0	5	-5.0
B-6ii	336	1	65.5	67.3	71	1.8	10	122	67.3	0.0	5	-5.0
B-5ivb	335	1	63.9	65.6	71	1.7	10		65.6	0.0	5	-5.0
B-5iva	334	1	63.6	65.2	71	1.6	10		65.2	0.0	5	-5.0
B-5iic	333	1	64.5	66.6	71	2.1	10		66.6	0.0	5	-5.0
B-5iib	332	1	65.2	66.8	71	1.6	10		66.8	0.0	5	-5.0
B-5iia	331	1	64.3	66.3	71	2.0	10		66.3	0.0	5	-5.0

Dwelling Units	# DUs	Noise Red	Noise Reduction					
		Min	Avg	Max				
	d	dB	dB	dB				
All Selected	51	0.0	0.0	0.0				
All Impacted	3	0.0	0.0	0.0				
All that meet NR Goal	0	0.0	0.0	0.0				

60-06726-20

ms consultants, inc.

15 July 2015 TNM 2.5

KLC 54200

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed NO PLAZA

BARRIER DESIGN:

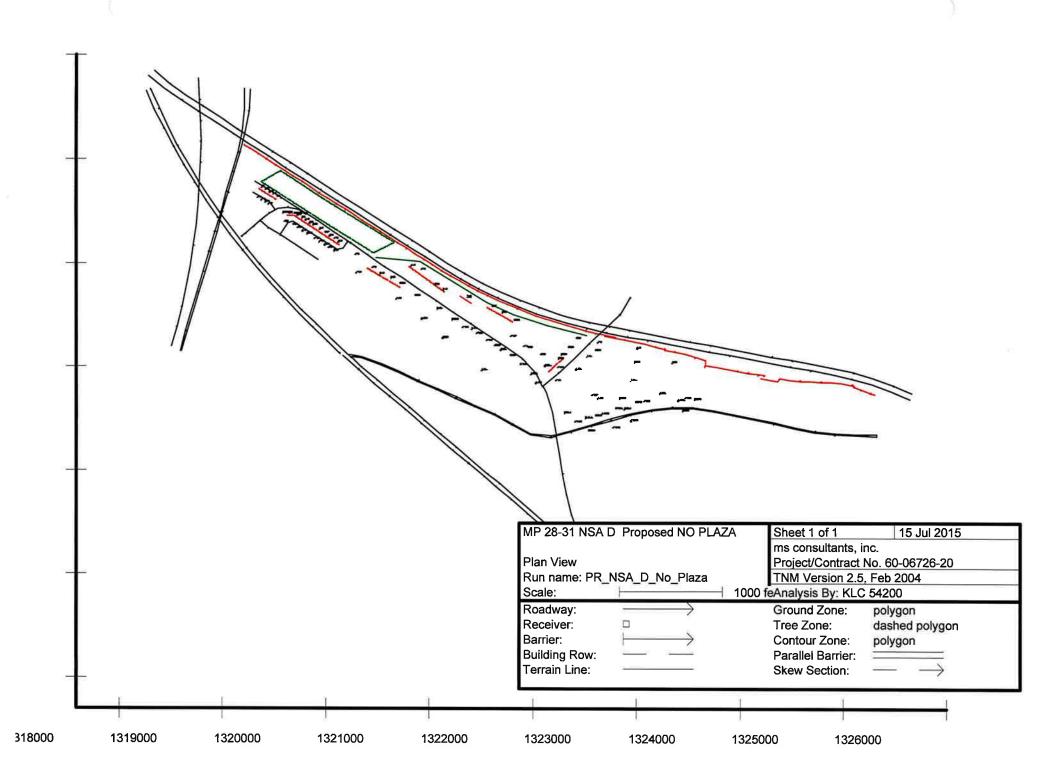
INPUT HEIGHTS

Average pavement type shall be used unless a State highway agency substantiates the use

ATMOSPHERICS:

68 deg F, 50% RH

of a different type with approval of FHWA.


Receiver							=					
Name	No.	#DUs	Existing	No Barrier					With Barrier	Market and		
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
D-1	296	2	67.4	68.8	66	1.4	10	Snd Lvl	68.3	0.5	5	-4.5
D-2	297	3	67.3	68.2	66	0.9	10	Snd Lvl	67.8	0.4	5	-4.6
D-3	298	2	66.8	67.5	66	0.7	10	Snd Lvl	67.1	0.4	5	-4.6
D-4	299	3	66.8	67.6	66	0.8	10	Snd Lvl	67.1	0.5	5	-4.5
D-5	300	2	66.4	67.2	66	0.8	10	Snd Lvl	66.7	0.5	5	
D-6 (Pool)	301	1	63.6	65.0	66	1.4	10	/	64.3	0.7	5	
D-7 (Community Bldg)	302	1	62.9	64.3	66	1.4	10		63.5	0.8	5	
D-8	303	2	63.5	64.5	66	1.0	10	\ 	63.6	0.9	5	
D-9	304	2	63.2	63.7	66	0.5	10		62.7	1.0	5	
D-10	305	2	62.9	63.1	66	0.2	. 10) ((100)	62.1	1.0	5	-4.0
D-11	306	2	62.7	62.7	66	0.0	10	O HANKE	61.7	1.0	5	-4.0
D-12	307	2	62.4	62.5	66	0.1	10	74444	61.5	1.0	5	
D-13	308	3	62.2	62.5	66	0.3	10		61.2	1.3	5	
D-14	309	2	62.2	62.5	66	0.3	10		61.2	1.3	5	
D-15	310	3	62.1	62.4	66	0.3	10		61.0	1.4	5	
D-16	311	2	62.1	62.5	66	0.4	10		61.0	1.5	5	
D-17	312	2	62.1	62.7	66	0.6	10		60.9			
D-18	313	1	59.9	61.9	66	2.0	10	34444	59.7	2.2		
D-19	314	1	61.0	63.3	88	2.3	10		59.8			
D-20	315	1	59.8	62.1	66	2.3	10		57.7			
D-21	316	1	61.5	63.8	66	2.3	10	-	59.7		5	
D-22	317	1	64.5	65.3	71	0.8			59.5			
D-23	318	1	65.0	65.7	71				59.4			

RESULTS: SOUND LEVELS	60-06726-20											
D-24	319	1	63.4	65.6	66	2.2	10		58.6	7.0	5	2.0
D-25	320	1	62.8	65.5	66	2.7	10		58.5	7.0	5	2.0
D-26	321	1	61.3	65.5	88	4.2	10	-	58.2	7.3	5	2.3
D-27	322	1	61.7	67.4	88	5.7	10		59.6	7.8	5	2.8
D-28	323	1	60.7	66.1	88	5.4	10	77	59.0	7.1	5	2.1
D-30	324	1	59.0	62.0	66	3.0	10	745E	58.1	3.9	5	-1.1
D-31	325	1	58.7	61.9	71	3.2	10		57.5	4.4	5	-0.6
D-32	326	1	58.8	62.1	88	3.3	10		57.2	4.9	5	-0.1
D-33	327	1	69.5	72.3	88	2.8	10	3	62.2	10.1	5	5.1
D-34	328	1	68.4	71.6	66	3.2	10	Snd Lvl	63.9	7.7	5	2.7
D-37	329	1	57.3	61.2	66	3.9	10		60.3	0.9	5	-4.1
D-38	330	1	56.5	60.5	66	4.0	10		60.1	0.4	5	-4.6
D-1ii	331	3	67.2	68.3	66	1.1	10	Snd Lvl	67.6	0.7	5	-4.3
D-2ii	332	2	66.7	67.6	66	0.9	10	Snd Lvl	67.0	0.6	5	-4.4
D-3ii	333	2	66.6	67.1	66	0.5	10	Snd Lvl	66.4	0.7	5	-4.3
D-4ii	334	2	66.4	66.8	66	0.4	10	Snd Lvl	66.1	0.7	5	-4.3
D-7ii	335	3	63.2	64.3	66	1.1	10	3 44444 3	63.4	0.9	5	-4.1
D-8ii	336	3	62.6	63.0	66	0.4	10		62.1	0.9	5	-4.1
D-10ii	337	2	62.4	62.8	66	0.4	10	1222	61.8	1.0	5	-4.0
D-11ii	338	3	62.1	62.6	66	0.5	10		61.5	1.1	5	-3.9
D-12ii	339	2	61.9	62.1	66	0.2	10		61.0	1.1	5	-3.9
D-13ii	340	3	61.6	61.8	66	0.2	10	N-12-12	60.6	1.2	5	-3.8
D-14ii	341	2	61.5	61.6	66	0.1	10		60.4	1.2	5	-3.8
D-15ii	342	3	61.3	61.2	66	-0.1	10	****	60.0	1.2	5	-3.8
D-16ii	343	2	61.0	61.3	66	0.3	10		59.8	1.5	5	-3.5
D-17ii	344	3	60.5	61.7	66	1.2	10		59.7	2.0	5	-3.0
D-18ii	345	1	57.4	59.8	88	2.4	10		57.3	2.5	5	-2.5
D-22ii	346	1	62.2	64.4	88	2.2	10		60.0	4.4	5	-0.6
D-22iii	347	1	60.1	62.5	66	2.4	10	2 5855 1	56.7	5.8	5	0.8
D-23ii	348	1	62.7	64.8	71	2.1	10	(59.8	5.0	5	0.0
D-25ii	349	1	62.1	65.2	71	3.1	10		59.9	5.3	5	0.3
D-25iii	350	1	59.9	63.0	71	3.1	10	194921	56.5	6.5	5	1.5
D-26iia	351	1	60.6	64.2	71	3.6	10	ALIE	59.5	4.7	5	-0.3
D-26iib	352	1	60.2	63.2	66	3.0	10		59.2	4.0	5	-1.0
D-26iii	353	1	58.9	63.0	88	4.1	10		56.1	6.9	5	1.9
D-27iia	354	1	61.2	63.8	66	2.6	10	:	61.0	2.8	5	-2.2
D-27iib	355	1	60.7	63.3	66	2.6	10		60.4	2.9	5	-2.1
D-28iia	356	1	60.3	62.7	66	2.4	10		60.2	2.5	5	-2.5
D-28iib	357	1	60.2	62.6	66	2.4	10	1222	60.2	2.4	5	-2.6
D-28iii	358	1	56.8	59.7	71	2.9	10		55.4	4.3	5	-0.7

RESULTS: SOUND LEVELS							60-0672	6-20)				
D-29a	359	1	61.6	65.3	3 8	38	3.7	10		59.1	6.2	5	1.2
D-29b	360	1	59.5	62.3	3	71	2.8	10	2002	58.1	4.2	5	-0.8
D-29iia	361	1	60.0	62.2	2 6	6	2.2	10		60.0	2.2	5	-2.8
D-29iib	362	1	60.3	62.	5 6	6	2.2	10	707E	61.0	1.5	5	-3.5
D-32iiia	363	1	59.7	62.0) 7	'1	2.3	10		60.2	1.8	5	-3.2
D-32iiib	364	1	60.3	62.8	3 8	38	2.5	10		61.0	1.8	5	-3.2
D-33ii	365	1	63.4	67.	1 6	66	3.7	10	Snd Lvl	60.5	6.6	5	1.6
D-33iii	366	1	61.0	64.6	6	6	3.6	10		59.2	5.4	5	0.4
D-33iv	367	1	59.8	63.3	3 6	66	3.5	10		57.7	5.6	5	0.6
D-33va	368	1	58.6	61.6	6	6	3.0	10		57.8	3.8	5	-1.2
D-33vb	369	1	62.4	64.9	3 6	38	2.5	10	=====	63.2	1.7	5	-3.3
D-33vi	370	1	60.4	62.8	3 (6	2.4	10	70 -70	61.2	1.6	5	-3.4
D-34ii	371	1	65.4	68.4	1 (6	3.0	10	Snd Lvl	61.7	6.7	5	1.7
D-34iii	372	1	63.6	66.	5 6	6	2.9	10	Snd Lvl	61.6	4.9	5	-0.1
D-34iv	373	1	61.0	64.2	2 8	38	3.2	10	HERE	60.0	4.2	5	-0.8
D-34v	374	1	62.4	64.	7 8	38	2.3	10		63.4	1.3	5	-3.7
D-34vi	375	1	57.4	60.	3 8	38	2.9	10		57.4	2.9	5	-2.1
D-35v	376	1	56.6	60.	1 6	6	3.5	10		55.2	4.9	5	-0.1
D-35via	377	1	58.7	61.:	2 (66	2.5	10		59.2	2.0	5	-3.0
D-35vib	378	1	58.3	60.9	9 (36	2.6	10		58.7	2.2	5	-2.8
D-36v	379	1	56.3	61.3	3 (36	5.0	10	****	58.5	2.8	5	-2.2
D-36via	380	1	58.1	60.	7 (6	2.6	10	2222	58.4	2.3	5	-2.7
D-36vib	381	1	58.0	60.	7 (66	2.7	10		58.2	2.5	5	-2.5
D-36vii	382	1	61.7	63.	7 (36	2.0	10	1000	63.0	0.7	5	-4.3
D-37iii	383	1	57.8	61.4	4 (36	3.6	10		58.8	2.6	5	-2.4
D-37iv	384	1	56.5	60.0) (6	3.5	10		57.0	3.0	5	-2.0
D-37va	385	1	56.4	60.0) (36	3.6	10		56.5	3.5	5	-1.5
D-37via	386	1	57.6	60.	5 (36	2.9	10	4-44	57.9	2.6	5	-2.4
D-37vib	387	1	58.6	61.3	3 (36	2.7	10		59.5	1.8	5	-3.2
D-37vb	388	1	57.4	60.4	4 (66	3.0	10	9000	58.0	2.4	5	-2.6
D-37vc	389	1	57.2	60.	5 (66	3.3	10		58.4	2.1	5	-2.9
D-37viia	390	1	59.6	62.	7 (36	3.1	10		60.7	2.0	5	-3.0
D-37viib	391	1	60.6	63.	7 (36	3.1	10		62.4	1.3	5	-3.7
D-38iiia	392	1	55.8	59.4	4 (36	3.6	10		57.7	1.7	5	-3.3
D-38iiib	393	1	58.4	62.	1 (36	3.7	10		60.7	1.4	5	-3.6
D-38iiic	394	1	57.6	61.	7 (66	4.1	10	2222	60.0	1.7	5	-3.3
D-38iiid	395	1	58.3	62.0	6	36	4.3	10	2041	60.7	1.9	5	-3.1
D-38vi	396	1	63.2	66.0) (36	2.8	10	Snd Lvl	65.5	0.5	5	-4.5
Dwelling Units		# DUs	Noise Red	luction						1111			
			Min	Avg	Max	-							

60-06726-20

		dB	₫B	dB	
All Selected	141	0.4	2.	u	10.1
All Impacted	26	0.4	2.	2	7.7
All that meet NR Goal	19	5.0	6.	6	10.1

60-06726-20

ms consultants, inc.

KLC 54200

14 July 2015

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

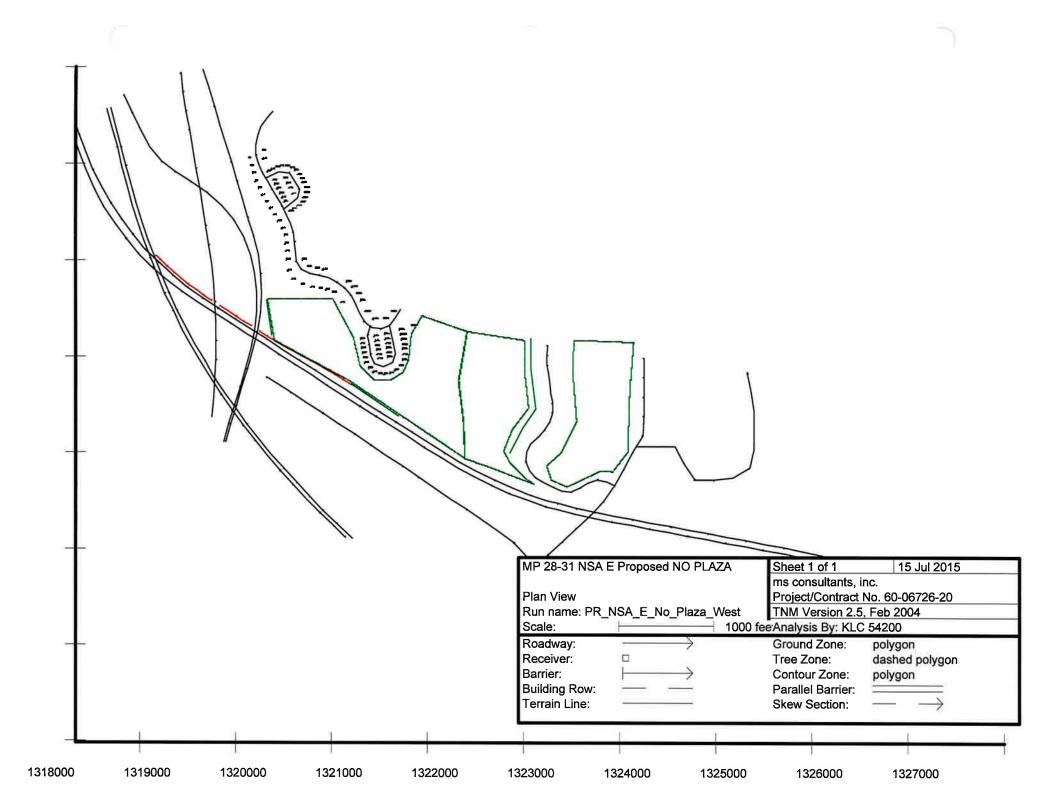
RUN:

MP 28-31 NSA E Proposed NO PLAZA

BARRIER DESIGN:

INPUT HEIGHTS

Average pavement type shall be used unless a State highway agency substantiates the use of a different type with approval of FHWA.


ATMOSPHERICS:

68 deg F, 50% RH

Receiver		"	T=	N. S.										
Name	No.	#DUs	Existing	No Barrier				With Barrier						
			LAeq1h	LAeq1h		Increase over existing		Туре	Calculated	Noise Reduction				
_				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal		
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB		
E-1	301	1	65.0	66.9	66	1.9	10	Snd Lvl	66.9	0.0) 5	-5.0		
E-2	302		65.1	67.0	66	1.9	10	Snd Lvl	67.0	0.0				
E-3	303		65.3	67.2	2 66	1.9	10	Snd Lvl	67.1	0.1	5			
E-4	304		65.5	67.3	3 66	1.8	10	Snd Lvl	67.3	0.0		-5.0		
E-5	305	1	65.2	67.1	66	1.9	10	Snd Lvl	67.0	0.1				
E-6	306	1	65.0	66.9	66	1.9	10	Snd Lvl	66.7	0.2	. 5			
E-7	307		64.7	66.6	66	1.9	10	Snd Lvl	66.4					
E-8	308	1	65.0	66.9	66	1.9	10	Snd Lvl	66.6	0.3	5			
E-9	309	1	64.5	66.4	66	1.9	10	Snd Lvl	66.0	0.4				
E-10	310	1	64.4	66.2	2 66	1.8	10	Snd Lvi	65.9					
E-11	311	1	64.2	66.2	2 66	2.0	10	Snd Lvl	65.7	0.5	5			
E-12	312	1	64.4	66.4	66	2.0	10	Snd Lvl	65.8	0.6				
E-13	313	1	64.8	66.9	66	2.1	10	Snd Lvl	66.3	0.6	5			
E-14	314	1	65.1	67.1	66	2.0	10	Snd Lvl	66.4	0.7				
E-15	315	1	64.8	66.8	66	2.0	10	Snd Lvl	66.2	0.6	5			
E-16	316	1	65.1	66.9	66	1.8	10	Snd Lvl	66.3	0.6				
E-17	317	1	64.6	66.5	66	1.9	10	Snd Lvl	65.9	0.6				
E-18	318	1	62.7	64.9	66	2.2	10		64.1	0.8	5			
E-19	319	1	61.1	63.3	66	2.2	10		62.7	0.6	5			
E-20	320	1	59.6	61.8	66	2.2	10		61.3	0.5	5			
E-21	321	1	58.4	60.8	66	2.4	10		60.2					
E-22	322	1	57.3	59.7	66	2.4	10		59.2		5			
E-23	323	1	52.9	55.2	66	2.3	10	-	54.6					
E-24	324	1	50.4	52.9	66	2.5	10	****	52.2					

RESULTS: SOUND LEVELS					60-06726-20							
E-25	325	1 51.3	53.5	66	2.2	10	-	52.6	0.9	5	-4.1	
E-26	326	1 52.0	54.2	66	2.2	10	2000	53.2	1.0	5	-4.0	
E-27	327	1 52.3	54.6	66	2.3	10		53.4	1.2	5	-3.8	
E-28	328	1 51.7	54.4	66	2.7	10		53.5	0.9	5	-4.1	
E-29	329	1 51.3	54.1	66	2.8	10	-	53.3	0.8	5	-4.2	
E-30	330	1 52.5	56.2	66	3.7	10		55.9	0.3	5	-4.7	
E-31	331	1 53.0	56.7	66	3.7	10		56.5	0.2	5	-4.8	
E-32	332	1 53.6	58.1	66	4.5	10		58.1	0.0	5	-5.0	
E-33	333	1 52.0	56.0	66	4.0	10		56.0	0.0	5	-5.0	
E-34	334	1 50.8	53.9	66	3.1	10		53.8	0.1	5	-4.9	
E-35	335	1 45.3	47.9	66	2.6	10	-	47.8	0.1	5	-4.9	
E-1ii	347	1 54.3	56.2	66	1.9	10	-	56.0	0.2	5	-4.8	
E-2ii	348	1 58.0	59.9	66	1.9	10	: :	59.8	0.1	5	-4.9	
E-3ii	349	1 59.8	61.7	66	1.9	10		61.5	0.2	5	-4.8	
E-3iii	350	1 59.6	61.5	66	1.9	10	****	61.2	0.3	5	-4.7	
E-3iv	351 <i>'</i>	1 58.6	60.5	66	1.9	10		60.2	0.3	5	-4.7	
E-3v	352	1 58.7	60.6	66	1.9	10		60.2	0.4	5	-4.6	
E-3vi	353	1 58.1	60.0	66	1.9	10	3 1448 3	59.8	0.2	5	-4.8	
E-4ii	354	1 59.6	61.5	66	1.9	10		61.3	0.2	5	-4.8	
E-4vi	355	1 57.6	59.4	66	1.8	10		59.2	0.2	5	-4.8	
E-5ii	356	1 60.2	62.0	66	1.8	10		61.9	0.1	5	-4.9	
E-5iii	357	1 57.2	59.1	66	1.9	10		59.0	0.1	5	-4.9	
E-5vi	358	1 56.9	58.9	66	2.0	10		58.8	0.1	5	-4.9	
E-6ii	359	1 60.8	62.6	66	1.8	10		62.5	0.1	5	-4.9	
E-6iii	360	1 56.5	58.5	66	2.0	10		58.4	0.1	5	-4.9	
E-6vi	361	1 56.9	59.0	66	2.1	10	Section 1	58.8	0.2	5	-4.8	
E-7ii	362	1 60.2	62.0	66	1.8	10		61.8	0.2	5	-4.8	
E-7iii	363	1 56.5	58.5	66	2.0	10	N 5515 2	58.3	0.2	5	-4.8	
E-7vi	364	1 56.4	58.5	66	2.1	10		58.3	0.2	5	-4.8	
E-8ii	365	60.1	62.0	66	1.9	10	·	61.8	0.2	5	-4.8	
E-8iii	366	1 55.0	57.0	66	2.0	10		56.9	0.1	5	-4.9	
E-8vi	367	1 56.1	58.2	66	2.1	10		58.1	0.1	5	-4.9	
E-9ii	368	60.1	62.0	66	1.9	10		61.8	0.2	5	-4.8	
E-9via	369	1 55.5	57.6	66	2.1	10		57.4	0.2	5	-4.8	
E-9vib		1 55.1	57.3	66	2.2	10		57.2	0.1	5	-4.9	
E-10ii	371	57.5	59.6	66	2.1	10		59.4	0.2	5	-4.8	
E-10iii	372	1 56.9	59.0	66	2.1	10		58.8	0.2	5	-4.8	
E-10iv		1 55.8	57.9	66	2.1	10		57.8	0.1	5	-4.9	
E-10v	374	1 55.6	57.8	66	2.2	10		57.7	0.1	5	-4.9	
E-10vi	375	1 55.3	57.5	66	2.2	10		57.4	0.1	5	-4.9	
E-16ii	376	1 59.1	61.0	66	1.9	10		60.7	0.3	5	-4.7	
E-17ii	377	1 57.9	59.6	66	1.7	10		59.2	0.4	5	-4.6	

RESULTS: SOUND LEVELS						60-067	26-20					
E-18ii	378	1	55.7	57.2	66	1.5	10		56.7	0.5	5	-4.5
E-19ii	379	1	55.2	56.7	66	1.5	10		56.1	0.6	5	-4.4
E-22ii	380	1	54.9	57.1	66	2.2	10		56.6	0.5	5	-4.5
E-23iia	381	1	54.5	56.8	66	2.3	10		56.4	0.4	5	-4.6
E-23iib	382	1	53.7	56.1	66	2.4	10		55.6	0.5	5	-4.5
E-23iic	383	1	52.7	55.4	66	2.7	10		54.6	0.8	5	-4.2
E-24iia	384	1	51.7	54.6	66	2.9	10		53.9	0.7	5	-4.3
E-24iib	385	1	51.6	54.3	66	2.7	10		53.8	0.5	5	-4.5
E-25ii	386	1	38.8	41.0	66	2.2	10		41.0	0.0	5	-5.0
E-26ii	387	1	37.5	39.6	66	2.1	10		39.7	-0.1	5	-5.1
E-27ii	388	1	36.6	38.7	66	2.1	10	-	38.9	-0.2	5	-5.2
E-28ii	389	1	36.2	38.3	66	2.1	10	(asset)	38.5	-0.2	5	-5.2
E-29ii	390	1	36.2	38.4	66	2.2	10		38.7	-0.3	5	-5.3
E-30ii	391	1	35.5	37.7	66	2.2	10		38.4	-0.7	5	-5.7
E-34ii	392	1	35.2	37.4	66	2.2	10		37.5	-0.1	5	-5.1
E-34iii	393	1	35.8	38.0	66	2.2	10		37.9	0.1	5	-4.9
E-34iv	394	1	37.0	39.1	66	2.1	10		39.0	0.1	5	-4.9
E-34ix	395	1	51.8	54.5	66	2.7	10		53.7	0.8	5	-4.2
E-34v	396	1	38.8	40.9	66	2.1	10		40.8	0.1	5	-4.9
E-34vi	397	1	40.8	42.8	66	2.0	10		42.8	0.0	5	-5.0
E-34vii	398	1	45.3	47.7	66	2.4	10	-	47.6	0.1	5	-4.9
E-34viii	399	1	51.5	54.5	66	3.0	10		54.0	0.5	5	-4.5
E-35ii	400	1	42.6	45.0	66	2.4	10	3,000	44.9	0.1	5	-4.9
E-35iii	401	1	45.5	48.2	66	2.7	10	S terr Cs	48.2	0.0	5	-5.0
E-35iv	402	1	45.3	48.4	66	3.1	10		48.5	-0.1	5	-5.1
E-35ix	403	1	43.1	46.2	66	3.1	10		46.1	0.1	5	-4.9
E-35v	404	1	43.9	47.0	66	3.1	10		47.0	0.0	5	-5.0
E-35vi	405	1	43.6	46.8	66	3.2	10		46.8	0.0	5	-5.0
E-35vii	406	1	43.3	46.4	66	3.1	10		46.4	0.0	5	-5.0
E-35viii	407	1	42.8	46.0	66	3.2	10		46.0	0.0	5	-5.0
E-35x	408	1	47.9	51.1	66	3.2	10		51.1	0.0	5	-5.0
Dwelling Units		# DUs	Noise Rec	duction					-			
			Min	Avg	Max							
			dB	dB	dB							
All Selected		97	-0.7	0.3	1.2							
All Impacted		17	0.0									
All that meet NR Goal		0	0.0	0.0	0.0							

60-06726-20

ms consultants, inc.

KLC 54200

14 July 2015

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

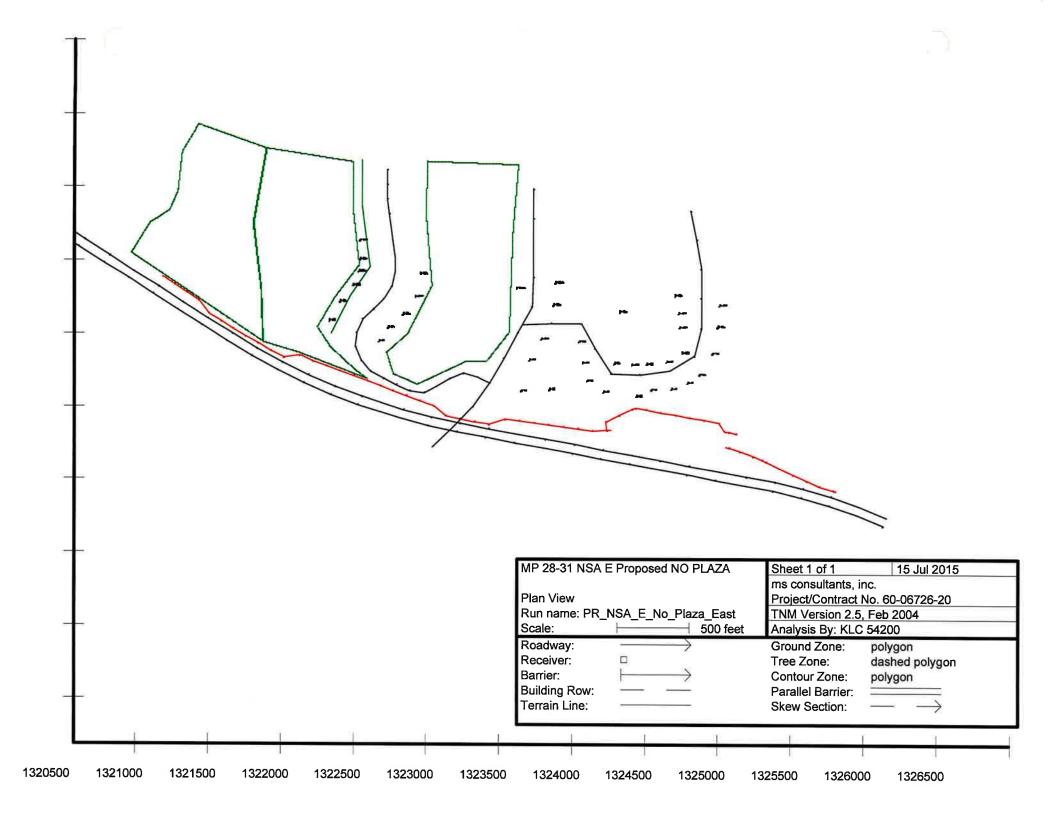
RUN:

MP 28-31 NSA E Proposed NO PLAZA

BARRIER DESIGN:

INPUT HEIGHTS

Average pavement type shall be used unless


ATMOSPHERICS:

68 deg F, 50% RH

a State highway agency substantiates the use of a different type with approval of FHWA.

Receiver Name	No.	#DUs	Existing	No Barrier					With Barrier			
Name	140.	#D03	LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
E-36	440		1 64.5	68.1	66	3.6	10	Snd Lvl	65.7	2.4	5	-2.6
E-37	441		1 59.5	63.3	66	3.8	10		61.0	2.3	5	-2.7
E-38	442		1 60.7	64.1	66	3.4	10		60.0	4.1	5	-0.9
E-39	443		1 59.0	63.3	66	4.3	10		60.1	3.2	5	-1.8
E-40	444		1 57.8	62.7	66	4.9	10		61.7	1.0	5	-4.0
E-41	445		1 58.9	64.6	66	5.7	10		64.1	0.5	5	-4.5
E-42	446		1 56.6	62.2	66	5.6	10		61.5	0.7	5	
E-43	447		1 56.9	62.1	66	5.2	10		61.6	0.5	5	-4.5
E-44	448		1 55.3	60.4	66	5.1	10		60.0	0.4	. 5	-4.6
E-45	449		1 57.3	63.8	66	6.5	10	351750	63.7	0.1	5	-4.9
E-46	450		1 56.0	62.2	66	6.2	10		62.1	0.1	5	
E-36ii	451		1 61.5	65.0	66	3.5	10		62.6	2.4	5	
E-36iii	452		1 58.2	62.6	66	4.4	10	****	59.6	3.0	5	-2.0
E-36iv	453		53.9	58.2	66	4.3	10	****	56.1	2.1	5	-2.9
E-36v	454		1 56.1	60.9	66	4.8	10		58.3	2.6	5	
E-36vi	455		1 55.4	59.7	66	4.3	10		56.4	3.3	5	-1.7
E-37ii	456		56.4	59.8	66	3.4	10		58.3	1.5	5	-3.5
E-37iii	457		53.5	56.9	66	3.4	10		55.6	1.3	5	
E-37iv	458		51.1	54.6	66	3.5	10		52.9	1.7	5	
E-37v	459		51.1	56.3	66	5.2	10		55.8	0.5	5	
E-38ii	460		57.9	61.8	66	3.9	10		58.8	3.0		
E-38iii	461		57.0	60.0	66	3.0	10		57.8	2.2		
E-38iv	462		55.7	58.8	66	3.1	10		57.2			
E-38va	463		55.1	57.4	66	2.3	10		56.7	0.7	5	

RESULTS: SOUND LEVELS						60-06	726-20					
E-38vb	464	1	55.1	58.4	66	3.3	10		56.8	1.6	5	-3.4
E-40ii	465	1	56.3	60.5	66	4.2	10	(areas)	59.2	1.3	5	-3.7
E-40iii	466	1	54.4	58.4	66	4.0	10		56.8	1.6	5	-3.4
E-41ii	467	1	55.2	60.2	66	5.0	10		59.4	0.8	5	-4.2
E-41iv	468	1	54.9	60.0	66	5.1	10		58.5	1.5	5	-3.5
E-42ii	469	1	55.5	60.7	66	5.2	10		59.7	1.0	5	-4.0
E-43ii	470	1	55.7	61.2	66	5.5	10		60.4	0.8	5	-4.2
E-44ii	471	1	54.7	60.3	66	5.6	10	12/12/201	59.8	0.5	5	-4.5
E-45ii	472	1	55.1	60.5	66	5.4	10	F-10-20	60.0	0.5	5	-4.5
E-45iii	473	1	56.3	62.2	66	5.9	10		61.7	0.5	5	-4.5
E-45iv	474	1	55.5	61,2	66	5.7	10		60.6	0.6	5	-4.4
E-45v	475	1	54.6	60.2	66	5.6	10	-	59.3	0.9	5	-4.1
E-46ii	476	1	52.6	58.6	66	6.0	10	-	58.6	0.0	5	-5.0
E-46iii	477	1	50.1	56.2	66	6.1	10		56.1	0.1	5	-4.9
E-46iv	478	1	48.6	54.3	66	5.7	10	2-11-0	54.3	0.0	5	-5.0
Dwelling Units	- 1	# DUs	Noise Rec	luction								
_			Min	Avg	Max							
			dB	dB	dB							
All Selected		39	0.0	1.4	4.1							
All Impacted		1	2.4	2.4	2.4							
All that meet NR Goal		0	0.0	0.0	0.0							

ms consultants, inc.

18 July 2015

60-06726-20

KLC 54200

TNM 2.5 Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed NO PLAZA

BARRIER DESIGN:

Barr D All

Average pavement type shall be used unless a State highway agency substantiates the use

ATMOSPHERICS:

68 deg F, 50% RH

of a different type with approval of FHWA.

59.3

Receiver #DUs With Barrier Name No. Existing No Barrier Calculated LAeq1h LAeq1h Increase over existing Type Noise Reduction Calculated Crit'n Calculated Crit'n Impact LAeq1h Calculated Goal Calculated Sub'l Inc minus Goal dBA dBA dBA dB dB dBA dB dB dB D-1 296 2 67.4 68.8 66 1.4 10 Snd Lvl 68.3 0.5 5 -4.5 D-2 297 3 67.3 68.2 66 0.9 10 Snd Lvl 67.8 0.4 5 -4.6 0.7 D-3 298 2 66.8 67.5 66 10 Snd Lvl 67.1 0.4 5 -4.6 D-4 299 3 66.8 67.6 66 0.8 10 Snd Lvl 67.2 0.4 -4.6 D-5 2 5 300 66.4 67.2 66 8.0 10 Snd Lvl 66.8 0.4 -4.6 D-6 (Pool) 5 301 1 63.6 65.0 66 1.4 10 64.3 0.7 -4.3 ----D-7 (Community Bldg) 302 1 62.9 64.3 66 1.4 63.6 0.7 5 -4.3 10 ----D-8 2 303 63.5 64.5 66 1.0 10 63.6 0.9 5 -4.1 ----2 D-9 304 63.2 63.7 66 0.5 10 62.8 0.9 5 -4.1 D-10 305 2 62.9 63.1 66 0.2 10 62.2 0.9 5 -4.1 ----D-11 306 2 62.7 62.7 66 0.0 61.8 0.9 5 10 ___ -4.1 2 D-12 307 62.4 62.5 66 0.1 10 61.6 0.9 5 -4.1 ----D-13 308 3 62.2 62.5 66 0.3 10 1.2 5 61.3 -3.8 D-14 309 2 62.2 62.5 66 0.3 10 1.2 5 -3.8 ---61.3 D-15 3 310 62.1 62.4 66 0.3 10 61.1 1.3 5 -3.7 ----D-16 311 2 62.1 62.5 66 0.4 10 61.1 1.4 5 -3.6 D-17 2 312 62.1 62.7 66 0.6 10 61.0 1.7 5 -3.3 D-18 313 1 59.9 61.9 66 2.0 10 59.9 2.0 5 -3.0 D-19 314 1 61.0 63.3 88 2.3 10 60.1 3.2 5 -----1.8 D-20 1 315 59.8 62.1 66 2.3 5 10 58.1 4.0 -1.0 ----D-21 61.5 316 1 63.8 66 2.3 10 3.8 5 -1.2 60.0 ----D-22 317 1 65.3 64.5 71 0.8 10 5.3 ----60.0 0.3 D-23 1 318 65.0 65.7 71 0.7 10 60.0 5.7 5 0.7 ----D-24 319 1 63.4 65.6 2.2

5

1.3

6.3

10

RESULTS: SOUND LEVELS						60-067	26-20					
D-25	320	1	62.8	65.5	66	2.7	10	***	59.1	6.4	5	1.4
D-26	321	1	61.3	65.5	88	4.2	10	5 10014 3	58.8	6.7	5	1.7
D-27	322	1	61.7	67.4	88	5.7	10	(main)	60.1	7.3	5	2.3
D-28	323	1	60.7	66.1	88	5.4	10	322	59.4	6.7	5	1.7
D-30	324	1	59.0	62.0	66	3.0	10		58.3	3.7	5	-1.3
D-31	325	1	58.7	61.9	71	3.2	10	(Caraller	57.8	4.1	5	-0.9
D-32	326	1	58.8	62.1	88	3.3	10		57.6	4.5	5	-0.5
D-33	327	1	69.5	72.3	88	2.8	10		63.1	9.2	5	4.2
D-34	328	1	68.4	71.6	66	3.2	10	Snd Lvl	64.3	7.3	5	2.3
D-1ii	331	3	67.2	68.3	66	1.1	10	Snd Lvl	67.7	0.6	5	-4.4
D-2ii	332	2	66.7	67.6	66	0.9	10	Snd Lvl	67.0	0.6	5	-4.4
D-3ii	333	2	66.6	67.1	66	0.5	10	Snd Lvl	66.4	0.7	5	-4.3
D-4ii	334	2	66.4	66.8	66	0.4	10	Snd Lvl	66.1	0.7	5	-4.3
D-7ii	335	3	63.2	64.3	66	1.1	10	2	63.4	0.9	5	-4.1
D-8ii	336	3	62.6	63.0	66	0.4	10	S -133 2	62.2	8.0	5	-4.2
D-10ii	337	2	62.4	62.8	66	0.4	10	× -	61.9	0.9	5	-4.1
D-11ii	338	3	62.1	62.6	66	0.5	10	(1668)	61.6	1.0	5	-4.0
D-12ii	339	2	61.9	62.1	66	0.2	10	S erric	61.1	1.0	5	-4.0
D-13ii	340	3	61.6	61.8	66	0.2	10	:	60.7	1.1	5	-3.9
D-14ii	341	2	61.5	61.6	66	0.1	10	: :	60.5	1.1	5	-3.9
D-15ii	342	3	61.3	61.2	66	-0.1	10		60.0	1.2	5	-3.8
D-16ii	343	2	61.0	61.3	66	0.3	10		60.0	1.3	5	-3.7
D-17ii	344	3	60.5	61.7	66	1.2	10	344441	59.9	1.8	5	-3.2
D-18ii	345	1	57.4	59.8	88	2.4	10		57.5	2.3	5	-2.7
D-22ii	346	1	62.2	64.4	88	2.2	10	(111)	60.3	4.1	5	-0.9
D-22iii	347	1	60.1	62.5	66	2.4	10		57.1	5.4	5	0.4
D-23ii	348	1	62.7	64.8	71	2.1	10	-	60.1	4.7	5	-0.3
D-25ii	349	1	62.1	65.2	71	3.1	10	-	60.1	5.1	5	0.1
D-25iii	350	1	59.9	63.0	71	3.1	10		56.9	6.1	5	1.1
D-26iia	351	1	60.6	64.2	71	3.6	10	(American	59.8	4.4	5	-0.6
D-26iib	352	1	60.2	63.2	66	3.0	10		59.4	3.8	5	-1.2
D-26iii	353	1	58.9	63.0	88	4.1	10		56.5	6.5	5	1.5
D-27iia	354	1	61.2	63.8	66	2.6	10	S	61.2	2.6	5	-2.4
D-27iib	355	1	60.7	63.3	66	2.6	10		60.6	2.7	5	-2.3
D-28iia	356	1	60.3	62.7	66	2.4	10	S 110-1	60.4	2.3	5	-2.7
D-28iib	357	1	60.2	62.6	66	2.4	10	:	60.4	2.2	5	-2.8
D-28iii	358	1	56.8	59.7	71	2.9	10	(****	55.7	4.0	5	-1.0
D-29a	359	1	61.6	65.3	88	3.7	10	S 100-1 0	59.5	5.8	5	8.0
D-29b	360	1	59.5	62.3	71	2.8	10	California (58.4	3.9	5	-1.1
D-29iia	361	1	60.0	62.2	66	2.2	10	(111-1)	60.1	2.1	5	-2.9
D-29iib	362	1	60.3	62.5	66	2.2	10		61.1	1.4	5	-3.6
D-32iiia	363	1	59.7	62.0	71	2.3	10		60.3	1.7	5	-3.3

D-32iiib	364	1	60.3	62.8	88	2.5	10		61.1	1.7	5	-3.3
D-33ii	365	1	63.4	67.1	66	3.7	10	Snd Lvl	61.0	6.1	5	1.1
D-33iii	366	1	61.0	64.6	66	3.6	10	-	59.7	4.9	5	-0.1
D-33iv	367	1	59.8	63.3	66	3.5	10		58.2	5.1	5	0.1
D-33va	368	1	58.6	61.6	66	3.0	10		58.0	3.6	5	-1.4
D-33vb	369	1	62.4	64.9	88	2.5	10		63.3	1.6	5	-3.4
D-33vi	370	1	60.4	62.8	66	2.4	10		61.4	1.4	5	-3.6
D-34ii	371	1	65.4	68.4	66	3.0	10	Snd Lvl	62.2	6.2	5	1.2
D-34iii	372	1	63.6	66.5	66	2.9	10	Snd Lvl	62.0	4.5	5	-0.5
D-34iv	373	1	61.0	64.2	88	3.2	10		60.3	3.9	5	-1.1
D-34v	374	1	62.4	64.7	88	2.3	10	200	63.5	1.2	5	-3.8

60-06726-20

welling Units	# DUs	Noise Reduction					
		Min	Avg	Max			
		dB	ďΒ	dB			
All Selected	117	0.4	2.9	9.2			
All Impacted	25	0.4	2.2	7.3			
All that meet NR Goal	17	5.1	6.3	9.2			

60-06726-20

ms consultants, inc.

18 July 2015

KLC 54200

TNM 2.5

RESULTS: BARRIER DESCRIPTIONS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed NO PLAZA

BARRIER DESIGN:

Barr D All

Barriers

Name	Туре	ype Heights along Barrier			Length	If Wall	If Berm			Cost
		Min	Avg	Max		Area	Volume	Top Width	Run:Rise	
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$
Barrier D	W	12.00	12.00	12.00	4063	48755				
									Total Cost:	

^۳۳۳ 4204 La box cappings e L

MP 28-31 NSA D Proposed NO PLAZA Barrier View-Barr D All Run name: PR_NSA_D_No_Plaza	Sheet 1 of 1 18 Jul 2015 ms consultants, inc. Project/Contract No. 60-06726-20 TNM Version 2.5, Feb 2004
Scale: <dna -="" due="" perspective="" to=""></dna>	Analysis By: KLC 54200
Roadway: Receiver:	Ground Zone: polygon Tree Zone: dashed polygon
Barrier:	Contour Zone: polygon
Building Row:	Parallel Barrier:
Terrain Line:	Skew Section: — —

60-06726-20

ms consultants, inc.

18 July 2015 TNM 2.5

KLC 54200

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed NO PLAZA

BARRIER DESIGN:

Barr D West Final

Average pavement type shall be used unless a State highway agency substantiates the use

of a different type with approval of FHWA.

ATMOSPHERICS:

Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
D-1	296	2	67.4	68.8	66	1.4	10	Snd Lvl	68.3	0.5		5 -4.5
D-2	297	3	67.3	68.2	66	0.9	10	Snd Lvl	67.8	0.4		5 -4.6
D-3	298	2	66.8	67.5	66	0.7	10	Snd Lvl	67.1	0.4		5 -4.6
D-4	299	3	66.8	67.6	66	0.8	10	Snd Lvl	67.1	0.5		5 -4.5
D-5	300	2	66.4	67.2	66	3.0	3 10	Snd Lvl	66.7	0.5		5 -4.5
D-6 (Pool)	301	1	63.6	65.0	66	1.4	10		64.2	0.8		5 -4.2
D-7 (Community Bldg)	302	1	62.9	64.3	66	1.4	10		63.4	0.9		5 -4.1
D-8	303	2	63.5	64.5	66	1.0	10		63.5	1.0		5 -4.0
D-9	304	2	63.2	63.7	66	0.5	10		62.7	1.0		5 -4.0
D-10	305	2	62.9	63.1	66	0.2	2 10		62.0	1.1		5 -3.9
D-11	306	2	62.7	62.7	66	0.0	10	7000	61.6	1.1		5 -3.9
D-12	307	2	62.4	62.5	66	0.1	10	-	61.3	1.2		5 -3.8
D-13	308	3	62.2	62.5	66	0.3	3 10		61.1	1.4	İ	5 -3.6
D-14	309	2	62.2	62.5	66	0.3	3 10		61.0	1.5		5 -3.5
D-15	310	3	62.1	62.4	66	0.3	3 10	Talle V	60.9	1.5		5 -3.5
D-16	311	2	62.1	62.5	66	0.4	10		60.8	1.7		5 -3.3
D-17	312	2	62.1	62.7	66	0.6	10	-	60.7	2.0		5 -3.0
D-18	313	1	59.9	61.9	66	2.0	10		59.5	2.4		5 -2.6
D-19	314	1	61.0	63.3	88	2.3	3 10		59.5	3.8		5 -1.2
D-20	315	1	59.8	62.1	66	2.3	3 10	-	57.3	4.8		5 -0.2
D-21	316	1	61.5	63.8	66	2.3	3 10	 /	59.4	4.4		5 -0.6
D-1ii	331	3	67.2	68.3	66	1.1	10	Snd Lvl	67.6	0.7		5 -4.3
D-2ii	332	2	66.7	67.6	66	0.9	10	Snd Lvl	66.9	0.7		5 -4.3
D-3ii	333	2	66.6	67.1	66	0.5	10	Snd Lvl	66.4	0.7		5 -4.3

RESUL	TS:	SOL	JND I	LEVELS
-------	-----	-----	-------	--------

60-06726-20

334	2	66.4	66.8	66	0.4	10	Snd Lvl	66.0	8.0	5	-4.2
335	3	63.2	64.3	66	1.1	10	i estes	63.3	1.0	5	-4.0
336	3	62.6	63.0	66	0.4	10		62.0	1.0	5	-4.0
337	2	62.4	62.8	66	0.4	10	2000	61.7	1.1	5	-3.9
338	3	62.1	62.6	66	0.5	10		61.4	1.2	5	-3.8
339	2	61.9	62.1	66	0.2	10		60.9	1.2	5	-3.8
340	3	61.6	61.8	66	0.2	10) <u></u>	60.5	1.3	5	-3.7
341	2	61.5	61.6	66	0.1	10		60.2	1.4	5	-3.6
342	3	61.3	61.2	66	-0.1	10		59.8	1.4	5	-3.6
343	2	61.0	61.3	66	0.3	10	3 -111	59.7	1.6	5	-3.4
344	3	60.5	61.7	66	1.2	10		59.5	2.2	5	-2.8
345	1	57.4	59.8	88	2.4	10	350000	57.0	2.8	5	-2.2
	335 336 337 338 339 340 341 342 343	335 3 336 3 337 2 338 3 339 2 340 3 341 2 342 3 343 2 344 3	335 3 63.2 336 3 62.6 337 2 62.4 338 3 62.1 339 2 61.9 340 3 61.6 341 2 61.5 342 3 61.3 343 2 61.0 344 3 60.5	335 3 63.2 64.3 336 3 62.6 63.0 337 2 62.4 62.8 338 3 62.1 62.6 339 2 61.9 62.1 340 3 61.6 61.8 341 2 61.5 61.6 342 3 61.3 61.2 343 2 61.0 61.3 344 3 60.5 61.7	335 3 63.2 64.3 66 336 3 62.6 63.0 66 337 2 62.4 62.8 66 338 3 62.1 62.6 66 339 2 61.9 62.1 66 340 3 61.6 61.8 66 341 2 61.5 61.6 66 342 3 61.3 61.2 66 343 2 61.0 61.3 66 344 3 60.5 61.7 66	335 3 63.2 64.3 66 1.1 336 3 62.6 63.0 66 0.4 337 2 62.4 62.8 66 0.4 338 3 62.1 62.6 66 0.5 339 2 61.9 62.1 66 0.2 340 3 61.6 61.8 66 0.2 341 2 61.5 61.6 66 0.1 342 3 61.3 61.2 66 -0.1 343 2 61.0 61.3 66 0.3 344 3 60.5 61.7 66 1.2	335 3 63.2 64.3 66 1.1 10 336 3 62.6 63.0 66 0.4 10 337 2 62.4 62.8 66 0.4 10 338 3 62.1 62.6 66 0.5 10 339 2 61.9 62.1 66 0.2 10 340 3 61.6 61.8 66 0.2 10 341 2 61.5 61.6 66 0.1 10 342 3 61.3 61.2 66 -0.1 10 343 2 61.0 61.3 66 0.3 10 344 3 60.5 61.7 66 1.2 10	335 3 63.2 64.3 66 1.1 10 336 3 62.6 63.0 66 0.4 10 337 2 62.4 62.8 66 0.4 10 338 3 62.1 62.6 66 0.5 10 339 2 61.9 62.1 66 0.2 10 340 3 61.6 61.8 66 0.2 10 341 2 61.5 61.6 66 0.1 10 342 3 61.3 61.2 66 -0.1 10 343 2 61.0 61.3 66 0.3 10 344 3 60.5 61.7 66 1.2 10	335 3 63.2 64.3 66 1.1 10 — 63.3 336 3 62.6 63.0 68 0.4 10 — 62.0 337 2 62.4 62.8 66 0.4 10 — 61.7 338 3 62.1 62.6 66 0.5 10 — 61.4 339 2 61.9 62.1 66 0.2 10 — 60.9 340 3 61.6 61.8 66 0.2 10 — 60.5 341 2 61.5 61.6 66 0.1 10 — 60.5 342 3 61.3 61.2 66 -0.1 10 — 59.8 343 2 61.0 61.3 66 0.3 10 — 59.7 344 3 60.5 61.7 66 1.2 10 — 59.5	335 3 63.2 64.3 66 1.1 10 63.3 1.0 336 3 62.6 63.0 66 0.4 10 62.0 1.0 337 2 62.4 62.8 66 0.4 10 61.7 1.1 338 3 62.1 62.6 66 0.5 10 61.4 1.2 339 2 61.9 62.1 66 0.2 10 60.9 1.2 340 3 61.6 61.8 66 0.2 10 60.5 1.3 341 2 61.5 61.6 66 0.1 10 60.2 1.4 342 3 61.3 61.2 66 -0.1 10 59.8 1.4 343 2 61.0 61.3 66 0.3 10 59.7 1.6 344 3 60.5 61.7 66 1.2 10 59.5 2.2	335 3 63.2 64.3 66 1.1 10 63.3 1.0 5 336 3 62.6 63.0 66 0.4 10 62.0 1.0 5 337 2 62.4 62.8 66 0.4 10 61.7 1.1 5 338 3 62.1 62.6 66 0.5 10 61.4 1.2 5 339 2 61.9 62.1 66 0.2 10 60.9 1.2 5 340 3 61.6 61.8 66 0.2 10 60.5 1.3 5 341 2 61.5 61.6 66 0.1 10 60.2 1.4 5 342 3 61.3 61.2 66 -0.1 10 59.8 1.4 5 343 2 61.0 61.3 66 0.3 10 59.5 2.2 5 344 3 60.5 61.7 66 1.2 10 59.5 2.2 5

Dwelling Units	# DUs	Noise Rec	luction	
		Min	Avg	Max
		dB	dB	dB
All Selected	76	0.4	1.4	4.8
All Impacted	21	0.4	0.6	0.8
All that meet NR Goal	0	0.0	0.0	0.0

60-06726-20

ms consultants, inc.

18 July 2015

KLC 54200

TNM 2.5

RESULTS: BARRIER DESCRIPTIONS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed NO PLAZA

BARRIER DESIGN:

Barr D West Final

1-				
IB.	аг	П	е	rs

Name	Туре	Heights al	ong Barrie	r	-	Area	If Berm			Cost \$
		Min	Avg	Max			Volume	Top Width	Run:Rise	
		ft	ft	ft	ft		cu yd	ft	ft:ft	
Barrier D	W	18.00	18.00	18.00	2971	53483				
									Total Cost:	

MP 28-31 NSA I	D Proposed NO PLAZA	Sheet 1 of 1	18 Jul 2015
Barrier View-Bar Run name: PR_		ms consultants, i Project/Contract TNM Version 2.5 Analysis By: KLO	No. 60-06726-20 , Feb 2004
Roadway:		Ground Zone:	polygon
Receiver:		Tree Zone:	dashed polygon
Barrier:	\longmapsto	Contour Zone:	polygon
Building Row:		Parallel Barrier:	
Terrain Line:		Skew Section:	$- \rightarrow$

60-06726-20

ms consultants, inc.

KLC 54200

18 July 2015

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed NO PLAZA

BARRIER DESIGN:

Barr D East Final

Average pavement type shall be used unless

a State highway agency substantiates the use

of a different type with approval of FHWA.

ATMOSPHERICS:

Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over existing		Туре	Calculated	Noise Reduction		
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
D-33	327	1	69.5	72.3	88	2.8	10		62.0	10.3	5	5.3
D-32	326	1	58.8	62.1	88	3.3	10		58.8	3.3	5	-1.7
D-34	328	1	68.4	71.€	66	3.2	10	Snd Lvl	63.7	7.9	- 5	
D-32iiia	363	1	59.7	62.0	71	2.3	10		61.2	8.0	5	-4.2
D-32iiib	364	1	60.3	62.8	88	2.5	10		61.6	1.2	5	
D-33ii	365	1	63.4	67.1	66	3.7	10	Snd Lvi	61.0	6.1	5	1.1
D-33iii	366	1	61.0	64.6	66	3.6	10	-	60.0	4.6	- 5	-0.4
D-33iv	367	1	59.8	63.3	66	3.5	10		58.5	4.8	_ 5	-0.2
D-33va	368	1	58.6	61.6	66	3.0	10		58.8	2.8	5	-2.2
D-33vb	369	1	62.4	64.9	88	2.5	10		63.4	1.5	5	-3.5
D-33vi	370	1	60.4	62.8	66	2.4	10		61.8	1.0	5	-4.0
D-34ii	371	1	65.4	68.4	66	3.0	10	Snd Lvl	61.6	6.8	5	1.8
D-34iii	372	1	63.6	66.5	66	2.9	10	Snd Lvl	61.7	4.8	- 5	-0.2
D-34iv	373	1	61.0	64.2	88	3.2	10	in the same of	60.5	3.7	5	-1.3
D-34v	374	1	62.4	64.7	88	2.3	10	-	63.6	1.1	5	-3.9
Dwelling Units		# DUs	Noise Rec	luction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		15	0.8	4.0	10.3							
All Impacted		4	4.8	6.4	7.9							
All that meet NR Goal		4	6.1	7.8	10.3							

60-06726-20

ms consultants, inc.

15 July 2015

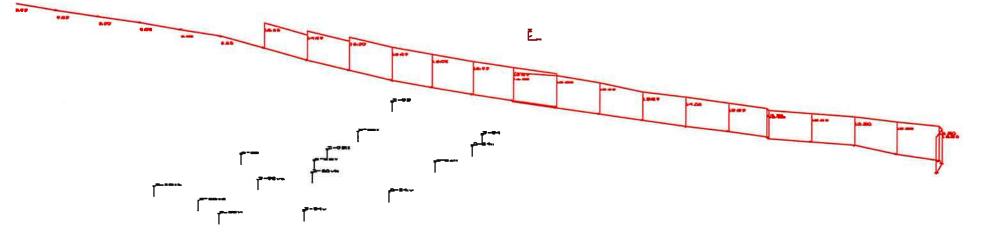
KLC 54200

TNM 2.5

RESULTS: BARRIER DESCRIPTIONS

PROJECT/CONTRACT:

60-06726-20


RUN:

MP 28-31 NSA D Proposed NO PLAZA

BARRIER DESIGN:

Barr D East Final

Name	Туре	Heights along Barrier			Length	If Wall	If Berm			Cost
		Min	Avg	Max		Area	Volume	Top Width ft	Run:Rise	
		ft	ft	ft		sq ft cu y	cu yd		ft:ft	\$
Barrier D	W	12.00	15.11	16.00	689	10407				
SB-4A	W	13.50	14.44	17.50	1070	15455				
									Total Cost:	

MP 28-31 NSA D	Proposed NO PLAZA	Sheet 1 of 1	15 Jul 2015
		ms consultants, inc.	
Barrier View-Barr	D East Final	Project/Contract No.	60-06726-20
Run name: PR_N	SA_D_No_Plaza	TNM Version 2.5, Fe	b 2004
Scale: <dna -="" du<="" td=""><td>e to perspective></td><th>Analysis By: KLC 542</th><td>200</td></dna>	e to perspective>	Analysis By: KLC 542	200
Roadway:	\longrightarrow	Ground Zone: po	olygon
Receiver:		Tree Zone: da	shed polygon
Barrier:	\longrightarrow	Contour Zone: po	olygon
		Contour Zone.	nygon
Building Row:		Parallel Barrier:	mygon —
Building Row: Terrain Line:			—————————————————————————————————————

60-06726-20

ms consultants, inc.

KLC 54200

15 July 2015

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed NO PLAZA

BARRIER DESIGN:

Barr D East Extended

Average pavement type shall be used unless a State highway agency substantiates the use

of a different type with approval of FHWA.

ATMOSPHERICS:

ATMOOF HERIOO.			1,00761411						ent type with	-		
Receiver Name	No.	#DUs	Existing	No Barrier					With Barrier			
	1.5.		LAeq1h	LAeq1h		Increase over existing Type		Calculated	Noise Reduction			
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h		Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
D-1	296	2	67.4	68.8	66	1.4	10	Snd Lvl	68.8	0.0	5	-5.0
D-2	297	3	67.3	68.2	66	0.9	10	Snd Lvl	68.2	0.0	5	-5.0
D-3	298	2	66.8	67.5	66	0.7	10	Snd Lvl	67.5	0.0	5	-5.0
D-4	299	3	66.8	67.6	66	0.8	10	Snd Lvi	67.6	0.0	5	
D-5	300	2	66.4	67.2	66	0.8	10	Snd Lvl	67.2	0.0	5	-5.0
D-6 (Pool)	301	1	63.6	65.0	66	1.4	10		65.0	0.0	5	
D-7 (Community Bldg)	302	1	62.9	64.3	66	1.4	10	, 	64.3	0.0	5	
D-8	303	2	63.5	64.5	66	1.0	10	S	64.5	0.0	5	
D-9	304	2	63.2	63.7	66	0.5	10		63.7	0.0	5	
D-10	305	2	62.9	63.1	66	0.2	10	1,2312	63.0	0.1	5	
D-11	306	2	62.7	62.7	66	0.0	10	29100	62.7	0.0	5	
D-12	307	2	62.4	62.5	66	0.1	10	7550	62.5	0.0	5	
D-13	308	3	62.2	62.5	66	0.3	10	-	62.4	0.1	5	
D-14	309	2	62.2	62.5	66	0.3	10		62.5	0.0	5	
D-15	310	3	62.1	62.4	66	0.3	10	S teta	62.3	0.1	5	
D-16	311	2	62.1	62.5	66	0.4	10	i ener	62.5	0.0	5	
D-17	312	2	62.1	62.7	66	0.6	10		62.6	0.1	5	
D-18	313	1	59.9	61.9	66	2.0	10	2000	61.7	0.2	5	
D-19	314	1	61.0	63.3	88	2.3	10	(and the	62.7	0.6		
D-20	315	1	59.8	62.1	66	2.3	10		61.3			
D-21	316	1	61.5	63.8	66	2.3	10		62.8	1.0		
D-22	317	1	64.5	65.3	71	0.8	10		64.1			
D-23	318	1	65.0	65.7	71	0.7	10		62.9			

RESULTS: SOUND LEVELS		60-06726-20									
D-24	319	1 63.4	65.6	66	2.2	10	Selection 2	60.3	5.3	5	0.3
D-25	320	1 62.8	65.5	66	2.7	10	Smark	59.7	5.8	5	0.8
D-26	321	1 61.3	65.5	88	4.2	10		58.7	6.8	5	1.8
D-27	322	1 61.7	67.4	88	5.7	10		59.8	7.6	5	2.6
D-28	323	1 60.7	66.1	88	5.4	10	 2	59.1	7.0	5	2.0
D-30	324	1 59.0	62.0	66	3.0	10		58.2	3.8	5	-1.2
D-31	325	1 58.7	61.9	71	3.2	10	(4444)	57.6	4.3	5	-0.7
D-32	326	1 58.8	62.1	88	3.3	10	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	57.2	4.9	5	-0.1
D-33	327	1 69.5	72.3	88	2.8	10		62.2	10.1	5	5.1
D-34	328	1 68.4	71.6	66	3.2	10	Snd Lvl	63.9	7.7	5	2.7
D-1ii	331	3 67.2	68.3	66	1.1	10	Snd Lvl	68.3	0.0	5	-5.0
D-2ii	332	2 66.7	67.6	66	0.9	10	Snd Lvl	67.6	0.0	5	-5.0
D-3ii	333	2 66.6	67.1	66	0.5	10	Snd Lvl	67.1	0.0	5	-5.0
D-4ii	334	2 66.4	66.8	66	0.4	10	Snd Lvi	66.7	0.1	5	-4.9
D-7ii	335	3 63.2	64.3	66	1.1	10	2022	64.2	0.1	5	-4.9
D-8ii	336	3 62.6	63.0	66	0.4	10		63.0	0.0	5	-5.0
D-10ii	337	2 62.4	62.8	66	0.4	10	-	62.8	0.0	5	-5.0
D-11ii	338	3 62.1	62.6	66	0.5	10		62.5	0.1	5	-4.9
D-12ii	339	2 61.9	62.1	66	0.2	10	0000000	62.1	0.0	5	-5.0
D-13ii	340	3 61.6	61.8	66	0.2	10	Section :	61.7	0.1	5	-4.9
D-14ii	341	2 61.5	61.6	66	0.1	10		61.5	0.1	5	-4.9
D-15ii	342	3 61.3	61.2	66	-0.1	10		61.1	0.1	5	-4.9
D-16ii	343	2 61.0	61.3	66	0.3	10		61.2	0.1	5	-4.9
D-17ii	344	3 60.5	61.7	66	1.2	10		61.4	0.3	5	-4.7
D-18ii	345	1 57.4	59.8	88	2.4	10	(erre):	59.4	0.4	5	-4.6
D-22ii	346	1 62.2	64.4	88	2.2	10		62.9	1.5	5	-3.5
D-22iii	347	1 60.1	62.5	66	2.4	10		60.2	2.3	5	-2.7
D-23ii	348	1 62.7	64.8	71	2.1	10		62.1	2.7	5	-2.3
D-25ii	349	1 62.1	65.2	71	3.1	10		61.5	3.7	5	-1.3
D-25iii	350	1 59.9	63.0	71	3.1	10		59.3	3.7	5	-1.3
D-26iia	351	1 60.6	64.2	71	3.6	10	****	60.8	3.4	5	-1.6
D-26iib	352	1 60.2	63.2	66	3.0	10	Name :	60.3	2.9	5	-2.1
D-26iii	353	1 58.9	63.0	88	4.1	10	Head:	59.1	3.9	5	-1.1
D-27iia	354	1 61.2	63.8	66	2.6	10		61.4	2.4	5	-2.6
D-27iib	355	1 60.7	63.3	66	2.6	10		60.8	2.5	5	-2.5
D-28iia	356	1 60.3	62.7	66	2.4	10		60.4	2.3	5	-2.7
D-28iib	357	1 60.2	62.6	66	2.4	10		60.4	2.2	5	-2.8
D-28iii	358	1 56.8	59.7	71	2.9	10	5 131 3	56.3	3.4	5	-1.6
D-29a	359	1 61.6	65.3	88	3.7	10	-	59.2	6.1	5	1.1
D-29b	360	1 59.5	62.3	71	2.8	10		58.3	4.0	5	-1.0

726-20
9

361		60.0	62.2	66	2.2	10		60.1	2.1	5	-2.9
362	1	60.3	62.5	66	2.2	10		61.1	1.4	5	-3.6
363	1	59.7	62.0	71	2.3	10		60.3	1.7	5	-3.3
364	1	60.3	62.8	88	2.5	10)	61.0	1.8	5	-3.2
365	1	63.4	67.1	66	3.7	10	Snd Lvl	60.5	6.6	5	1.6
366	1	61.0	64.6	66	3.6	10	inee ii	59.3	5.3	5	0.3
367	1	59.8	63.3	66	3.5	10		57.8	5.5	5	0.5
368	1	58.6	61.6	66	3.0	10	244	57.8	3.8	5	-1.2
369	1	62.4	64.9	88	2.5	10		63.2	1.7	5	-3.3
370	1	60.4	62.8	66	2.4	10		61.3	1.5	5	-3.5
371	1	65.4	68.4	66	3.0	10	Snd Lvl	61.7	6.7	5	1.7
372	1	63.6	66.5	66	2.9	10	Snd Lvl	61.6	4.9	5	-0.1
373	1	61.0	64.2	88	3.2	. 10	sarre X	60.0	4.2	5	-0.8
374	1	62.4	64.7	88	2.3	10	11 0	63.5	1.2	5	-3.8
	363 364 365 366 367 368 369 370 371 372 373	363 1 364 1 365 1 366 1 367 1 368 1 369 1 370 1 371 1 372 1 373 1	363 1 59.7 364 1 60.3 365 1 63.4 366 1 61.0 367 1 59.8 368 1 58.6 369 1 62.4 370 1 60.4 371 1 65.4 372 1 63.6 373 1 61.0	363 1 59.7 62.0 364 1 60.3 62.8 365 1 63.4 67.1 366 1 61.0 64.6 367 1 59.8 63.3 368 1 58.6 61.6 369 1 62.4 64.9 370 1 60.4 62.8 371 1 65.4 68.4 372 1 63.6 66.5 373 1 61.0 64.2	363 1 59.7 62.0 71 364 1 60.3 62.8 88 365 1 63.4 67.1 66 366 1 61.0 64.6 66 367 1 59.8 63.3 66 368 1 58.6 61.6 66 369 1 62.4 64.9 88 370 1 60.4 62.8 66 371 1 65.4 68.4 66 372 1 63.6 66.5 66 373 1 61.0 64.2 88	363 1 59.7 62.0 71 2.3 364 1 60.3 62.8 88 2.5 365 1 63.4 67.1 66 3.7 366 1 61.0 64.6 66 3.6 367 1 59.8 63.3 66 3.5 368 1 58.6 61.6 66 3.0 369 1 62.4 64.9 88 2.5 370 1 60.4 62.8 66 2.4 371 1 65.4 68.4 66 3.0 372 1 63.6 66.5 66 2.9 373 1 61.0 64.2 88 3.2	363 1 59.7 62.0 71 2.3 10 364 1 60.3 62.8 88 2.5 10 365 1 63.4 67.1 66 3.7 10 366 1 61.0 64.6 66 3.6 10 367 1 59.8 63.3 66 3.5 10 368 1 58.6 61.6 66 3.0 10 369 1 62.4 64.9 88 2.5 10 370 1 60.4 62.8 66 2.4 10 371 1 65.4 68.4 66 3.0 10 372 1 63.6 66.5 66 2.9 10 373 1 61.0 64.2 88 3.2 10	363 1 59.7 62.0 71 2.3 10 — 364 1 60.3 62.8 88 2.5 10 — 365 1 63.4 67.1 66 3.7 10 Snd Lvl 366 1 61.0 64.6 66 3.6 10 — 367 1 59.8 63.3 66 3.5 10 — 368 1 58.6 61.6 66 3.0 10 — 369 1 62.4 64.9 88 2.5 10 — 370 1 60.4 62.8 66 2.4 10 — 371 1 65.4 68.4 66 3.0 10 Snd Lvl 372 1 63.6 66.5 66 2.9 10 Snd Lvl 373 1 61.0 64.2 88 3.2 10 —	363 1 59.7 62.0 71 2.3 10 60.3 364 1 60.3 62.8 88 2.5 10 61.0 365 1 63.4 67.1 66 3.7 10 Snd Lvl 60.5 366 1 61.0 64.6 66 3.6 10 59.3 367 1 59.8 63.3 66 3.5 10 57.8 368 1 58.6 61.6 66 3.0 10 57.8 369 1 62.4 64.9 88 2.5 10 63.2 370 1 60.4 62.8 66 2.4 10 61.3 371 1 65.4 68.4 66 3.0 10 Snd Lvl 61.7 372 1 63.6 66.5 66 2.9 10 Snd Lvl 61.6 373 1 61.0 64.2 88 3.2 10 60.0	363 1 59.7 62.0 71 2.3 10 60.3 1.7 364 1 60.3 62.8 88 2.5 10 61.0 1.8 365 1 63.4 67.1 66 3.7 10 Snd Lvl 60.5 6.6 366 1 61.0 64.6 66 3.6 10 59.3 5.3 367 1 59.8 63.3 66 3.5 10 57.8 5.5 368 1 58.6 61.6 66 3.0 10 57.8 3.8 369 1 62.4 64.9 88 2.5 10 63.2 1.7 370 1 60.4 62.8 66 2.4 10 61.3 1.5 371 1 65.4 68.4 66 3.0 10 Snd Lvl 61.6 4.9	363 1 59.7 62.0 71 2.3 10 — 60.3 1.7 5 364 1 60.3 62.8 88 2.5 10 — 61.0 1.8 5 365 1 63.4 67.1 66 3.7 10 Snd Lvl 60.5 6.6 5 366 1 61.0 64.6 66 3.6 10 — 59.3 5.3 5 367 1 59.8 63.3 66 3.5 10 — 57.8 5.5 5 368 1 58.6 61.6 66 3.0 10 — 57.8 3.8 5 369 1 62.4 64.9 88 2.5 10 — 63.2 1.7 5 370 1 60.4 62.8 66 2.4 10 — 61.3 1.5 5 371 1 65.4

Dwelling Units	# DUs N	Noise Red	Noise Reduction				
_		Min	Avg	Max			
		dB	dB	dB			
All Selected	117	0.0	2.2	10.1			
All Impacted	25	0.0	2.0	7.7			
All that meet NR Goal	12	5.3	6.7	10.1			

60-06726-20

ms consultants, inc.

15 July 2015

KLC 54200

TNM 2.5

RESULTS: BARRIER DESCRIPTIONS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed NO PLAZA

BARRIER DESIGN:

Barr D East Extended

Barriers											
Name	Туре	pe Heights along Barrier L		Length	If Wall	If Berm			Cost		
		Min	Avg	Max		Area	Volume	Top Width	Run:Rise		
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$	
Barrier D	W	12.00	13.30	14.00	2003	26633					
									Total Cost:		

MP 28-31 NSA D	Proposed NO PLAZA	Sheet 1 of 1	15 Jul 2015
		ms consultants, in	C.
Barrier View-Barr	r D East Extended	Project/Contract N	lo. 60-06726-20
Run name: PR_N	NSA_D_No_Plaza	TNM Version 2.5,	Feb 2004
Scale: <dna -="" du<="" td=""><td>ue to perspective></td><td>Analysis By: KLC</td><td>54200</td></dna>	ue to perspective>	Analysis By: KLC	54200
Roadway:	\longrightarrow	Ground Zone:	polygon
Receiver:		Tree Zone:	dashed polygon
Barrier:	\longmapsto	Contour Zone:	polygon
Building Row:		Parallel Barrier:	
Terrain Line:	3	Skew Section:	$ \rightarrow$
			.55

60-06726-20

ms consultants, inc.

15 July 2015

KLC 54200

TNM 2.5 Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA D Proposed NO PLAZA

BARRIER DESIGN:

D Gap Close - 20ft

Average pavement type shall be used unless a State highway agency substantiates the use

of a different type with approval of FHWA.

ATMOSPHERICS:

Receiver	IN .	#D11=	Fulations	No Dession					With Barrier				
Name	No.	#DUs		No Barrier		I		Turne		Naisa Dadus	41		
			LAeq1h			Increase over		Туре	Calculated	Noise Reduc			
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
D-34v	374	1	62.4	64.7	88	2.3	10		64.7	0.0	5	-5.0	
D-34iv	373	1	61.0	64.2	88	3.2	10	-	64.2	0.0	5	-5.0	
D-34iii	372	1	63.6	66.5	66	2.9	10	Snd Lvl	66.5	0.0	5	-5.0	
D-34ii	371	1	65.4	68.4	66	3.0	10	Snd Lvl	68.4	0.0	5	-5.0	
D-34	328	1	68.4	71.6	66	3.2	10	Snd Lvl	71.6	0.0	5	-5.0	
D-37	329	1	57.3	61.2	66	3.9	10		61.2	0.0	5	-5.0	
D-38	330	1	56.5	60.5	66	4.0	10		60.5	0.0	5	-5.0	
D-37iii	383	1	57.8	61.4	66	3.6	10		61.4	0.0	5		
D-37iv	384	1	56.5	60.0	66	3.5	10	-	60.0	0.0	5		
D-34vi	375	1	57.4	60.3	88	2.9	10	: 1151 7	60.3	0.0	5		
D-35v	376	1	56.6	60.1	66	3.5	10	(5855)	60.1	0.0	5		
D-35via	377	1	58.7	61.2	66	2.5	10		61.1	0.1	5		
D-35vib	378	1	58.3	60.9	66	2.6	10		60.8	0.1	5		
D-36v	379	1	56.3	61.3	66	5.0	10		61.3	0.0	5		
D-36via	380	1	58.1	60.7	66	2.6	10		60.7	0.0	5		
D-36vib	381	1	58.0	60.7	66	2.7	10		60.6	0.1	5		
D-36vii	382	1	61.7	63.7	66	2.0	10	11111 1	63.7	0.0	5		
D-37va	385	1	56.4	60.0	66	3.6	10		59.9	0.1	5		
D-37via	386	1	57.6	60.5	66	2.9	10	2545	60.4		5		
D-37vib	387	1	58.6	61.3	66	2.7	10		61.2	0.1			
D-37vb	388	1	57.4	60.4	66	3.0	10		60.2				
D-37vc	389	1	57.2	60.5	66				60.2				
D-37viia	390	1	59.6	62.7					62.7				

D-37viib	391	1	60.6	63.7	66	3.1	10	(4000)	63.6	0.1	5	-4.9
D-38iiia	392	1	55.8	59.4	66	3.6	10		59.0	0.4	5	-4.6
D-38iiib	393	1	58.4	62.1	66	3.7	10		61.5	0.6	5	-4.4
D-38iiic	394	1	57.6	61.7	66	4.1	10	1111	60.6	1.1	5	-3.9
D-38iiid	395	1	58.3	62.6	66	4.3	10		61.3	1.3	5	-3.7
D-38vi	396	1	63.2	66.0	66	2.8	10	Snd Lvl	65.7	0.3	5	-4.7

60-06726-20

Dwelling Units	# DUs	Noise Reduction					
		Min	Avg	Max			
		dB	dB	dB			
All Selected	29	0.0	0.2	1.3			
All Impacted	4	0.0	0.1	0.3			
All that meet NR Goal	0	0.0	0.0	0.0			

60-06726-20

ms consultants, inc.

KLC 54200

14 July 2015

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA E Proposed NO PLAZA

BARRIER DESIGN:

Barrier E Final

Average pavement type shall be used unless a State highway agency substantiates the use

of a different type with approval of FHWA.

ATMOSPHERICS:

AIMOSPHERICS: 66 deg F, 50% KH					or a different type with approval of PHVA.							
Receiver												
Name	No.	#DUs	Existing	No Barrier		45			With Barrier			
	}			LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
E-1	301		1 65.0	66.9	66	1.9	10	Snd Lvl	66.9	0.0	5	-5.0
E-2	302		1 65.1	67.0	66	1.9	10	Snd Lvl	67.0	0.0	5	-5.0
E-3	303		1 65.3	67.2	66	1.9	10	Snd Lvl	67.1	0.1	5	-4.9
E-4	304		1 65.5	67.3	66	1.8	10	Snd Lvl	67.3	0.0	5	-5.0
E-5	305		1 65.2	67.1	66	1.9	10	Snd Lvl	67.0	0.1	5	-4.9
E-6	306		1 65.0	66.9	66	1.9	10	Snd Lvl	66.7	0.2	5	-4.8
E-7	307		1 64.7	66.6	66	1.9	10	Snd Lvl	66.4	0.2	5	-4.8
E-8	308		1 65.0	66.9	66	1.9	10	Snd Lvl	66.5	0.4	5	-4.6
E-9	309		1 64.5	66.4	66	1.9	10	Snd Lvl	66.0	0.4	5	-4.6
E-10	310		1 64.4	66.2	66	1.8	10	Snd Lvl	65.8	0.4	5	-4.6
E-11	311		1 64.2	66.2	66	2.0	10	Snd Lvi	65.6	0.6	5 5	-4.4
E-12	312		1 64.4	66.4	66	2.0	10	Snd Lvl	65.7	0.7	5	-4.3
E-13	313		1 64.8	66.9	66	2.1	10	Snd Lvl	66.1	0.8	5	-4.2
E-14	314		1 65.1	67.1	66	2.0	10	Snd Lvi	66.2	0.9	5	-4.1
E-15	315		1 64.8	66.8	66	2.0	10	Snd Lvl	65.9	0.9	5	-4.1
E-16	316		1 65.1	66.9	66	1.8	10	Snd Lvl	66.0	0.9	5	-4.1
E-17	317		1 64.6	66.5	66	1.9	10	Snd Lvl	65.5	1.0	5	-4.0
E-18	318		1 62.7	64.9	66	2.2	10	1000	63.8	1.1	5	-3.9
E-19	319		1 61.1	63.3	66	2.2	10		62.3	1.0	5	-4.0
E-20	320		1 59.6	61.8	66	2.2	10		60.9	0.9	5	-4.1
E-21	321		1 58.4	60.8	66	2.4	10		59.9	0.9	5	
E-22	322		57.3	59.7	66	2.4	10	-	58.9	0.8	5	
E-23	323		52.9	55.2	66	2.3	10	-	54.3	0.9	5	
E-1ii	347		54.3	56.2	66	1.9	10		56.0	0.2	. 5	-4.8

349 350 351 352	1 58.0 1 59.8 1 59.6 1 58.6	59.9 61.7 61.5	66 66	1.9 1.9	10 10		59.8 61.4	0.1	5	-4.9
350 351 352	1 59.6	61.5			10		61.4	0.0		
351 352			66				01.4	0.3	5	-4.7
352	1 58.6		00	1.9	10		61.2	0.3	5	-4.7
		60.5	66	1.9	10	200	60.2	0.3	5	-4.7
353	1 58.7	60.6	66	1.9	10		60.2	0.4	5	-4.6
555	1 58.1	60.0	66	1.9	10		59.8	0.2	5	-4.8
354	1 59.6	61.5	66	1.9	10		61.2	0.3	5	-4.7
355	57.6	59.4	66	1.8	10	-	59.2	0.2	5	-4.8
356	1 60.2	62.0	66	1.8	10		61.9	0.1	5	-4.9
357	1 57.2	59.1	66	1.9	10	2000	59.0	0.1	5	-4.9
358	1 56.9	58.9	66	2.0	10		58.7	0.2	5	-4.8
359	1 60.8	62.6	66	1.8	10		62.5	0.1	5	-4.9
360	1 56.5	58.5	66	2.0	10	com	58.4	0.1	5	-4.9
361	1 56.9	59.0	66	2.1	10		58.8	0.2	5	-4.8
362	1 60.2	62.0	66	1.8	10		61.8	0.2	5	-4.8
363	1 56.5	58.5	66	2.0	10		58.3	0.2	5	-4.8
364 '	1 56.4	58.5	66	2.1	10		58.3	0.2	5	-4.8
365	1 60.1	62.0	66	1.9	10		61.8	0.2	5	-4.8
366	1 55.0	57.0	66	2.0	10		56.9	0.1	5	-4.9
367	1 56.1	58.2	66	2.1	10	2022	58.0	0.2	5	-4.8
368	1 60.1	62.0	66	1.9	10		61.7	0.3	5	-4.7
369	1 55.5	57.6	66	2.1	10		57.4	0.2	5	-4.8
370	1 55.1	57.3	66	2.2	10	222	57.1	0.2	5	-4.8
371	57.5	59.6	66	2.1	10		59.4	0.2	5	-4.8
372	1 56.9	59.0	66	2.1	10		58.8	0.2	5	-4.8
373	1 55.8	57.9	66	2.1	10	*****	57.8	0.1	5	-4.9
374	1 55.6	57.8	66	2.2	10		57.6	0.2	5	-4.8
375	55.3	57.5	66	2.2	10		57.4	0.1	5	-4.9
376	59.1	61.0	66	1.9	10		60.3	0.7	5	-4.3
377	57.9	59.6	66	1.7	10		58.8	8.0	5	-4.2
	1 55.7	57.2		1.5	10		56.4	0.8	5	-4.2
379	55.2	56.7	66	1.5	10		55.8	0.9	5	-4.1
	54.9	57.1	66	2.2	10	****	56.4	0.7	5	-4.3
381 1	54.5	56.8	66	2.3	10		56.1	0.7	5	-4.3
	53.7	56.1	66	2.4	10		55.2	0.9	5	-4.1
383	52.7	55.4	66	2.7	10		54.1	1.3	5	-3.7
	354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383	354 1 59.6 355 1 57.6 356 1 60.2 357 1 57.2 358 1 56.9 359 1 60.8 360 1 56.5 361 1 56.9 362 1 60.2 363 1 56.5 364 1 56.4 365 1 60.1 366 1 55.0 367 1 56.1 368 1 60.1 369 1 55.5 370 1 55.1 371 1 57.5 372 1 56.9 373 1 55.8 374 1 55.6 375 1 55.3 376 1 55.7 379 1 55.2 380 1 54.9 <t< td=""><td>354 1 59.6 61.5 355 1 57.6 59.4 356 1 60.2 62.0 357 1 57.2 59.1 358 1 56.9 58.9 359 1 60.8 62.6 360 1 56.5 58.5 361 1 56.9 59.0 362 1 60.2 62.0 363 1 56.5 58.5 364 1 56.4 58.5 365 1 60.1 62.0 366 1 55.0 57.0 367 1 56.1 58.2 368 1 60.1 62.0 369 1 55.5 57.6 370 1 55.1 57.3 371 1 57.5 59.6 372 1 56.9 59.0 373 1 55.8 57.5</td><td>354 1 59.6 61.5 66 355 1 57.6 59.4 66 356 1 60.2 62.0 66 357 1 57.2 59.1 66 357 1 57.2 59.1 66 358 1 56.9 58.9 66 359 1 60.8 62.6 66 360 1 56.5 58.5 66 361 1 56.9 59.0 66 362 1 60.2 62.0 66 363 1 56.5 58.5 66 364 1 56.4 58.5 66 365 1 60.1 62.0 66 366 1 55.0 57.0 66 367 1 56.1 58.2 66 368 1 60.1 62.0 66 370 1 55.5</td><td>354 1 59.6 61.5 66 1.9 355 1 57.6 59.4 66 1.8 356 1 60.2 62.0 66 1.8 357 1 57.2 59.1 66 1.9 358 1 56.9 58.9 66 2.0 359 1 60.8 62.6 66 1.8 360 1 56.5 58.5 66 2.0 361 1 56.9 59.0 66 2.1 362 1 60.2 62.0 66 1.8 363 1 56.5 58.5 66 2.0 364 1 56.4 58.5 66 2.1 365 1 60.1 62.0 66 1.9 366 1 55.0 57.0 66 2.1 367 1 56.1 58.2 66 2.1 369<td>354 1 59.6 61.5 66 1.9 10 355 1 57.6 59.4 66 1.8 10 356 1 60.2 62.0 66 1.8 10 357 1 57.2 59.1 66 1.9 10 358 1 56.9 58.9 66 2.0 10 359 1 60.8 62.6 66 1.8 10 360 1 56.5 58.5 66 2.0 10 361 1 56.9 59.0 66 2.1 10 362 1 60.2 62.0 66 1.8 10 363 1 56.5 58.5 66 2.0 10 364 1 56.4 58.5 66 2.1 10 365 1 60.1 62.0 66 1.9 10 366 1 55.0</td><td> 354</td><td>354 1 59.6 61.5 66 1.9 10 — 61.2 355 1 57.6 59.4 66 1.8 10 — 59.2 356 1 60.2 62.0 66 1.8 10 — 59.0 357 1 57.2 59.1 66 1.9 10 — 59.0 358 1 56.9 58.9 66 2.0 10 — 58.7 359 1 60.8 62.6 66 1.8 10 — 62.5 360 1 56.5 58.5 66 2.0 10 — 58.8 361 1 56.9 59.0 66 2.1 10 — 58.8 362 1 66.5 58.5 66 2.0 10 — 58.3 363 1 56.5 58.5 66 2.1 10 — 56.9</td><td> 354</td><td> 354</td></td></t<>	354 1 59.6 61.5 355 1 57.6 59.4 356 1 60.2 62.0 357 1 57.2 59.1 358 1 56.9 58.9 359 1 60.8 62.6 360 1 56.5 58.5 361 1 56.9 59.0 362 1 60.2 62.0 363 1 56.5 58.5 364 1 56.4 58.5 365 1 60.1 62.0 366 1 55.0 57.0 367 1 56.1 58.2 368 1 60.1 62.0 369 1 55.5 57.6 370 1 55.1 57.3 371 1 57.5 59.6 372 1 56.9 59.0 373 1 55.8 57.5	354 1 59.6 61.5 66 355 1 57.6 59.4 66 356 1 60.2 62.0 66 357 1 57.2 59.1 66 357 1 57.2 59.1 66 358 1 56.9 58.9 66 359 1 60.8 62.6 66 360 1 56.5 58.5 66 361 1 56.9 59.0 66 362 1 60.2 62.0 66 363 1 56.5 58.5 66 364 1 56.4 58.5 66 365 1 60.1 62.0 66 366 1 55.0 57.0 66 367 1 56.1 58.2 66 368 1 60.1 62.0 66 370 1 55.5	354 1 59.6 61.5 66 1.9 355 1 57.6 59.4 66 1.8 356 1 60.2 62.0 66 1.8 357 1 57.2 59.1 66 1.9 358 1 56.9 58.9 66 2.0 359 1 60.8 62.6 66 1.8 360 1 56.5 58.5 66 2.0 361 1 56.9 59.0 66 2.1 362 1 60.2 62.0 66 1.8 363 1 56.5 58.5 66 2.0 364 1 56.4 58.5 66 2.1 365 1 60.1 62.0 66 1.9 366 1 55.0 57.0 66 2.1 367 1 56.1 58.2 66 2.1 369 <td>354 1 59.6 61.5 66 1.9 10 355 1 57.6 59.4 66 1.8 10 356 1 60.2 62.0 66 1.8 10 357 1 57.2 59.1 66 1.9 10 358 1 56.9 58.9 66 2.0 10 359 1 60.8 62.6 66 1.8 10 360 1 56.5 58.5 66 2.0 10 361 1 56.9 59.0 66 2.1 10 362 1 60.2 62.0 66 1.8 10 363 1 56.5 58.5 66 2.0 10 364 1 56.4 58.5 66 2.1 10 365 1 60.1 62.0 66 1.9 10 366 1 55.0</td> <td> 354</td> <td>354 1 59.6 61.5 66 1.9 10 — 61.2 355 1 57.6 59.4 66 1.8 10 — 59.2 356 1 60.2 62.0 66 1.8 10 — 59.0 357 1 57.2 59.1 66 1.9 10 — 59.0 358 1 56.9 58.9 66 2.0 10 — 58.7 359 1 60.8 62.6 66 1.8 10 — 62.5 360 1 56.5 58.5 66 2.0 10 — 58.8 361 1 56.9 59.0 66 2.1 10 — 58.8 362 1 66.5 58.5 66 2.0 10 — 58.3 363 1 56.5 58.5 66 2.1 10 — 56.9</td> <td> 354</td> <td> 354</td>	354 1 59.6 61.5 66 1.9 10 355 1 57.6 59.4 66 1.8 10 356 1 60.2 62.0 66 1.8 10 357 1 57.2 59.1 66 1.9 10 358 1 56.9 58.9 66 2.0 10 359 1 60.8 62.6 66 1.8 10 360 1 56.5 58.5 66 2.0 10 361 1 56.9 59.0 66 2.1 10 362 1 60.2 62.0 66 1.8 10 363 1 56.5 58.5 66 2.0 10 364 1 56.4 58.5 66 2.1 10 365 1 60.1 62.0 66 1.9 10 366 1 55.0	354	354 1 59.6 61.5 66 1.9 10 — 61.2 355 1 57.6 59.4 66 1.8 10 — 59.2 356 1 60.2 62.0 66 1.8 10 — 59.0 357 1 57.2 59.1 66 1.9 10 — 59.0 358 1 56.9 58.9 66 2.0 10 — 58.7 359 1 60.8 62.6 66 1.8 10 — 62.5 360 1 56.5 58.5 66 2.0 10 — 58.8 361 1 56.9 59.0 66 2.1 10 — 58.8 362 1 66.5 58.5 66 2.0 10 — 58.3 363 1 56.5 58.5 66 2.1 10 — 56.9	354	354

Dwelling Units	# DUs	Noise Reduction				
		Min	Avg	Max		
		dB	dB	dB		
All Selected	60	0.0	0.4	1.3		
All Impacted	17	0.0	0.4	1.0		

RESULTS: SOUND LEVELS	60-06726-20

0 0.0 0.0 0.0

60-06726-20

ms consultants, inc.

14 July 2015

KLC 54200

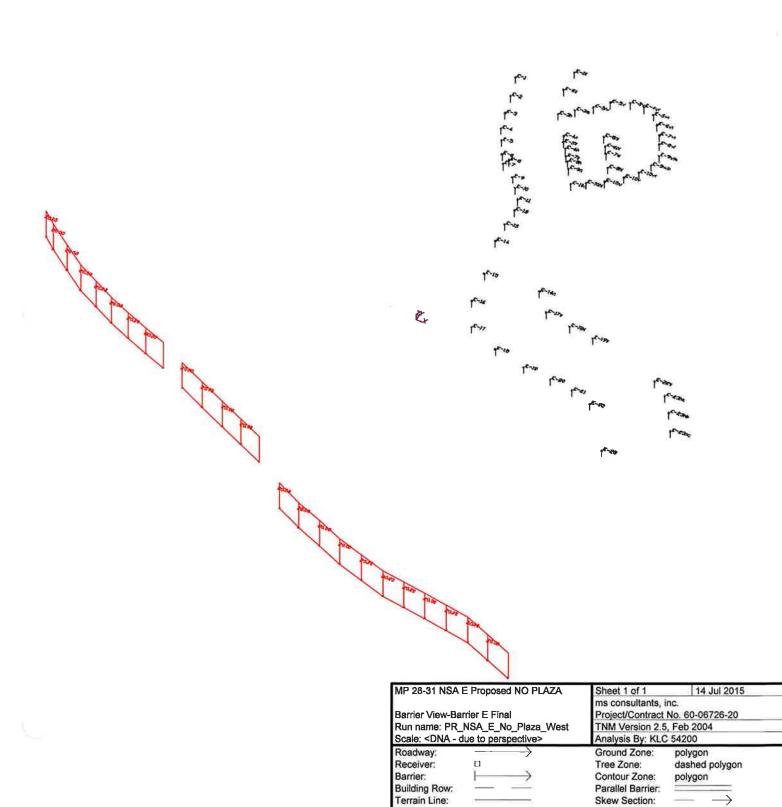
TNM 2.5

RESULTS: BARRIER DESCRIPTIONS

PROJECT/CONTRACT:

60-06726-20

RUN:


MP 28-31 NSA E Proposed NO PLAZA

BARRIER DESIGN:

Barrier E Final

_		
Ва	rriei	-
Da	rrie	. 3

Name	Туре	Heights along Barrier			Length	If Wall	If Berm			Cost	
100		Min	Avg	Max		Area	Volume	Top Width	Run:Rise		
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$	
Barrier E West	W	20.00	20.00	20.00	746	14926					0
Barrier E Center	W	20.00	20.00	20.00	400	7993					0
Barrier E	W	20.00	20.00	20.00	1105	22107					0
									Total Cost:		0

60-06726-20

ms consultants, inc.

KLC 54200

3 July 2015 TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

60-06726-20

RUN:

MP 28-31 NSA E Proposed

BARRIER DESIGN:

Bar E East - 20ft

Average pavement type shall be used unless a State highway agency substantiates the use

ATMOSPHERICS:

68 deg F, 50% RH

of a different type with approval of FHWA.

Receiver

Name	No.	#DUs	Existing	No Barrier With Barrier										
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion			
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calcula minus Goal		
			dBA	dBA	dBA	dB	dB		dBA	dB		dB		
E-36	440	1	64.	5 68.1	66	3.6	10	Snd Lvl	63.1	5.0		5	0.0	
E-37	441	1	59.	63.3	66	3.8	10		62.6	0.7		5	-4.3	
E-36ii	451	1	61.	65.0	66	3.5	10	1988	58.5	6.5		5	1.5	
E-36iii	452	1	58.	2 62.6	66	4.4	10		54.8	7.8	1	5	2.8	
E-36iv	453	1	53.	9 58.2	66	4.3	10		52.4	5.8		5	0.8	
E-36v	454	1	56.	1 60.9	66	4.8	10		54.3	6.6		5	1.6	
E-36vi	455	1	55.	4 59.7	66	4.3	10		52.9	6.8		5	1.8	
E-37ii	456	1	56.	4 59.8	66	3.4	10		59.0	0.8		5	-4.2	
E-37iii	457		53.	5 56.9	66	3.4	10		56.1	0.8		5	-4.2	
E-37iv	458		51.	1 54.6	66	3.5	10		54.2	0.4		5	-4.6	
E-37v	459		1 51.	1 56.3	66	5.2	10		56.2	0.1		5	-4.9	

Dwelling Units All Selected All Impacted	# DUs	Noise Reduction					
L.		Min	Avg	Max			
		dB	dB	dB			
All Selected	11	0.1	3.8	7.8			
All Impacted	1	5.0	5.0	5.0			
All that meet NR Goal	6	5.0	6.4	7.8			

60-06726-20

ms consultants, inc.

3 July 2015

KLC 54200

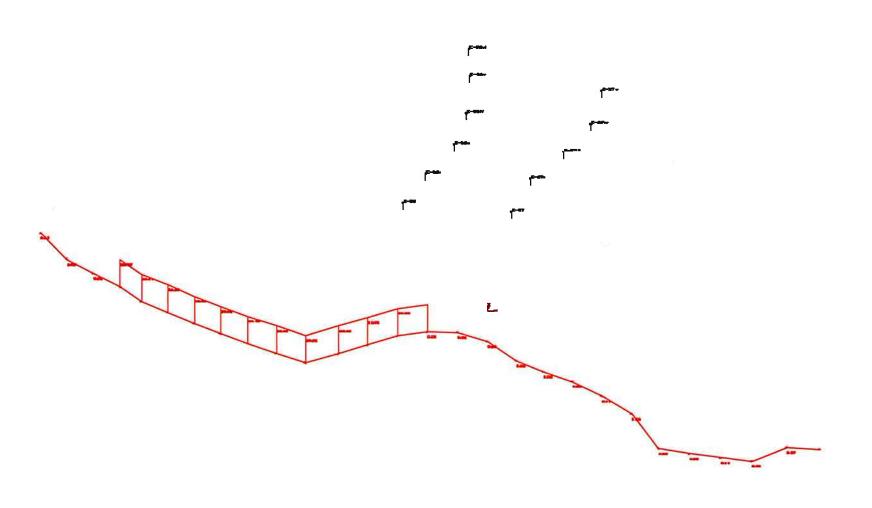
TNM 2.5

RESULTS: BARRIER DESCRIPTIONS

PROJECT/CONTRACT:

60-06726-20

RUN:


MP 28-31 NSA E Proposed

BARRIER DESIGN:

Bar E East - 20ft

Barriers

Name	Туре	Heights along Barrier				Length	If Wall	If Berm			Cost	
		Min	Avg	Max				Volume cu yd	Top Width ft	Run:Rise		
		ft	ft	ft		ft				ft:ft	\$	
Barrier E East	W	20.00	20.0	0	20.00	1116	22327				558179	
Barrier E East Br	W	0.00	0.0	0	0.00	0	0				0	
Barrier E East3	W	0.00	0.0	0	0.00	0	0				0	
										Total Cost:	558179	

MP 28-31 NSA E Proposed	Sheet 1 of 1 3 Jul 2015						
	ms consultants, inc.						
Barrier View-Bar E East - 20ft	Project/Contract No. 60-06726-20						
Run name: E_NoP_Ea	TNM Version 2.5, Feb 2004						
Scale: <dna -="" due="" perspective="" to=""></dna>	Analysis By: KLC 54200						
Roadway:	Ground Zone: polygon						
Receiver:	Tree Zone: dashed polygon						
Barrier:	Contour Zone: polygon						
Building Row: — —	Parallel Barrier:						
Terrain Line:	Skew Section: ——						

MILEPOST 28-31 ROADWAY AND BRIDGE RECONSTRUCTION PRELIMINARY DESIGN -- NOISE ANALYSIS REPORT

Appendix 9

Noise Barrier Summary

Table

PTC Milepost 28-31 Reconstruction Project -- Noise Barrier Summary Table WITH TOLL PLAZA July 2015

NSA/Barrier	Number of Units	Impacted Units	1st Row Units	Barrier Length	Barrier Height	Average IL	Average IL @ Impacted	# Impacted IL > 7dB	# Impacted w/ > 5db IL	% Impacted w/ > 5dB IL	Non-impacted Units > 5db IL	Total Benefited Units	Barrier Sq. Feet	Sq. Feet per Benefited Unit
NSA D	117	24	6	4063 feet	8 feet	1.8	1.2	0	0	0%	4	4	32,503	8,126
Barrier D	117	24	6	4063 feet	10 feet	2.3	1.5	0	1	4%	8	9	40,629	4,514
Entire NSA	117	24	6	4063 feet	12 feet	2.7	1.6	0	1	4%	12	13	48,755	3,750
	117	24	6	4063 feet	14 feet	2.9	1.7	1	3	13%	12	15	56,881	3,792
	117	24	6	4063 feet	16 feet	3.0	1.7	1	3	13%	13	16	65,007	4,063
	117	24	6	4063 feet	18 feet	3.1	1.8	1	3	13%	15	18	73,123	4,062
	117	24	6	4063 feet	20 feet	3.3	1.8	1	3	13%	17	20	81,258	4,063
	117	24	6	4063 feet	LOS 8'-12'	2.3	1.5	0	1	4%	8	9	39,059	4,340
NSA D	76	21	5	2971 feet	8 feet	0.6	0.3	0	0	0%	0	0	23,770	n/a
Barrier D	76	21	5	2971 feet	10 feet	1.0	0.4	0	0	0%	0	0	29,713	n/a
West	76	21	5	2971 feet	12 feet	1.1	0.5	0	0	0%	0	0	35,655	n/a
	76	21	5	2971 feet	14 feet	1.1	0.5	0	0	0%	0	0	41,598	n/a
	76	21	5	2971 feet	16 feet	1.5	0.5	0	0	0%	0	0	47,540	n/a
	76	21	5	2971 feet	18 feet	1.3	0.5	0	0	0%	0	0	53,483	n/a
	76	21	5	2971 feet	20 feet	1.3	0.5	0	0	0%	0	0	59,425	n/a
	76	21	5	2971 feet	LOS					n	/a		·	•
NSA D	15	3	3	689 Feet	8 feet	2.1	3.7	0	0	0%	1	1	5,510	5,510
Barrier D	15	3	3	689 Feet	10 feet	2.7	4.5	0	1	33%	1	2	6,887	3,444
East	15	3	3	689 Feet	12 feet	3.2	5.0	0	2	67%	1	3	8,265	2,755
	15	3	3	689 Feet	14 feet	3.4	5.2	0	3	100%	1	4	9,246	2,312
	15	3	3	689 Feet	16 feet	3.5	5.4	1	3	100%	1	4	11,020	2,755
	15	3	3	689 Feet	18 feet	3.6	5.5	1	3	100%	1	4	12,397	3,099
	15	3	3	689 Feet	20 feet	3.6	5.6	1	3	100%	1	4	13,775	3,444
	15	3	3	689 Feet	Optimized 12'-16'	3.5	5.4	1	3	100%	1	4	10,407	2,602
	15	3	3	689 Feet	LOS 8'-12'	3.1	4.9	0	3	100%	1	4	7,652	1,913
							1							
NSA D	45	3	14	2003 feet	8 feet	1.4	0.9	0	0	0%	4	4	16,024	4,006
Barrier D	45	3	14	2003 feet	10 feet	1.7	1.1	0	1	33%	6	7	20,030	2,861
East - Extended	45	3	14	2003 feet	12 feet	1.9	1.3	0	2	67%	7	9	24,036	2,671
	45	3	14	2003 feet	14 feet	2.0	1.3	1	3	100%	6	9	28,041	3,116
	45	3	14	2003 feet	16 feet	2.1	1.4	1	3	100%	8	11	32,047	2,913
	45	3	14 14	2003 feet	18 feet	2.2	1.4	1	3	100%	9	12	36,053	3,004
	45 45	3	14	2003 feet 2003 feet	20 feet Optimized 12'-14'	2.3	1.4	1	3	100% 100%	9	12 9	40,059 26,663	3,338 2,963
	45	3	14	2003 feet	LOS 8'-12'	1.7	1.2	0	2	67%	4	6	19,169	3,195

Highlighted barriers were the most reasonable and are discussed in the narrative.

PTC Milepost 28-31 Reconstruction Project -- Noise Barrier Summary Table WITH TOLL PLAZA July 2015 (cont.)

NSA/Barrier	Number of Units	Impacted Units	1st Row Units	Barrier Length	Barrier Height	Average IL	Average IL @ Impacted	# Impacted IL > 7dB	# Impacted w/ > 5db IL	% Impacted w/ > 5dB IL	Non-impacted Units > 5db IL	Total Benefited Units	Barrier Sq. Feet	Sq. Feet per Benefited Unit
NSA E	60	16	35	2251 feet	8 feet	0.1	0.1	0	0	0%	0	0	18,010	n/a
Barrier E	60	16	35	2251 feet	10 feet	0.2	0.2	0	0	0%	0	0	22,513	n/a
(3 barriers)	60	16	35	2251 feet	12 feet	0.2	0.2	0	0	0%	0	0	27,055	n/a
	60	16	35	2251 feet	14 feet	0.3	0.3	0	0	0%	0	0	31,558	n/a
	60	16	35	2251 feet	16 feet	0.3	0.3	0	0	0%	0	0	36,020	n/a
	60	16	35	2251 feet	18 feet	0.3	0.3	0	0	0%	0	0	40,524	n/a
	60	16	35	2251 feet	20 feet	0.4	0.4	0	0	0%	0	0	45,046	n/a
	60	16	35	2251 feet	LOS	n/a								

Highlighted barriers were the most reasonable and are discussed in the narrative.

PTC Milepost 28-31 Reconstruction Project -- Noise Barrier Summary Table NO TOLL PLAZA July 2015

NSA/Barrier	Number of Units	Impacted Units	1st Row Units	Barrier Length	Barrier Height	Average IL	Average IL @ Impacted	# Impacted IL > 7dB	# Impacted w/ > 5db IL	% Impacted w/ > 5dB IL	Non-impacted Units > 5db IL	Total Benefited Units	Barrier Sq. Feet	Sq. Feet per Benefited Unit
NSA D	117	27	6	4063 feet	8 feet	2.0	1.6	0	3	11%	5	8	32,503	4,063
Barrier D	117	27	6	4063 feet	10 feet	2.5	1.9	1	5	19%	10	15	40,629	2,709
Entire NSA	117	27	6	4063 feet	12 feet	2.9	2.2	1	6	22%	16	22	48,755	2,216
	117	27	6	4063 feet	14 feet	3.2	2.4	5	6	22%	17	23	56,881	2,473
	117	27	6	4063 feet	16 feet	3.3	2.5	5	6	22%	20	26	65,007	2,500
	117	27	6	4063 feet	18 feet	3.5	2.5	5	6	22%	21	27	73,123	2,708
	117	27	6	4063 feet	20 feet	3.6	2.6	5	6	22%	24	30	81,258	2,709
	117	27	6	4063 feet	LOS 8'-12'	2.5	2.0	1	5	19%	12	17	39,059	2,298
NSA D	76	21	5	2971 feet	8 feet	0.6	0.4	0	0	0%	0	0	23,770	n/a
Barrier D	76	21	5	2971 feet	10 feet	1.1	0.5	0	0	0%	0	0	29,713	n/a
West	76	21	5	2971 feet	12 feet	1.2	0.5	0	0	0%	0	0	35,655	n/a
	76	21	5	2971 feet	14 feet	1.3	0.6	0	0	0%	0	0	41,598	n/a
	76	21	5	2971 feet	16 feet	1.4	0.6	0	0	0%	1	1	47,540	47,540
	76	21	5	2971 feet	18 feet	1.4	0.6	0	0	0%	1	1	53,483	53,483
	76	21	5	2971 feet	20 feet	1.5	0.6	0	0	0%	2	2	59,425	29,713
	76	21	5	2971 feet	LOS					n	/a			
NSA D	15	4	3	689 Feet	8 feet	2.6	4.2	0	1	25%	1	2	5,510	2,755
Barrier D	15	4	3	689 Feet	10 feet	3.0	4.9	1	2	50%	1	3	6,887	2,296
East	15	4	3	689 Feet	12 feet	3.7	5.8	1	3	75%	1	4	8,265	2,066
	15	4	3	689 Feet	14 feet	3.9	6.2	2	4	100%	2	6	9,246	1,541
	15	4	3	689 Feet	16 feet	4.1	6.4	2	4	100%	2	6	11,020	1,837
	15	4	3	689 Feet	18 feet	4.2	6.5	2	4	100%	2	6	12,397	2,066
	15	4	3	689 Feet	20 feet	4.3	6.7	2	4	100%	2	6	13,775	2,296
	15	4	3	689 Feet	Optimized 12'-16'	4.0	6.4	2	4	100%	2	6	10,407	1,735
	15	4	3	689 Feet	LOS 8'-12'	3.6	5.8	1	1	25%	1	2	7,652	3,826
NSA D	45	4	14	2003 feet	8 feet	1.5	1.3	0	1	25%	1	2	16,024	8,012
Barrier D	45	4	14	2003 feet	10 feet	1.8	1.6	1	3	75%	1	4	20,030	5,008
East - Extended	45	4	14	2003 feet	12 feet	2.1	1.9	1	4	100%	4	8	24,036	3,005
	45	4	14	2003 feet	14 feet	2.2	2.0	3	4	100%	4	8	28,041	3,505
	45	4	14	2003 feet	16 feet	2.3	2.1	3	4	100%	5	9	32,047	3,561
	45	4	14	2003 feet	18 feet	2.4	2.1	3	4	100%	5	9	36,053	4,006
	45	4	14	2003 feet	20 feet	2.5	2.2	3	4	100%	6	10	40,059	4,006
	45	4	14	2003 feet	Optimized 12'-14'	2.0	1.3	3	4	100%	4	8	26,663	3,333
	45	4	14	2003 feet	LOS 8'-12'	1.8	1.8	1	4	100%	3	7	19,169	2,738

Highlighted barriers were the most reasonable and are discussed in the narrative.

PTC Milepost 28-31 Reconstruction Project -- Noise Barrier Summary Table NO TOLL PLAZA July 2015 (cont.)

NSA/Barrier	Number of Units	Impacted Units	1st Row Units	Barrier Length	Barrier Height	Average IL	Average IL @ Impacted	# Impacted IL > 7dB	# Impacted w/ > 5db IL	% Impacted w/ > 5dB IL	Non-impacted Units > 5db IL	Total Benefited Units	Barrier Sq. Feet	Sq. Feet per Benefited Unit
NSA E	60	16	35	2251 feet	8 feet	0.1	0.1	0	0	0%	0	0	18,010	n/a
Barrier E	60	16	35	2251 feet	10 feet	0.2	0.2	0	0	0%	0	0	22,513	n/a
(3 barriers)	60	16	35	2251 feet	12 feet	0.2	0.2	0	0	0%	0	0	27,055	n/a
	60	16	35	2251 feet	14 feet	0.3	0.3	0	0	0%	0	0	31,558	n/a
	60	16	35	2251 feet	16 feet	0.3	0.3	0	0	0%	0	0	36,020	n/a
	60	16	35	2251 feet	18 feet	0.3	0.3	0	0	0%	0	0	40,524	n/a
	60	16	35	2251 feet	20 feet	0.4	0.4	0	0	0%	0	0	45,046	n/a
	60	16	35	2251 feet	LOS					n	/a			

NSA E	11	1	2	1512 feet	8 feet	0.6	1.2	0	0	0%	0	0	12,093	n/a
Barrier E East	11	1	2	1512 feet	10 feet	1.0	1.5	0	0	0%	0	0	15,117	n/a
	11	1	2	1512 feet	12 feet	1.1	2.0	0	0	0%	0	0	18,140	n/a
	11	1	2	1512 feet	14 feet	1.6	2.4	0	0	0%	0	0	21,164	n/a
	11	1	2	1512 feet	16 feet	2.1	2.6	0	0	0%	0	0	24,187	n/a
	11	1	2	1512 feet	18 feet	3.0	3.3	0	0	0%	4	4	27,210	6,803
	11	1	2	1116 feet	20 feet	3.8	5.0	0	1	100%	5	6	22,327	3,721
	11	1	2	1512 feet	LOS	n/a								

Highlighted barriers were the most reasonable and are discussed in the narrative.

MILEPOST 28-31 ROADWAY AND BRIDGE RECONSTRUCTION PRELIMINARY DESIGN -- NOISE ANALYSIS REPORT

Appendix 10

Noise Barrier Worksheets

Date	15-Jul-15				
Project Name	Turnpike MP 28-31 Rec	construction			
County	Allegheny				
SR, Section	Turnpike (I-76	6)			
Community Name and/or NSA #	NSA D				
Noise Wall Identification (i.e., Wall 1)	D-ALL				
	Without Toll P	laza			
General					
1. Type of project (new location, reconstruction, etc.):	Reconstruction	on			
2. Total number of impacted receptor units in community					
Category A units impacted					
Category B units impacted	27 units (14 recei	ivers)			
Category C units impacted					
Category D units impacted (if interior analysis required)					
Category E units impacted					
Warranted					
1. Community Documentation					
a. Date community was permitted (for new developments or	pre-1940 thru 2014 n/a				
developments planned for or under construction)					
b. Date of approval for the Categorical Exclusion (CE), Record of					
Decision (ROD), or Finding of No Significant Impact (FONSI):					
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to					
Warranted Item 2. If no, consideration of noise abatement is not					
warranted. Proceed to "Decision" block and answer "no" to					
warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> ,					
ROD, or FONSI, as appropriate."	X Yes	No			
ROD, or I Orisi, as appropriate.	. 63				
2. Criteria requiring consideration of noise abatement (note N/A if					
category is not impacted or present or analysis not required). A "yes"					
answer to any of the following three questions requires the					
consideration of noise abatement.					
a. With the proposed project, are design year noise levels	**				
predicted to approach or exceed the NAC level(s) in Table 1?	X Yes	No No			
b. With the proposed project, is there predicted to be a substantial					
design year noise level increase of 10 dB(A) or more at Activity	V V	7 N.			
Category A, B, C, D, or E receptor(s)? c. With the proposed project, are design year noise levels	Yes X	No No			
predicted to be less than existing noise levels, but still approach or					
exceed the NAC levels in Table 1 for the relevant Activity					
Category?	Yes X	K No			

1. Impacted receptor units					
a. Total number of impacted receptor units:			27		
b. Percentage of impacted receptor units receiving 5 dB(A) or			22%		
more insertion loss:		•	22 /0		
c. Is the percentage 50 or greater?		Yes	X	No	
2. Can the noise wall be designed and physically constructed at the					
proposed location?	X	Yes		No	
3. Can the noise wall be constructed without causing a safety					
problem?	X	Yes		No	
4. Can the noise wall be constructed without restricting access to					
vehicular or pedestrian travel?	X	Yes		No	
5. Can the noise wall be constructed in a manner that allows for access					
for required maintenance and inspection operations?	X	Yes		No	
6. Can the noise wall be constructed in a manner that permits utilities					
to function in a normal manner?	X	Yes		No	
7. Can the noise wall be constructed in a manner that permits drainage					
features to function in a normal manner?	X	Yes		No	
Reasonableness					
1. Community Desires Related to the Barrier a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."		Yes		No	
2. Square Footage Per Benefited Receptor (SF/BR) Evaluation a. Area (SF) of the proposed noise wall		4	8,755		
b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)			22		
c. $SF/BR = 2a/2b$		2	2,216		
d. Is 2c less than or equal to the MaxSF/BR value of 2000?		Yes	X	No	
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall. a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?	X	Yes		No	

b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming			
to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	X	No
c. Does the noise wall provide insertion losses of greater than 7	163		
dB(A) while still conforming to the MaxSF/BR value of 2,000 and			
a "point of diminishing returns" evaluation?	Yes	X	No
d. Does the noise wall reduce future exterior levels to the low-60-			
decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	X	No
e. Does the noise wall reduce design year noise levels back to			_
existing levels?	Yes	X	No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall. a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point? b. While conforming to the MaxSF/BR criteria and justified by a	Yes		No
"point of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum	Yes		_No
Decision			
Is the Noise Wall WARRANTED?	X Yes		No
Is the Noise Wall FEASIBLE?	Yes	X	No
Is the Noise Wall REASONABLE?	Yes	X	No
Additional Reasons for Decision:			
Barrier D-All (barrier along Turnpike for all of NSA D) is not feasible 5 dB or more for 50% of the impacted units due to noise from I-79. amount of barrier per benefited unit exceeds 2000 sq. feet.			
Responsible/Qualified Individuals Making the	Above Decisions		
Pennsylvania Turnpike Commission	Ε	Date	
Karel L. Cubick, Sr. Planner - ms consultants, inc.	7/17	7/2015	_
Qualified Professional Performing the Analysis (name, title, and company name)		Date	

Date	15-Jul-15	
Project Name	Turnpike MP 28-31 Reconstruc	tion
County	Allegheny	
SR, Section	Turnpike (I-76)	
Community Name and/or NSA #	NSA D	
Noise Wall Identification (i.e., Wall 1)	D-WEST	
<u>-</u>	Without Toll Plaza	
General		
1. Type of project (new location, reconstruction, etc.):	Reconstruction	
2. Total number of impacted receptor units in community		
Category A units impacted		
Category B units impacted	21 units (9 receivers)	
Category C units impacted		
Category D units impacted (if interior analysis required)		
Category E units impacted		
Warranted		
1. Community Documentation		
a. Date community was permitted (for new developments or	2013-2014	
developments planned for or under construction)	2010 2011	
b. Date of approval for the Categorical Exclusion (CE), Record of	n/a	
Decision (ROD), or Finding of No Significant Impact (FONSI):		
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to		
Warranted Item 2. If no, consideration of noise abatement is not		
warranted. Proceed to "Decision" block and answer "no" to		
warranted question. As the reason for this decision, state that		
"Community was permitted after the date of approval of <i>CE</i> ,	X Yes N	lo
ROD, or FONSI, as appropriate ."	125	10
2. Criteria requiring consideration of noise abatement (note N/A if		
category is not impacted or present or analysis not required). A "yes"		
answer to any of the following three questions requires the		
consideration of noise abatement.		
a. With the proposed project, are design year noise levels	••	
predicted to approach or exceed the NAC level(s) in Table 1?	X YesN	lo
b. With the proposed project, is there predicted to be a substantial		
design year noise level increase of 10 dB(A) or more at Activity	V V	
Category A, B, C, D, or E receptor(s)? c. With the proposed project, are design year noise levels	Yes X N	lo
predicted to be less than existing noise levels, but still approach or		
exceed the NAC levels in Table 1 for the relevant Activity		
Category?	Yes X N	lo
Category?	103 22 1	••

1. Impacted receptor units				
a. Total number of impacted receptor units:			21	
b. Percentage of impacted receptor units receiving 5 dB(A) or			0%	
more insertion loss:				
c. Is the percentage 50 or greater?		Yes	X	No
2. Can the noise wall be designed and physically constructed at the				
proposed location?	X	Yes		No
3. Can the noise wall be constructed without causing a safety				
problem?	X	Yes		No
4. Can the noise wall be constructed without restricting access to				
vehicular or pedestrian travel?	X	Yes		No
5. Can the noise wall be constructed in a manner that allows for access				
for required maintenance and inspection operations?	X	Yes		No
6. Can the noise wall be constructed in a manner that permits utilities				
to function in a normal manner?	X	Yes		No
7. Can the noise wall be constructed in a manner that permits drainage				
features to function in a normal manner?	X	Yes		No
Reasonableness				
1. Community Desires Related to the Barrier a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."		Yes		No
2. Square Footage Per Benefited Receptor (SF/BR) Evaluation a. Area (SF) of the proposed noise wall		5	3,483	
b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)	1			
c. SF/BR = 2a/2b			3,483	NI -
d. Is 2c less than or equal to the MaxSF/BR value of 2000?		Yes	X	No No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall. a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?		Yes	X	No

b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming			
to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	X	No
c. Does the noise wall provide insertion losses of greater than 7	103		
dB(A) while still conforming to the MaxSF/BR value of 2,000 and			
a "point of diminishing returns" evaluation?	Yes	X	No
d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the			
upper-60 dB(A) range (65-68) for Category E receptors?	Yes	X	No
e. Does the noise wall reduce design year noise levels back to			
existing levels?	Yes	X	No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall. a. Does noise wall reduce design year interior noise levels by at least 7 dB(A) for the facility's analysis point?	Yes		No
b. While conforming to the MaxSF/BR criteria and justified by a			_
"point of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum	Yes		No
Decision			
Is the Noise Wall WARRANTED?	X Yes		No
Is the Noise Wall FEASIBLE?	Yes	X	No
Is the Noise Wall REASONABLE?	Yes	X	No
Additional Reasons for Decision:			
Barrier D-West (barrier for impacted new units at west end of Northg cannot reduce the noise level 5 dB any of the impacted units due to n	•	easible be	ecause it
Responsible/Qualified Individuals Making the	Above Decisions		
Pennsylvania Turnpike Commission		D ate	_
Karel L. Cubick, Sr. Planner - ms consultants, inc.	7/13	7/2015	
Qualified Professional Performing the Analysis)ate	_
(name, title, and company name)	L		

Date	15-Jul	-15
Project Name	Turnpike MP 28-31	1 Reconstruction
County	Allegh	eny
SR, Section	Turnpike	(I-76)
Community Name and/or NSA #	NSA	D
Noise Wall Identification (i.e., Wall 1)	D-EA	ST
	Without To	oll Plaza
General		
1. Type of project (new location, reconstruction, etc.):	Reconstr	uction
Total number of impacted receptor units in community Category A units impacted		
Category B units impacted	4 units (single fa	amily homes)
Category C units impacted		
Category D units impacted (if interior analysis required)		
Category E units impacted		
Warranted		
1. Community Documentation		
a. Date community was permitted (for new developments or	pre-1940 th	ru 1060c
developments planned for or under construction)	pre-1540 th	14 17003
b. Date of approval for the Categorical Exclusion (CE), Record of	n/a	
Decision (ROD), or Finding of No Significant Impact (FONSI):	11/ 0	•
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , as appropriate ."	X Yes	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?	X Yes	No
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)? c. With the proposed project, are design year noise levels	Yes	X No
predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	X No

1. Impacted receptor units			
a. Total number of impacted receptor units:			4
b. Percentage of impacted receptor units receiving 5 dB(A) or		1	100%
more insertion loss:			
c. Is the percentage 50 or greater?	X	Yes	No
2. Can the noise wall be designed and physically constructed at the	X 7		
proposed location?	X	Yes	No
3. Can the noise wall be constructed without causing a safety	X	V	NI -
problem?	Λ	Yes	No
4. Can the noise wall be constructed without restricting access to	X	Voc	No
vehicular or pedestrian travel?	Λ	Yes	No
5. Can the noise wall be constructed in a manner that allows for access	X	Voc	No
for required maintenance and inspection operations?	Λ	Yes	No
6. Can the noise wall be constructed in a manner that permits utilities	X	Voc	No
to function in a normal manner?	Λ	Yes	No
7. Can the noise wall be constructed in a manner that permits drainage	X	Yes	No
features to function in a normal manner?	71	162	No
Reasonableness			
1. Community Desires Related to the Barrier			
a. Do at least 50 percent of the responding benefited receptor unit			
owner(s) and renters desire the noise wall? If yes, continue with			
Reasonableness questions. If no, the noise wall can be considered			
not to be reasonable. Proceed to "Decision" block and answer			
"no" to reasonableness question. As the reason for this decision,			
state that "The majority of the benefited receptor unit owners do			
not desire the noise wall."		Yes	No
2 C E			
2. Square Footage Per Benefited Receptor (SF/BR) Evaluation a. Area (SF) of the proposed noise wall		1	0,407
b. Number of benefited receptor units (any unit receiving 5 dB(A)		1	0,407
or more insertion loss)			6
c. $SF/BR = 2a/2b$			1,735
d. Is 2c less than or equal to the MaxSF/BR value of 2000?	X	Yes	No
2 N ' P-1 - / P-1 - C-1 - (A -/- ' C-1 - (A -/- ' A - P-C 1 - E)			
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E)			
A "yes" answer is required to Question 3a. for the noise wall to be			
determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined			
reasonable. However, they must be addressed and should be			
considered in the determination of the recommended noise wall.			
a. Does the noise wall reduce design year exterior_noise levels by			
at least 7 dB(A) for at least one benefited receptor?	X	Yes	No

 b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors? e. Does the noise wall reduce design year noise levels back to 	X X	Yes Yes Yes	No No
existing levels?	X	Yes	No
 4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall. a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point? b. While conforming to the MaxSF/BR criteria and justified by a "point of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum 		Yes Yes	No No
Decision			
	3 7		
Is the Noise Wall WARRANTED?	X	Yes	No
Is the Noise Wall FEASIBLE?	X	Yes	No
Is the Noise Wall REASONABLE?	X	Yes	No
Additional Reasons for Decision:			
Barrier D-East (barrier for impacted units along Mt. Pleasant Road)	is warre	ented, feasibl	e, and reasonable.
Responsible/Qualified Individuals Making the	Above I	Decisions	
Pennsylvania Turnpike Commission		Da	nte
Karel L. Cubick, Sr. Planner - ms consultants, inc.		7/17/	2015
Qualified Professional Performing the Analysis		Da	

Date	15-Jւ	ıl-15
Project Name	Turnpike MP 28-3	31 Reconstruction
County	Alleg	heny
SR, Section	Turnpik	e (I-76)
Community Name and/or NSA #	NSA	A D
Noise Wall Identification (i.e., Wall 1)	D-EAST 1	Extended
_	Without T	Toll Plaza
General		
1. Type of project (new location, reconstruction, etc.):	Reconst	truction
Total number of impacted receptor units in community Category A units impacted		
Category B units impacted	4 units (single	family homes)
Category C units impacted		
Category D units impacted (if interior analysis required)		
Category E units impacted		
Warranted		
1. Community Documentation		
a. Date community was permitted (for new developments or	pre-1940 t	hru 1960s
developments planned for or under construction)	F	
b. Date of approval for the Categorical Exclusion (CE), Record of	n/	'a
Decision (ROD), or Finding of No Significant Impact (FONSI):		
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	X Yes	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
a. With the proposed project, are design year noise levels	V	
predicted to approach or exceed the NAC level(s) in Table 1?	X Yes	No
b. With the proposed project, is there predicted to be a substantial		
design year noise level increase of 10 dB(A) or more at Activity	Yes	X No
Category A, B, C, D, or E receptor(s)? c. With the proposed project, are design year noise levels	163	110
predicted to be less than existing noise levels, but still approach or		
exceed the NAC levels in Table 1 for the relevant Activity		
Category?	Yes	X No

	4		
	100	0/2	
	100	70	
X	Yes	No	
X	Yes	No	
X	Yes	No	
X	Yes	No	
X	Yes	No	
X	Yes	No	
X	Yes	No No	
	Yes	No No	
	26,6	563	
	8		
	3,3	33	_
	Yes	X No	
	X X X X X X	X Yes X 3,3,3	X Yes No X Yes No X Yes No X Yes No X Yes No Yes No 26,663 8 3,333

 b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors? e. Does the noise wall reduce design year noise levels back to existing levels? 4. Noise Reduction Design Goals (Activity Category D) A "yes" 	X X X	Yes Yes Yes Yes	X	No No No No No No
answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall. a. Does noise wall reduce design year interior_noise levels by at				
least 7 dB(A) for the facility's analysis point? b. While conforming to the MaxSF/BR criteria and justified by a "point of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum		Yes Yes		No
Decision				
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	X	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No
Additional Reasons for Decision:				
Barrier D-East Extended (barrier for impacted units along Mt. Please Gate Drive) is not reasonable because the amount of barrier per bene				•
Responsible/Qualified Individuals Making the	Above Γ	Decisions		
Pennsylvania Turnpike Commission			Date	_
Karel L. Cubick, Sr. Planner - ms consultants, inc.		7/:	17/2015	
Qualified Professional Performing the Analysis			Date	_

Date	15-Jul-15			
Project Name	Turnpike MP 28-31 Reconstruction			
County	Allegheny			
SR, Section	Turnpike (I-76)			
Community Name and/or NSA #	NSA E			
Noise Wall Identification (i.e., Wall 1)		E		
	Withou	ut Toll Plaza		
General				
1. Type of project (new location, reconstruction, etc.):	Reco	onstruction		
2. Total number of impacted receptor units in community Category A units impacted				
Category B units impacted	16 units (existing	ng & planned l	nomes)	
Category C units impacted				
Category D units impacted (if interior analysis required)				
Category E units impacted				
Warranted				
1. Community Documentation				
a. Date community was permitted (for new developments or	2009 thru	2015 and futur	re	
developments planned for or under construction)	2007 tinu	2015 una rata		
b. Date of approval for the Categorical Exclusion (CE), Record of	· n/a			
Decision (ROD), or Finding of No Significant Impact (FONSI):				
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to				
Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to				
warranted question. As the reason for this decision, state that				
"Community was permitted after the date of approval of <i>CE</i> ,				
ROD, or FONSI, as appropriate."	X Yes		No	
•				
2. Criteria requiring consideration of noise abatement (note N/A if				
category is not impacted or present or analysis not required). A "yes"				
answer to any of the following three questions requires the				
consideration of noise abatement.				
a. With the proposed project, are design year noise levels	X Yes		No	
predicted to approach or exceed the NAC level(s) in Table 1? b. With the proposed project, is there predicted to be a substantial	X Yes		No	
design year noise level increase of 10 dB(A) or more at Activity				
Category A, B, C, D, or E receptor(s)?	Yes	X	No	
c. With the proposed project, are design year noise levels			•	
predicted to be less than existing noise levels, but still approach or				
exceed the NAC levels in Table 1 for the relevant Activity		v		
Category?	Yes	X	No	

1. Impacted receptor units					
a. Total number of impacted receptor units:			16		
b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:			0%		
c. Is the percentage 50 or greater?		Yes	X	No	
2. Can the noise wall be designed and physically constructed at the					
proposed location?	X	Yes		No	
3. Can the noise wall be constructed without causing a safety					
problem?	X	Yes		No	
4. Can the noise wall be constructed without restricting access to					
vehicular or pedestrian travel?	X	Yes		No	
5. Can the noise wall be constructed in a manner that allows for access					
for required maintenance and inspection operations?	X	Yes		No	
6. Can the noise wall be constructed in a manner that permits utilities					
to function in a normal manner?	X	Yes		No	
7. Can the noise wall be constructed in a manner that permits drainage					
features to function in a normal manner?	X	Yes		No	
Reasonableness					
1. Community Desires Related to the Barrier a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall."		Yes		No	
2. Square Footage Per Benefited Receptor (SF/BR) Evaluation					
a. Area (SF) of the proposed noise wall		4	5,026		
b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)			0		
c. $SF/BR = 2a/2b$	n/a				
d. Is 2c less than or equal to the MaxSF/BR value of 2000?		Yes	X	No No	
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall. a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?		Yes	X	No	

b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing			
returns" evaluation?	Yes	X	No
c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? d. Does the noise wall reduce future exterior levels to the low-60-	Yes	X	No
decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors? e. Does the noise wall reduce design year noise levels back to existing levels?	Yes Yes	X X	No No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall. a. Does noise wall reduce design year interior_noise levels by at			
least 7 dB(A) for the facility's analysis point? b. While conforming to the MaxSF/BR criteria and justified by a "point of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum	Yes Yes		No
Decision			
Is the Noise Wall WARRANTED?	X Yes		No
Is the Noise Wall FEASIBLE?	Yes	X	No
Is the Noise Wall REASONABLE?	Yes	X	No
Additional Reasons for Decision:			
Barrier E (barrier for impacted new and planned units overlooking I-reduce noise level 5 dB any of the impacted units due to noise from I	<i>'</i>	pecause it	can not
Responsible/Qualified Individuals Making the	Above Decisions		
Pennsylvania Turnpike Commission		D ate	_
Pennsylvania Turnpike Commission Karel L. Cubick, Sr. Planner - ms consultants, inc.		Oate 7/2015	-

Date	15-Jul	-15
Project Name	Turnpike MP 28-31	1 Reconstruction
County	Allegh	eny
SR, Section	Turnpike	(I-76)
Community Name and/or NSA #	NSA	E
Noise Wall Identification (i.e., Wall 1)	E-Ea	ıst
	Without To	oll Plaza
General		
1. Type of project (new location, reconstruction, etc.):	Reconstr	uction
2. Total number of impacted receptor units in community Category A units impacted	1 home	oito.
Category B units impacted	1 nome	site
Category C units impacted		
Category D units impacted (if interior analysis required)		
Category E units impacted		
Warranted		
1. Community Documentation		
a. Date community was permitted (for new developments or	2009 thru 2015	5 and future
developments planned for or under construction)	2009 tinu 2010	
b. Date of approval for the Categorical Exclusion (CE), Record of	n/a	ı
Decision (ROD), or Finding of No Significant Impact (FONSI):		
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , or <i>FONSI</i> , as appropriate."	X Yes _	No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.		
a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?	X Yes	No
b. With the proposed project, is there predicted to be a substantial		
design year noise level increase of 10 dB(A) or more at Activity	Voc	X No
Category A, B, C, D, or E receptor(s)? c. With the proposed project, are design year noise levels	Yes	INU
predicted to be less than existing noise levels, but still approach or		
exceed the NAC levels in Table 1 for the relevant Activity		
Category?	Yes	X No

1. Impacted receptor units				
a. Total number of impacted receptor units:			1	
b. Percentage of impacted receptor units receiving 5 dB(A) or		1/	00%	
more insertion loss:		10	JO 70	
c. Is the percentage 50 or greater?	X	Yes		No
2. Can the noise wall be designed and physically constructed at the				
proposed location?	X	Yes		No
3. Can the noise wall be constructed without causing a safety				
problem?	X	Yes		No
4. Can the noise wall be constructed without restricting access to				
vehicular or pedestrian travel?	X	Yes		No
5. Can the noise wall be constructed in a manner that allows for access				
for required maintenance and inspection operations?	X	Yes		No
6. Can the noise wall be constructed in a manner that permits utilities				
to function in a normal manner?	X	Yes		No
7. Can the noise wall be constructed in a manner that permits drainage				
features to function in a normal manner?	X	Yes		No
Reasonableness				
 Community Desires Related to the Barrier a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise wall." Square Footage Per Benefited Receptor (SF/BR) Evaluation 		Yes		No
a. Area (SF) of the proposed noise wall		22	2,327	
b. Number of benefited receptor units (any unit receiving 5 dB(A)			•	
or more insertion loss)			6	
c. $SF/BR = 2a/2b$	3,721			
d. Is 2c less than or equal to the MaxSF/BR value of 2000?		Yes	X	No
3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall. a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?	X	Yes		No

for more receptors than required under 3a. while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing	W	V	N
returns" evaluation?	Yes	X	_No
c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	X	_No
d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	X	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	X	No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall. a. Does noise wall reduce design year interior noise levels by at least 7 dB(A) for the facility's analysis point?	Yes		No
b. While conforming to the MaxSF/BR criteria and justified by a "point of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum	Yes		_No
Decision			
Is the Noise Wall WARRANTED?	X Yes		No
Is the Noise Wall FEASIBLE?	X Yes		No
Is the Noise Wall REASONABLE?	Yes	X	_No
Additional Reasons for Decision:			
Barrier E - East (barrier for impacted residences west of Mt. Pleasant amount of barrier per benefited unit exceeds 2000 sq. feet.	Rd.) is not reason	able becau	ise the
Responsible/Qualified Individuals Making the	Above Decisions		
Pennsylvania Turnpike Commission		Date	_
Karel L. Cubick, Sr. Planner - ms consultants, inc.	7/17	7/2015	<u>_</u>
Qualified Professional Performing the Analysis		D ate	